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Abstract

The Korteweg-deVries equation for the ion acoustic wave,
modified to include the effects of ion and electron linear
Landau damping, is rigorously derived from the Vlasov-Poisson
equations by a multi-scale asymptotic expansion method.
Careful examination of the various orderings also shows that

non-linear resonance effects (trapping, reflection) can be

significant.




§1. Introduction

It is well—establishedl) that in a plasma of warm elec-
trons and cold ions, the propagation of an ion acoustic wave of
infinitesimal amplitude is asymptotically governed by the

Korteweg-deVries (K-dV) equation
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Here ¢ and s are coordinates stretched by a small parameter

e and introduced by the Gardner-Morikawa transformation
r = e'/2(x - At) (1.2.a)
s = e¥/2 x, (1.2.b)

with A the wave speed. The small disturbance of the electric
potential is proportional to e€¢. Equation (1.1) is dimension-
less, with quantities normalized in units of the electron
Debye length kB; , the inverse of the ion plasma frequency
w;i , and the electron thermal potential Te/e, Ta in energy
units.

The crucial point here is that the slowness in change of
field quantities depends through egs.(1.2) on g, the smallness
of the disturbance. This dependence is, of course, closely

related to the invariance of the K-dV equation under the

scaling ¢ +~ e~'/2z, g+ e ¥/%35, ¢ » €7 '¢, in other words,




to the similarity of the K-dV soliton when the amplitude is
decreased by the factor & while the width is stretched by
the factor e-!/2 and the Mach number decreased by the factor
€. Namely, in the asymptotic sense, the K-dV soliton is the
invariant field of the original ion acoustic wave field.
Moreover, as implied by eq.(1.2), the asymptotic expansion
used to derive eq. (l1.1) may not be uniformly convergent;

but rather, convergence is focused in the region in (x,t)
space where x-At ~ 0(e”!/2), x . 0(e=%*/2)., Thus the K-dV
soliton is a far field of the ion acoustic wave field, and
consequently we may call it the "invariant far field."

Landau damping will lead to a modification of the K-dv
equation, which has been studied by Ott and Sudanz). However,
their theory considered the effects of electron Landau damp-
ing only, being based on an expansion in powers of the mass
ratio, related to the smallness of electron inertia. Hénce
it cannot be applied to treat ion Landau damping. Furthermore,
the treatment of resonance particles is inadequate, and the
ordering scheme inconsistent. Another modification was attem-
ted by Sanuki and TodorokiB), who considered both ion as well
as electron Landau damping. Their treatment of resonance
particles is fairly improved, showing some physical aspects
of the ion Landau damping of solitary waves. However, their
theory is not based on explicit asymptotic expansions, even
being confused with incorrect ordering. Consequently, corres-

pondences to the fluid model description are lost, and it is




difficult to view their theory in the scope of the far-field
approximation.

The purpose of the present paper is to consider the effect
of Landau damping on the far-field approximation (1.1) and
thereby show explicit relations between the slowness of
collective changes and of Landau damping and the weakness of
the disturbance. As a basic idea of this approach, we first
note that for sufficiently small amplitude and long wavelength,
a wave will damp after a long time. That is, Landau damping
is a far-field approximation of the Vlasov equation. For a
plane wave launched from some point towards the positive
x-direction, the far-field (Landau) approximation may be given

by
30 + 19 = 0. (1.3)

Here ¢ is the slowly varying amplitude of the electric poten-

tial written as
@k(x,t) = ¢ (x)explik(x - At)], (1L.4)

and Q is a complex gquantity, its real and imaginary parts
representing dispersion and damping, respectively. From the
well-known linear dispersion relation of ion acoustic waves,
for small k and in the reference frame moving at the ion

sound speed,



e

o -—%—kﬂ (1.5a)

The expression for the small damping decrement is
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in which féf; are the unperturbed ion and electron distribu-
tion functions, and the factor k/lk[insures that the wave is
going in the k-direction.

