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Abstract

Ton-acoustic solitary waves ("Solitons") have been
studied experimentally by employing a double-plasma device.
The solitary waves are found to be produced from both a
single compressional pulse and a continuous wave. A rare-
faction pulse also produces solitons if the pulse width is
sufficiently wide. A theory based on the Schrodinger equation
accounts for the number of solitons. Recurrence to the original
state is observed when a continuous wave is launched. A simple
wave-wave coupling analysis for the recurrence of the original

state is given.



I. INTRODUCTION

A significant number of studies on the nonlinear
features of ion-~acoustic waves in collisionless plasma have
been reported in the last decade. TheAnonlinear effects in
the ion-acoustic waves belong to oné of the following two
classes depending on the value of the electron-to-ion tem-~
perature ratio Te/Ti' (1) I1f Te/Ti 2 1, then the phase
velocity of the wave is on the order of the ion thermal ve-
lécity and nonlinear wave-particle interactions, such as the
trapping of the ions, are the dominant feature of the wave
propagation. (ii) If Te/Ti >> 1, the above mentioned wave-
particle interaction is a weak effect, and macroscopic non-
linearities predominate. In this case, the ion temperature
may be neglected and the evolution of the one-dimensional
small-amplitude, long wavelength ion-acoustic wave can be

described by the Kortweg-deVries (K-dV) equation%

Y , 3y _ 3y 1 3%y _
sttt T Var Tz T O (1)

where ¥ is the perturbed-to-unperturbed plasma density ratio
ﬁ/n0 or the wave potential normalized by the electron tem-
perature e¢/Te, g = x/>\D is the spatial coordinate normalized

by the electron Debye length XD and T = wpit is the time nor-

malized by the ion plasma frequency wpi' )

The K-dV equation has been subjected to considerable



theoretical study in recent years. It has been shown that
a compressional wave pulse (Y > 0) breaks into a finite
number of solitary waves (or "solitons") if it follows the
K-dv equationz_s. The solution of (1) is also known if

Y (1) approaches a constant value sufficiently rapidly as
|t] » . Numerical analysis of the K-dV equation has shown
that a periodic initial value will evolve to form solitons

and that the original waveform will be recovered (i.e. "re-

currence") after collisions between the soliton56’7.
We note that the stationary state solution of (1) gives

the electron density profile in the solitary wave pulse

fi = én sech’[(x - ut)/D] + @ , (2)
where

u=c_(L+=én/n) +c_ fi/ng, (3)
and

(D/Ay)? = 6 n,/8n. (4)

Here, n; is the unperturbed plasma density, 6n is the ampli-
tude of the soliton, ﬁm is the value of the perturbation at
X = «, and Cq is the ion-acoustic velocity. From these equ-

ations, it follows that as the soliton amplitude increases,

.its width D decreases and its velocity u increases. It is



also known that only compressional solitons appear in the
ion-acoustic branch8. Wave-particle interactions due to
finite ion temperature would modify the relations (2) and
(3) and would cause damping of the solitonsg.

10, the experimental observation of

In a previous note
the formation and the interaction of the ion-acoustic solitons
have been reported. The present paper is an extension of
the previous work to describe other properties of the ion-
acoustic solitons. The experimental conditions and methods
are described in Section II. The experimental results which
are described in Section III include: (A) The relations
between the amplitude, the width and the velocity of the
solitons and other basic properties; (B) The dependence of
the number of sol}tions on the initial boundary values; and
(C) the observation of the recurrence phenomenon. A dis-
cussion of each topic described in Section III is presented

in Section IV. The conclusions of the present study are

summarized in Section V.

II. EXPERIMENTAL CONDITIONS AND METHODS

The experiment is carried out in a double-plasma (DP)
devicell. The apparatus consists of two identical but elect-
rically independent conducting vacuum chambers, méde of 50 cm
diameter cylinders, each of 40 cm length. A fine mesh grid

(40 wires/cm) partitions the space into two regions. Typical



plasma parameters are; plasma density n, = 10° N 102 %m” 3,
electron temperature Te ~ 3 eV; ion temperature Ti < 0.2 ev;
argon gas pressure P = (1 ~ 3) x 10™" Torr. The application
of voltage signals to one chamber relative to the other chamber
efficiently launch density perturbations through the gridll’lz.
The electron density perturbations are observed by monitoring
the electron saturation current of Langmuir probe. The ion
distribution is monitored by an electrostatic energy analyzer].'3
To characterize the ion-acoustic wave behavior in this
plasma, we present an experimentally measured dispersion curve
for small amplitude waves (ni/n, 10—3) in Fig.l. The solid
curve A shows the dispersion relation obtained by linearizing

(1) and curve B shows that calculated from the dielectric

function14

=0 -(5)

for Te/Ti = 30. The approximation, to the order (w/wpi)3,
involved in (1) is satisfactory in the range w/wpi < 0.7

where our experiments have been performed.