We now wish to consider that the range of the linear far
field thus obtained is the same as that of the nonlinear far
field governed by the K-dv equation. From egs. (1.2) and
(L.4), it is readily seen that these two far fields will
overlap if k ~ 0(c '/2) and if the slow spatial change of @,
is given by ¢(s). Then eq. (1.3) specifies Q as 0(83/2), which
ordering is consistent with that of k since for the real part

Qr ~ k%, Then also, the small damping rate Qi must be of the

order €3/%, so from eq.(l.5.b) it follows that

ag, (0) m, af (%)
1 1 e =
max{ (STI—_)X ’ —m—e- 5;——_))\ = 0(€) . (1.5.0)

for the case of overlapping far fields.
Finally, multiplying eq. (1.3) by explik(x - At)], then

superposing over various k, and using the expression



p(1/7) = ;i [ 1§l KT gk (1.6)

we obtain the linear far field equation for ion Landau damping,

ac' , (L.7)
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which is valid in the region specified by egs. (1.2).

However, this linear far field is remarkably different
from the nonlinear one given by eqg.(l.1l). 1In particular, €
is not an arbitrary parameter measuring the smallness of the
disturbance, but must be related through eq.(l.6.c) to the
gradient of the unperturbed distribution functions at the
ion acoustic wave speed A. For initial Maxwellians, this
means that € - (me/mi)l/z, and moreover that e depends 6n
the small ratio of ion temperature Ti to electron temperature
T as

€

€ ~ (Te/Ti)3/2 exp(—Te/ZTi). (1.8)

Hence Ti/Te is small and clearly an unexpandable function of
€ Ti/Te ~ -(loge)~! for e << 1. Consequently, for the
Vlasov equation, the asymptotic limit in e becomes rather
singular. Physically speaking, for the linear far field,
the slowness in behaviour of the wave is measured by the

small ion temperature and must be such that, as the ions



tend to become cold, the wavelength becomes infinitely long
and at the same time the focusing region of convergence is
shifted to infinity. Another difference is that, for the
linear far field, the ordering of ¢ is arbitrary, although,
of course, it must be small enough so that ¢ << €. Also,
.the similarity law for the K-dV equation does not hold for
eq.(1.7), and hence there is no invariant linear far field.
We are now ready to incorporate the linear Landau damping

and the collective nonlinear effects given by eq.(1.1}). As
a guiding principle, the modified nonlinear far field must
tend to the linear one when the potential disturbance is

sufficiently weak. Then, one can easily deduce

3 . 1 3% 3¢ , 1 J“ 1 30 . . _
29+ = + ¢mp + — P — ~—,dg' = 0 (1.9)
ds 2 3L 9T T e ) T-Thag |

where ¢ is of order € = /g' l%}l This equation is the

nonlinear far field of the Vlasov equation for low temperature
ions and warm electrons. A rigorous derivation of eq.(1.9),
which assumed isothermal behaviour for the electrons as
described by a Boltzmann distribution, has been reported

briefly4)

by one of the present authors (T.T.).
In the follow section, the details of derivation are
given for the system employing the Vlasov equation for elect-
rons as well as ions. The essential point of the method is
the use of a generalization of the Gardner-Morikawa transforma-

tion which makes the method sufficiently general to be

applicable to other nonlinear systems with weak Landau-like



damping. Then, a K-dV equation modified to include the

linear Landau damping is readily derived if nonlinear resonance
effects are temporarily neglected. Section 3 next discusses
these latter effects in terms of electron trapping and ion
reflection, and in particular shows the connection with the
study of the ion-acoustic precursor by Kato, Tajiri, and

5)

Taniuti® Although it appears difficult to solve including
both these nonlinear resonance effects and the linear damping,
the two are found to be comparable in magnitude in the order-
ing which we consider. 1In the last section it is noted that
some of the mathematical difficulties of our derivation can

be avoided by decomposing the initial distribution function as

in gquasi-linear theory.

§2. Theoretical Formulation

We shall consider that the distribution functions fj of
both the electrons and the ions (j = e, 1) are goVerned by
the Vlasov equation. For a longitudinal, electrostatic wave
propagating along the x-axis, this and the Poisson equation

become

°F,  E, m; 3E. 54
5t * Vix 'ej(a;)av % - 0 (2.1)
82
--a—x%-=§6j[fjdv. (2.2)
3



Here ej =_d =211 for ions and electrons, respectively.
Equations (2.1) and (2.2) are dimensionless with length in

units of kgl, time in w;i r potential in Te/e, and the

e
distribution functions in no/cs where n, = %im Sf.dv; and
tor—
cy = wpi/kDe 1s the ion acoustic speed.