IIY. EXPERIMENTAL RESULTS
The formation of the solitons is exhibited in Fig.2,
(and has been reported earlierlo). Relatively large-amplitude

+

compressional wave, excited by the applied potential pulse



shown in the top trace, steepens and develops an oscillatory
structure. Finally the initial single humped wave is divided
into a train of many peaks. The precursor is a group of
streaming ions reflected from the wave front as observed with
the energy analyzer. If the origin&l wave amplitude -are
decreased, then a longer distance is required for steepening
to occur and a fewer number of peaks are produced. The small-
amplitude wave (ﬁ/n0 is a féw percent) simply damps before
steepening. The damping is mainly due to Landau damping.

We now describe, in detail, further experimental findings.

A. Basic Properties

Large amplitude wave pulses are. obtained when the width
or the amplitude of the original wave 1is increased. 'The
effect of changiné the pulse amplitude on the width and the
propagation velocity "is measured. This result is shown in
Fig.3. As the amplitude of the compressive pulse is increased_
(decreased), the width decreases (increases) and the velocity
increases (decreases). Note that the velocity 1is faster than

c i.e., the Mach number is greater than unity. Here, Cq

Sl
- is obtained experimentally from measurements of a very small-
amplitude ion-acoustic wave. These features of the pulses
identify them as solitons. The experimental pointé systema-

9,15

tically deviate from the lines given by'equations (3) and

(4), where we have set n_= 0.



Apparently finite ion-~temperature effects such as ion
reflection cause. damping of the solitons. The bars in Fig.3
show the ranges of the amplitude where the averaged propaga-
tion velocity has been measured.

It should be noted that the formation of the soliton
is. sensitive to the value of Te/Ti and also to contamination
by light ions}6 When Te/Ti is 1low, say 10, or the light ions
are present, say hydrogen "out gassed" from the chamber wall,
thé wavedoes not break into solitons but induces turbulent
noisel7'18. The amplitude of the solitons én/n  in these
experiments is smaller than 0.2. The amplitude of the
precursor increased sharply when the amplitude of the solitoﬁs
is: increased and a heavier damping results ..

It is observed that a rarefaction wave pulse also
produces solitons when its width is - wider than the width
of the soliton. As the rarefaction wave propagates, the
rising part of its density steepens’ and a train of peaks
follow. - The velocity of the solitons is slower than Cq
which is - presumably due to the fact that ﬁm < 0 in (2) and
(3). No rarefaction soliton is - found. Although the wave
train 14g  generated when the width of the original pulse
" is narrower than that of the solitons, it is: hard to iden-
tify each peak as a soliton using our previously described
criteria. The period of the oscillationslg.in the time

~ domain ig observed to increase proportionally with xl/3



and with ¢~l/2. Here, ¢ is the amplitude of the potential
ex ex

applied to the wave exciter.

B. Number of Solitons

The number of solitons is8 increased when the amplitude
or the width of the exciting pulse is increasedzo. Repre-
sentative pictures, showing the relation between the wave
excitation pulses and the received electron density pertur-
bétion signals picked up at x = 8 cm with the pulse width
as a parameter, are shown in Fig.4. The two traces at the
top show five solitons when the total width of the excita-
tion pulse is- 5 us. Narrower excitation pulses generate
a fewer number of solitons as shown in the following traces.
Although the amplitude of the excitation pulse is kept
constant, the resulting amplitude of the largest soliton
in each case is smaller when the width of the excitationx
pulse is narrower. It should be noted that the wave train,
which is at later times of the picture, follows behind two
solitons in the bottom trace? The dependence of the number
of solitons on the amplitude is observed to be weak, although
the range of the amplitude studied experimentally 'is narrow
because the small-amplitude wave damps. before making solitons
and larger values of excitation voltage inject an ion-beam

into the plasmazo’zl.