For an ion acoustic wave launched from some point into
the positive x-direction, the electric potential may repre-
sent a solitary wave of small but finite amplitude with speed
A. Boundary conditions are then to be given somewhere as a
function of time, while initially it will be specified that

there is no disturbance:
£5(x,t,v) = f;o)(v), $(x,£) = 0 for t < 0 (2.3)

In what follows, the f;o) will be considered to be Maxwellian-
like in that as |v| + « , they tend sufficiently rapidly to
zero.

Since the wave amplitude is infinitesimally small, for
t > 0 there will be slight deviations of order e from the

uniform initial values and we assume
¢ = ep (1) + g2¢(2)y ... (2.4)
Likewise we are led to assume

= ¢(0) (1) 2.(2) oo
fj fj + efj + € fj + (2.5)




However this expansion for f is valid only in the non-
resonance region where v - AI >> 0(e). A slightly differ-
ent ordering holds for the resonance region where the
particle velocity closely approaches the wave speed.

The appropriate coordinate scaling was heuristically
deduced in Section 1. However, the Gardner-Morikawa trans-
formation (1.2) will not directly apply to the Vlasov equation
because of singularities in the distribution functions due
to the existence of resonant particles. 1In order properly
to treat the singularities, the Laplace transform is required.
Hence we first modify the Gardner-Morikawa transformation (1.2)
so as to be applicable to the Vlasov equation.

Let a function U(x,t) be expressed by the Fourier-Laplace

transform as

U(x,t) = ifé(w-kk)"ﬁ(k,w)ei(kx_wt) dk dw/ (2m)2 (2.6)

where the contour W passes just above the real axis of the
complex w-plane, and U is analytic everywhere. Then U
becomes a function of x - At only, and eq. (2.5) represents
a wave propagating in the positive x-direction With speed A.
Consequently, the Gardner-Morikawa transformation (1.2) is
seen to be equivalent to the representation

jel/2

U(z,s) = iff(w-Ak)~! U(k,w,s)e
w

(kx-wt) g1 qu/(271)2. (2.6")

- 10 -



In this form, the generalization of the Gardner-Morikawa
transformation is readily achieved by postulating eq. (2.6"')
for any G(k,w,s) which is defined in the upper half of the
w-plane. Thus, introducing the coordinates £ = e!/2x and
g = el/zt, we assume the following multi-scale Fourier-

-Laplace transform for (fj—féo)) and ¢:

f;n)(v,g,o,s) o

= i(2ﬂ)—zjdk[dm (w=2Ak) lexp i(k&-wo)
teo oW

Efn)(v,k,m,s)
j

6™ (£,0,s) ¢(?)(k,w, s)
(2.7)

Here W is the usual Laplace transform contour chosen to lie
above any poles of the integral. The $(n) will be assumed
analytic for all w.

We shall first consider the non-resonance region. Under

the scaling described above, the Vlasov equation in order ¢3/2

yields
(1) (1)
of . of . m. (1)
’ J J -— -—g_—_.a =
0
where, for convenience, gj(v) = afg )/av. Transforming eq.

(2.8) gives, in view of the conditions (2.3)

(2.9)

- 11 -




The lowest order of the Poisson equation yields

po. ;f £ av=o0 (2.10)
i Jn.r.
which is seen to imply quasineutrality; 1i.e., the electron
and ion densities do not differ until 0(e?). Resonance effects
also, such as Landau damping, will be shown to be at least
second order. Using eq.(2.9), the density perturbation can
’be calculated, and then eq.(2.10) immediately gives the linear

dispersion relation determining the wave speed A,
K(x) =0 (2.11)

where K(z) is defined as

m.
K(z) = £ (=) [ (v=2) g (v)dv (2.12)
J j n.r. J

Next, expanding the Vlasov equation to 0(e3/2) yields

oe () ae{f) arlt Mo e (2) 30 (1) 5p (1) 5 (1)
ot VsE— t Vas ejﬁq(gj(")ag 9y WMgg— * 57 33
=0 (2.13)

A

1
Transforming this and eliminating fé ) by eq.(2.9), we obtain

A (2) ‘m, 1 R _ _ ~(1)
R i g,08 ) + 10wk Mg P E—

+ i(w—xk)ﬁj] (2.14)

- 12 -



where Bj is the transform of the nonlinear term,

N © 5o (1) ag (1)
Bj = =i st Jdc 5T 3VJ expl[-i(k&-wo)] (2.15)

Substituting into eq.(2.15) the integral expressions (2.7) for

f;l) (l), we see that four of the integrations can be

and ¢
performed immediately; then, with the expression (2.9), the

equation for Bj becomes

g = ] 1! [ 1y =1 - Y o ="y 1"
Bj(w,k) ej(mi/mj) I J k'(k-k') (w'=X"') [(w=w')=-A(k-k")]
w

A (1) ~ (1) j (v)
¢ (w', k") ¢ (w-w',k-k" )gv[arfafrl dw' dk'(2ﬂ) (2.16)

with Im(w - w') > 0. The second-order density perturbation is

(2) . _ mi. o (2) N P e
Ifj av = o, (216" (¢, 9) [(v M iglvidv -as-e, (1B 1. (2.17)

n.r. J. n.r. J

Here

- - a¢( )
Aj = (2m) "2 J Jdk dw (w=-rk)™! exp i(k&-wo)
J .

X Idv w (w=-kv) " 2g (v), (2.18)
n.r. )

and .

- 13 -



By = (2m)~* j J dk dw I Jdk'dw' k' (k-k') - (0'-Ak") " [ (w=-w')=A (k-k")]7}

% w'

exp i (kE-wo) $(1)(w',k')$ (l)(w—w',k-k')Lj(w,k;w',k') (2.19)

with

Lj = -k J (w' - vk") " Y w- vk)—zgj(v) dv (2.20)
n.r.

The integrals denoted by Aj and Bj, respectively, may be
evaluated as follows. Closing the W-contour below, and then
differentiating eq. (2.18) once with respect to ¢z = £ - Ao,

we find

oA,

(1)
5gT = Roy (M) %%—l— (2.21)

where, using eq. (2.12), one recognizes

m, 9g. (V)
= _i -t 23 ge = i (BR(2Z)
z Aoj = A ;(ml) I(v A) T dv A( N7 )z=x (2.22)
] 3 Jnlr.
Now consider the w' - integration in the expression (2.19) for
Bj' Because the pole at w' = w - A(k-k') lies on the W contour

which is above the W' contour, by closing W' in the lower half
plane, only the residue at w' = Ak' contributes. The w-

integration is also performed by closing W below, to obtain

- 14 -



By = =By () J J k™1 (k=k") 8 ) (k-k") 3 () (k')exp ikt dkdk' (2m)2

(2.23)

with

B,y (A) = J (v-2)""g (v) av (2.24)

n.r.

Differentiating eq. (2.26) and recognizing the result as a

convolution, we readily find

9B. (1)
J _ _ (1)3¢
T Boj(x) ¢ T . (2.25)

Note that because we are considering the Vlasov equation in
the non-resonance region where v # A, analytic continuation

of integrals such as Lj of eq. (2.20) is unnecessary.

The Poisson equation in 0(e?) is

aze (V) J (2) J (2)
57z = § ej( fj av + < fjdv> ) (2.26)
n.r. res.

where the term in brackets indicates the contribution from the
fesonance region to the second-order density perturbation.
This equation is also differentiated once, and the results
(2.21) and (2.25) substituted into eq. (2.17) give the non-
resonant part. By the dispersion relation (2.11), the

coefficient of the term involving ¢(2) vanishes. Thus we

- 15 -




obtain a modified K-dV equation of the form

3%¢ (1) 3¢ (1) 1)3¢(1) 3 J (2) =
et ¢ s+ B ¢ * 57 §9j< £,dv> 0 (2.27)

res.

The respective coefficients are

=X (3K/3A) (2.28.a)

Q
i

™
il

;ej(mi/mj)2 J (v =A7%g (v)av (2.28.b)
] n.r. J

with K given by eq.(2.12), and the resonance term to be deter-
mined next.