*

The shape of the excitation pulses in Fig.4 is one cycle



of a sinusoidal wave. It 18 £found that the waveform after
breaking into the solitons is almost independent of the

original shape of this pulse provided that the pulse width
was the same in the sense as described in the next section

[see Fig.4(b)].

C. Periodic Wave and Recurrence of the Initial Waveform
Continuous sinusoidal waves are also found to generate
sélitons. Figure 5 shows the spatial evolution of a wave
excited by sinusoidal signals. These plots, in which the
abscissa is axial position, are obtained by sampling the
saturated electron current from a Langmuir probe at a fixed
phase of the excitation signal while sweeping the probe
position. The sinusoidal wave steepens and generates the
solitons in one fundamental cycle (see third or fourth cycle
on tﬁe top trace) when the frequency of the excitation signal
w,/2m is low. The number of solitons generated in each funda-
mental period of the original waveform is the same as that
found in the experiment where a single-humped perturbation
is - launched, provided that the width and the amplitude of
the pulse are the same as those of the sinusoidal wave.
Since the small soliton is delayed from the larger ones, the
fourth smallest soliton is absorbed into the largest soliton
at the fifth cycle from the left in the cade for w,/2m = 0.15

'MHz shown on the top trace. (The width of the soliton is



wider at a larger distance. However, this is not real but
is due to jittering of the wave velocity induced by a ripple
from the power supply. The sampling method averages the
signal.) A different kind of interaction is seen at the end of
the third trace where w,/2m = 0.25 MHz. Two peaks do not
merge into a single peaklo. It is- b>bserved that two solitons
fused and formed a single peak when one of them 1is very
small compared with the other one. If the amplitudes of the
interacting solitons are comparable, then the two peaks
do not form a single peak during the interaction. 1In the
case of the trace at the bottom, a small peak is at the
bottom éf the wave trough in the early few cycles. This
peak is not the signal due to the reflected ions because its
velocity is slower than that of the large peak. It 1is' found
that the waveforﬁ is sinusoidal at the middle of the trace.

- The recurrence of the waveform to the original sinusoidal
signal is illustrated in Fig.6(a) more clearly. The sinu-
soidal wave steepens as it propagates and forms two solitons

. N . , .22
5 cm. The original sinusoidal waves is recovered

I

at x
at x = 9 cm, and again the signal starts steepening.
(Broadening of the trace line is due to a jitter in the wave
velocity as noted above.) The Fourier amplitudes of the
fundamental frequency and of the higher harmonics are plotted
in Fig.6(b) as a function of distance. The fundamental wave

+

damps and the second harmonic grows originally. After x = 5 cm,

- 10 -~



however, the fundamental wave grows and the second harmonic
damps and completely disappears at x = 9 cm where recurrence
of the wave is observed. The amplitude of the third harmonic
is not large. It is observed that a larger-amplitude wave
shortens the recurrence distance and shows 1less perfect
recurrence.

A typical result from interferometer measurement is
shown in Fig.7, in the case when the nonlinearity of the
wave is comparable with the dispersion. The measurement of
the second harmonic wave is carried out by feeding a signal

with frequency equal to 2w, to the interferometer as a re-

0
ference signal. The phase of this reference signal is

locked to the wave excitation signal w,;. Only the 2w, com-
ponent of the wave signal detected by the probe is selected
by using a filter. The amplitude of the fundamental wave is
almost spatially constant in this case. The second harmonic
wave initially grows and then damps. The recurrence is

seen at x = 8 cm. A careful comparison of the phase of the
two interferometer signals.shows that the second harmonic

wave propagates with a slower velocity than that of the first
harmonic wave, this explains the delay of the small peak.
Indeed, a linear superposition of the two signals corresponds
to the trace at the bottom of Fig.5. The lower trace in Fig.7

shows a phase jump at x = 8 cm. This fact suggests that the

consists of two waves which have slightly different

wave at 2w0



wavenumbers.