In order to evaluate the various integrals over velocity,
we must specify the velocity range of the resonant particles.
For trapped particles this can be achieved through the énergy
balance ;;(V-l)2~ ¢ ~ €. That is, the trapped particles
depend on ihe magnitude of the initial disturbance, and
consequently their velocity range may be made arbitrarily
small. However, resonant particles also include those which
resonate with the wave to cause Landau damping. The velocity
range of the latter is independent of the strength of the
initial disturbance and depends only on the behaviour of the
unperturbed distribution function in the neighborhood of A.
For these particles, the boundaries seem quite diffusive.
Following the study of the amplitude oscillation of the

electron plasma wave by Imamura, Sugihara, and Taniutis),

- 16 -




we shall say that the resonance region is given by |v-A|<3$
m

where (a%)gj(xt6)=0(e), in accordance with eq.(l.5.c) since
the parameter e is no longer arbitrary but must be related

to the smallness of the damping rate, and 1 >> §/) > el/2,

For example, with initial Maxwellians, an argon or cesium plasma,
and A the ion acoustic speed /5275;, then g, (1)~ ;i gg (A)

means Te/Ti ~ 20, so € ~ 5 x 10”%, and hence 6§ - io‘z A is
satisfactory. Note that velocity integrals over the non-
resonant region, as in eq.(2.12), etc., differ from the princi-
pal value integral by at most 0(&§/A).

The ordering for the distribution function in the resonance
region is different from that of eq.(2.5). From the energy
balance equation, it is natural to introduce the velocity u
by v-A= 81/2(2%)172u where u=0(1). Along the particle path
(i.e., in the %agrangian representation), fj(v,x,t)=fj(v,0,0)

L

=fj(°)(v). Then we expand as

(o)
m. m, of .,
fj(O&,)g f](o)()\) + €3/2 (I_n_i_)l/Z[u I_n_!'-_ E_l('_aﬁl— )}\] 4 s

J

and see that the bracketed quantity is order unity by previous
conditions. Thus in the resonance region, the proper ordering

is

= (o) 3/2 Ti 1/2 (1) ce
fj fj + € (mi) fj + (2.29)

Another crucial point, as mentioned by Taniuti7) in his sequel

-17 -



(1)
m, of.
to ref. 6, is that f;l) = fj(l)(u) such that (ﬁ%)l/z(—ﬁVl__)A

= 0(8-1/2), a "rapid" stretching in velocity space. Incident-

T.
ally, we remark that (fi(O)/féO))k = 0(T£)7 however this need

e
not be included explicitly in the expansion (2.29) since only
m, of, (o)
ﬁi(—gvl—— )A will enter the following equations and this

3

quantity is 0(e) for both electrons and ions.

Then, to order €°/?, the Vlasov equation is

e ™S af. (1) ag, (1) m, o£. (00 ()
€ & [55— * Vv 55 1 - ej[mj v ¢ l3e
(1)
m, : (1)
i1/ 209 -
- oglet/PEn M ggh gy =0 (2.30)

By our conditions, all of these terms are easily seen to be
of the same order. The second and third terms of eq. (2.30)
will be identified, respectively, as Landau damping and
trapping. In this section, we wish to focus attention on
the effect of the linear damping, hence we shall neglect the

last term temporarily. Then eq. (2.30) becomes

(1) (1)

of . of . m, (1)

e"t/ (5= 4+ v 551 ) - ejﬁ%e“ gj(v)%% Yoo (2.31)
3

which is easily solved by Fourier-Laplace analysis. Transform-

ing

A m. A
"fj(l’ = - ¢l/2 0, (ai)a'l gj(v)—m§iv— s (1), (2.32)

- 18 -



hence

2) . ~1/2 (1) = i -2 -1
< I fjdv>< = ¢g"1/ I fj av i(2m) " %¢ ej(mi/mj)
res. res.

x J Idk dw (w-xrk) et (KE-00) £ (1) J (v-u/k) g, (v)av (2.33)
w res.

The velocity integral in eq.(2.33) can be managed by rewriting

e

00 [+
I dv = J dv - J dv, approximating I dv P I dv, and
res. - n.r. n.r. -
analytically continuing the [ dv integral over the entire
w-plane by use of the well-known Landau contour. Then the
w-integration can be performed by closing W in the lower

half plane, encircling the pole at w=Ak, to give

. ® _‘_9_-1 = - -1 . .k'
wiiﬂ J dv (v k) gj(vl P I (v=1) gj(v)dv + iw gj(l) TET.