Similar measurements have been performed for the case
when w, is smaller and more solitons are . found to be
generated in a fundamental cycle. The results are as
follows: (1) It is: found that the harmonics from the
first to the N-th are the principal modes in the case when
N solitons are generated. The amplitude of the harmonics
higher than N-th harmonic is small. 1In other words, the
superposition of the harmonics up to N-th basically describe
the waveform. (ii) The periodic spatial amplitude oscilla-
tions, like the one shown in Fig.7, are found for every
harmonic except for the fundamental. The period of the
oscillations is shorter for the larger harmonic number.
This fact suggests that the original waveform reappears at
the place where the nodes of all principal harmonics coin-
cide23. (iii) The propagation veiocity of the higher har-
monic waves 1s faster than that of a small-amplitude wave
which is excited at the same frequency by an external
source and which would be.on the linear dispersion curve.
However, they were slower than that of the fundamental wave.
This fact is related to the feature that a smaller-amplitude
soliton is slower than a larger-amplitude soliton. (iv) The

distance which is necessary for recurrence of the original

waveform increases very critically when w,,is decreased.



IV. DISCUSSIONS
A. Basic Properties

The observed dependence of the velocity and the width
on the amplitude of the solitary wave pulses is consistent
with that described by Egs. (3) and (4). The systematic de-
viation of the observed velocity and the width from the
predictions of (3) and (4) may be due to finite ion tem-
perature effect59 or due to the fact that the electrons do
no£ exactly obey the Boltzmann distribution%O

Concerning the damping of the solitons, we note the
invalidity of invoking a linear Landau damping explanation
in the present experiment. Since the soliton has a finite
positive potential amplitude ¢0, ions in the velocity range
u - (2e<j>0/M)l/2 <'v < u are reflected by the soliton and carry
away_the wave energy and damp the soliton. Here, u = Cge
The width of the velocity range where the ions are reflected
is written as

( \W (6)

1
0 Ti 1

2ed, y1/2 _ (o172 Te
M n

where \ is the ion thermal velocity and we have used the
fact 6én/n = e¢0/Te. If we use typical experimental numbers
én/n = 0.1 and Te/Ti = 30, then we have (2e¢o/M)l/2/vi = 1.7.
The analysis of linear Landau dmaping, which assumes that

this ratio is very small, aprarently is not applicable.

- 13 -



Note that the velocity u - (2e¢0/M)l/2 is only twice as large
as v, and a significant number of ions are thought to be
reflected although the ion distribution function is very

small at v = u(= 4vii. In fact, the assumption, that all

of the ions in the range u - (2e(j>0/rli)1/2 < v < u are reflacted,
accounts for the observed amplitude of the precursor. The
damping due to this reflection of the ions seriously limits

the amplitude of the soliton.

B. Number of Solitons

We compare the observed number of solitons due to the
wave excited at x = 0 with the theory of Gardner et al.2
According to their theory, the number of solitons equals the

number of the bound states of the following Schroddinger

equation;

92f (1)

at?

+3lolt, 0) - pIE(D) = o0, (7)

provided the K-dV equation [Eqg. (1)] describes the evolution
of the wave. Here, p is the eigenvalue which is to be
determined, and Y (1, 0)I[= ﬁ(wpit, x = 0)/n ] is the density
perturbation at x = 0 where the wave is launched. Except
for the case shown in Fig.5(b), the boundary values in our

experiments can be described by

- 14 -



1% ™ T
F—(1 + cos(—EI)], for -1 < <2p+1

v(t, 0) = (8)

0 ' elsewhere

where p is zero or a positive integer and ¢, > O.

If we introduce the following variables and parameters

(9)

and q =3%? V0%,

then Eq.(7) can be written in the form of a Mathieu equation

azs

77 + [a -~ 2g cos(2z)]1f = 0. (10)

1

Here, g = 0 and a = a -5&2A/n)zp. for z < 0 and z > m(ptl).

0

The solution of (10) has a form24

f = fII = A exp(ivz)R(z) + B exp(-ivz)R(-2), (11)

in the region 0 < z < 7w(p+l),

Cexp[(~an)l/2z] for» z < 0, (12)

Hh
|
Hh
1

- 15 -~



and

f= £, =D expl-(-a,) /%2 for z > m(p+l). (13)
Here, R(z) is a periodic function with period w. The condi-
tions for a smooth connection of these functions at z=0 and

z = m(pt+l) are;

df;g

dz

df
/E11 = ("ao)l/z and _H%E /11 = ~(-a )2,

72=0 z=7(p+1) °

(14)

For the bound state, p’> 0; therefore (—-ao)l/2 is a real
number. The boundary conditions (14) lead to the conclusion
that one eigen state is determined when the characteristic
exponent v changes from &/ (p+l) to (2+1)/(p+l), where % is
zero or a positive integer. There exist p+l eigen states

in each range 0 < v <1, 1 < Vv <2, *«++++, The eigenvalues
a of Eqg.(10) are plotted in Fig.8 as a function of g with

V as a parameter24. When v changes from 0 to 1, the curve

a = a(g) moves from the curve a, to B, which are specified in
the figure. When v changes from 1 to 2, a = a(g) moves from
@, to B, and so on. No eigenvalue exists in the regions

2

between the curves B8, and a,, B, and Gy, ****+. The bound

2
states; u > 0, exist only in a region specified by a < 2qg.

Let us consider the simplest case; p=0, which states

- 16 -



that one compressional pulse is excited at the boundary.

If we specify the width A and the amplitude y,, then q is
determined. Since one eigen state exists in each region

0 <v<l1l,1<v <2, =+, therefore only one soliton is
generated when q, > q > 0, two solitons are generated when
q, > 9 > d,, and so on ¢**+*+, The values of q;,, g, ***°"*
are shown in Fig.8. The number of solitons N predicted by
the above analysis is indicated by bars in Fig.9 as a func-

tion of W%/ZA. The experimental data points show that N

1/2

is linearly proportional to y|

A but a systematic deviation
from the calculated values is observed. This deviation may
be related to that found in Fig.3(a). Since the width of
the soliton is narrower than the prediction of Eq. (4), more
solitons would be generated than the number predicted by above
calculation.

We note, here, the following point: Since Eq. (6) is
unchanged under the transformation; yt - t and Y (t, 0) -
v2y (T, 0) where y is an arbitrary constant number, the number
of solitons is unchanged whén the waveform Y (t, 0) is varied
if the gquantity [ wl/z(T, 0)dt is kept constant. ‘This pre-
diction is experimentally confirmed in Fig.4(b). The theory
of Gardner et al.2 also predicts that the amplitude of the
soliton should be proportional to the eigenvalue u. The

eigenvalues using the estimate given above account for the

observed amplitude ratios between the solitons generated

- 17 -



from the original compressional pulse.

We now discuss the behaviour of the solitary wave
excited by a continuous sinusoidal wave. If ¥ (1, 0) osci-
llates continuously from -« to «, then the analysis based
on Eq. (7) does not apply. However,.if we let p be a large
but finite number, we can simulate the experimental condi-
tion. In order to describe the situation, we select g, for
example in the range ¥, < g < ¢q, in Fig.8. The curves o,
and B, touch each other at the value of g that we have speci-
fied, such that the p+l eigenstates degenerate. If we
imagine the situation that each cycle of the original wave
is separated from the other cycles, i.e., we have p+l
separate pulses, then each pulse has a bound state whose
eigenvalue is given by the curve o, (or B8,). Therefore each
pulse generates one soliton. Since these p+l eigenstates
are still degenerate even after the pulses are pushed toge—
ther and form;a continuous wave, each cycle steepens and
prodﬁces one soliton which has an amplitude determined by
the curves o, and B,. The situation is the same for curves
a, and B,, O, and 83. The curves o, and B, clearly separate
from each other. Since the eigenvalues are distributed
uniformely between these two curves, the amplitudes of the
solitons generated from the different wave periods are
not equal. As long as ¥, <‘q < q,, four solitons are produced

before their interactions. However, when g, < q < 1., three

- 18 -~



or four solitons are produced in a wave period. This is
due to the fact that p is a finite number so that our
boundary value does not have a perfectly monochromatic
frequency spectrum.

The above analysis accounts for the experimentally ob-
served result, "The number of solitons generated in each
wave period is the same as that of solitons generated from
a single humped pulse with the same amplitude and the width"

if we ignore the uncertainty appearing in the above analysis.

C. Recurrence of the Sinusoidal Wave

We consider here, the simplest case shown in Fig.7
where the nonlinearity is not stronger than the effect due
to wave dispersion and only the fundamental and the second
harmonics are the dominant waves. We calculate the period
of the amplitude oscillation of the second harmonic wave
which gives us the recurrence distance. Since the amplitudes
of the harmonics higher than the third one are observed to
be small, the first harmonic will be the main driving source
in generating the second harmonic. We assume that the first

harmonic can be written as

Yo (t,8) = Ypexpli(kE - Q,1)] (15)



in normalized quantities. Here, K, and Qo satisfy the

linear dispersion relation
K =0+ 0%, (16)

Employing Eq. (1), the second harmonic wz(g)exp(—iZQOT)

follows
39, (8) o,
3 " iKotp2 + 190w0‘exp(12KOE) = 0, (17)
where
K, = 20 + =(20 )°? (18)
2 = 0 2 0 . .
We impose the boundary condition ¥,(0) = 0 since only the

fundamental wave is excited at £ = 0. Then the solution

of (17) is

Y, = 357 lexp(i2K &) - exp(iK,E)]. (19)

¥, consists of two waves, as we have measured in Fig.7. One
of them has the wavenumber 2KO and is the forced oscillation
of the fundamental wave. The other is the one that follows
the dispersion relation of the ion-acousti& wave (16).