(2.34)
Finally differentiating eq. (2.33) with respect to ¢ and using

the expression (1.6), we obtain the last term of the modified

K-dV equation (2.27) to be

i (2)= —_ e Jw —_—r )™ 3¢(1) '
5% § 6j< I fjdv> Y*P (z-¢') Fral dac (2.35)
res. had

with

- 19 -



m.
y = 3(==) e g (). (2.28.c)

5 3 J
Taking the unperturbed electron and ion distribution

functions to be Maxwellians,

f$°)(v) = 1
J cj/F

exp(-vz/cg) (2.36)

where cy = [2T(ev)/mj]1/2cs'1, then the coefficients (2.28.a ~

b) can be expressed in terms of the plasma dispersion function

Z as
mi 3 A
- o = - LU A [}
o= -2 3 (=) cT0 2t (g (2.28.a")
J J J
— 1 i 2 -4 " A { 1
B - 2 Z(mj) CJ Z (cj)' \2.28.b )

The dispersion relation becomes

my A

I (=)c."2 2' () =0 (2.11')

. m.' J C.

J J J
where the prime indicates differentiation with respect to the
argument.

For the ion wave in a two-component plasma with Te 2 Ti’
our ordering scheme clearly shows that the effects of non-

linearity, dispersion, and damping are not matched. Rather,

the -ion Landau damping becomes large, gi(x) = 0(1), and the

- 20 -



ion wave is unobservable. For Te/Ti sufficiently large, we
may take c; << A << Cor expecting A to be close to the ion
acoustic speed S By use of appropriate limiting expressions

for the Z-function, we find from eq. (2.11"')
A= 1+ S (2.37)

The coefficients of the modified K-dV equation become

7.
o = 2)~2 - 3A‘“(Ti) (2.38.a)
e

- Tj_

B =31 % -1 + 3ox'6(f—) (2.38.b)
e
m 2

y = - BSE CI VA I (%—?) 3/ 2exp (- X %—?)]e -1 (2.38.¢)

vzm o i i 271

Then, for X = 1 and choosing € as in section 1, we easily

obtain from the expressions (2.38.a ~ c) the equation, (1.9),

derived by Taniuti4). And, for cold ions and negligible

electron inertia, i.e., Ti=0 and (me/mi)l/z =0, it becomes the

unmodified K-dV equation, (1.1l), of Washimi and Taniutil).

Also, in the limit Ti=0’ the modified K-dV equation

derived here becomes that of Ott and Sudanz). However, that

3)

derived by Sanuki and Todoroki differs in two respects:

(i) their treatment allows the wave speed A to depend on the

slow coordinate s, which leads to extra terms involving the

factor %% in their modified K-dV equation. However, when our

theory is modified to let A = A(s), slightly different terms

- 21 -



result; and, anyway, the amplitude decay due to Landau damp-
ing, proportional to %% , can be Jjust as readily obtained by
the method presented in Ott and Sudan's paper (ref.2, Sec.V).
Also, (ii), their K-d4v equation contains another term, appar-
ently of incorrect order and whose coefficient is the quantity
K()) defined by eq.(2.12), which in our theory determines the
wave speed according to K(A) = 0.

Recently Kono and Sanukis) have shown that a K-dV equation
for the ion acoustic wave, which includes the linear Landau
damping, can be derived from one of the fundamental equations
in the theory of weak turbulence. Tﬁis is done by expanding
the plasma dielectric function. We note that their basic
equation is quite similar to our eq.(2.14). Also, their
approximate evaluation of a velocity integral could be done
rigorously if the modified Gardner-Morikawa transformation
(2.7) were used. The ordering of physical quantities is not
clearly stated in their paper, and trapped particle effects
are not taken into account.

In the next section, we turn to a consideration of these

nonlinear resonance effects which have been hitherto neglected.

§3. Effects of Nonlinear Resonant Particles

The derivation of the modified K-dV equation (2.27)
purposely neglected the third term of the equation (2.30) for
fgl) in the resonance region in order to examine the effect
of the Landau damping more clearly. That this hitherto

- 22 -



neglected term represents the effects of nonlinear resonant
(e.g., trapped) particles is easily understood by inspecting
eq.(2.30) without the linear damping term:

(1) (1)
of . of . (1)
U= - g, 1 20 7_ 4, (3.1)

9C j du 9L
The general solution of eq.(3.1l) is of the Bernstein-Green-

Kruskal type,

(1) _ (1) L
£ =5 5

u? + ej¢) (3.2)
where, as previously defined, u =//§i(v—A)e"l/2 Therefore

" ! m, . ¢
the equation (2.30) is readily solveg when either the nonlinear
resonance effects or the Landau damping is neglected. It
appears difficult, however, to solve analytically the full
equation containing both terms.