These two waves "beat" and ¥, = 0 at the diatances given by

- 20 -



Er = Y 3T v | (20)

where & is a positive integer. The same result has been

obtained by Tappert and’Judice7. If w, is much smaller
than wpi' then the recurrence distance XR is given approxi-
mately by

X W .

R _1 (B

X, = 3 (;mo) ' (21)

where A is the wavelength of the fundamental wave. In the
case of Fig.7, wpi/w0 = 5.5 so that (21) predicts XR/)\° = 10,
while it is 12 experimentally. The above analysis assumes
that the third term in Eqg.(l) is smaller than fourth term,
However, its result agrees with the experimental result
performed under the conditions that the above two terms are

comparable with each other.

V. CONCLUSIONS

The following results on solitary waves or solitons
have been obtained: (i) The compressional ion-acoustic
pulses which satisfy the relation between the amplitude,
the Mach number and the width of the solitary wave are
observed. A systematic deviation of the data points from

Egs. (3) and (4) is found. (ii) The maximum amplitude of

‘the soliton agenerated in the present experimental scheme is

- 21 -



<Sn/no ¥ 0.2, (iii) The number of solitons produced from both
a single compressional pulse and a continuous sinusoidal

wave is& measured and is. explained reasonably well using

the theory of Gardner et al. (iv) The number and the ampli-
tude of the solitons are found to be insensitive to the
original waveform. (v) The recurrence of the original
sinusoidal wave is observed and analyzed under conditions

of a weak nonlinearity. (vi) The wave does not break into
solitons when Te/Ti is not large nor when light ions are.
present. (vii) A precursor is found in front of the solitons
and its amplitude is 1large when the amplitude of the soliton
is large. The precursor consists mainly of the ions that
are reflected by the potential of the soliton and this

induces an enhanced damping of the solitons.
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Figure Captions

Fig.l. Dispersion relation of small-amplitude ion-acoustic
waves. Dots are experimental points; curves A and
- L 2 :
B show k/kD = (w/wpi)[l + 2(w/wpi) ] [see Eq. (1)]

and Eq. (5), respectively.

Fig.2. Plot of the electron density perturbation(electron
saturation current to the probe)versus time with
distance fromthe wave excitation points, x, as a

parameter.

Fig.3. The width D and the velocity u of the solitary waves
as a function of its amplitude én. The solid lines

show Egs. (3) and(4) for n_ = 0.

Fig.4. Excitation potential pulses, labeled by A; (1V/div.)
and perturbed electron density n, labeled by Bj.
(a) Wave responses £o the sinusoidal pulses. x = 8 cm
wpi/Zﬂ = 2.0 MHz. (b) Wave responses to three

different shape pulses. x = 11 cm.
Fig.5. Spatial plot of the wave propagation excited by the
continuous sinusoidal wave at various frequencies.

The time is fixed. wpi/Zﬂ = 2.6 MHz.
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Fig.6.

Fig.7.

Fig.8.

Fig.9.

(a) Wave response to the sinusoidal wave excitation.
The sinusoidal wave is recovered at x = 9 cm.
(b) spatial amplitude variation of each harmonics.

w,/2m = 0.35 MHz. wpi/ZW = 2f0 MHz.

Interferometer output for fundamental wave, A, and
second harmoic, B, as a function of distance.

w,/2m = 0.4 MHz. wpi/Zﬂ = 2.2 MHz.

A diagram showing the behaviour of the eigenvalue of

Eqg. (10).

Number of solitons as a function of wol/ZA when the
boundary value is § = (wD/Z)[l + cos(mt/A)] for
|t/8]<] and ¥ = 0 elsewhere. ¢ = fi/n; and T = Wt

Bars show theoretical numbers calculated from Eq. (7)

and dots are experimental points.
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