The important point is that the Landau damping and
trapped particle effects enter equation (2.30) in the same
order of magnitude. fNc?w this equation was derived under the

m; 9

two assumptions ——(av )A=O(s) which brought in the damping,
J

m, affl)
and (5%01/2 (g;l )y = 0(e~'/2) which brought in the nonlinear

trapping term. Independent of this second condition, we may

estimate the magnitude of the effect of trapping as

(o) 0
of. i afﬁ )
J Qv . (551 )y / (u +26 ¢(1’ 1/ 2gy e [e-1 j(5‘7—
res.
x g, ¢, (3.3)
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Here ¢é1) refers to the maximum of the electric potential

¢(1), and we have followed the analysis of Kato, Tajiri, and

5)

Taniuti~’, estimating

= iy () () -
v, =X+ gl/2 //gej(a;)(¢M1 o't , with
o( ¢ (1), ¢b,(11)) <0 (¢D§1)) = 0(1). (3.4)

Dispersive effects, which in the modified K-dV equation (2.27)
are balanced with the effects of nonlinearity and Landau
damping, are proportional to 32¢/9x2%, and this in turn is
related to the effects of trapped particles, eq.(% ?),
through the Poisson equation. Thus, taking g%(%éi )A=O(€)
means that for both ions and electrons these irapped—particle
resonance effects are comparable in magnitude.

In the treatment by Ott and Sudanz), a small amount of
noise (e.g. Coulomb collisions) which would scatter trapped
particles in presumed to be present, and these resonant electron
effects are summarily dismissed. It is of interest to examine
the validity of this presumption. The effective electron-
electron collision frequency is Veff = vc(e¢/Te)-1, where Vo ¥
wpe(noLS)'1 is the usual collision frequency calculated for
a 90° deflection but the resonant electrons need only deviate
from the straight line orbits of linear theory by the small
angle e¢/T,=0(e) to de-trap. Furthermore, taking the trapping

time of an electron by a solitary pulse to be approximately
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wgl with wyp = k/e¢/me and k™' the soliton width, then by the

ordering for ¢ we find Wp ~ WyeE- Consequently, if (noLg)"1 >
€?, electron trapping will be destroyed. For a laboratory
plasma, wall effects may also be important. That is, let L
be the relevant dimension of the containing device. Then
if wglce > L, or equivalently L < E_ILD, by their velocity
component transverse to the motion of trapping, and as long
as any applied magnetic field is weak, the electrons will
collide with the side walls and quickly thermalize.

For ions, collisional effects are less significant
because of their larger mass. Also, in contrast to electrons,
ions dre not trapped but rather reflected by a solitary pulse
and propagate as a precursor. How this precursor modifies the
ion acoustic K-dV equation has been investigated by Kato,

5)

Tajiri, and Taniuti™’, who in their study neglected respnant
Landau damping and assumed a Maxwell-Boltzmann distribution
function for the electrons. They found that under the condi-

tion (éﬁi(o)
ov

)A= 0(e), which has been assumed throughout the
present paper also, the resonant ions reflected by the soliton
potential hump contribute to the K-dV equation a correction
term (e"-afio)(x)/av)o(¢,¢M) x 8-1(8510))A[¢M-%¢2n|¢|] for
quite small ¢. Consequently, under the assumed smallness of
(8f{°b®v)k, the effect of the reflected ions is seen to be of
the same order as that of Landau damping, consistent with the

order estimate (3.3) and our previous result. We note,

however, that the approximately BGK solution which they obtain
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holds only for a quasi-stationary region extending from the
precursor front to the main part of the wave but is invalid
for the far upstream region where reflected ions are virtually
nonexistent. The estimate (3.3), also, is valid only in this
precurson region.

The competition between nonlinear resonance effects and
Landau damping may be further considered since the K-dV equa-
tion also admits a periodic solution. In this case ions can
really be trapped and their effect perhaps estimated by
comparing the ion bounce frequency with the linear Landau

9)

damping. We recall that the periodic ( cnoidal) solution

to the, K-dV equation is characterized by a modulus 0<mgl and

for m=1 can be approximately regarded as a sequence of solitons,
each of width proportional to ¢‘1/2 but separated by the
logarithmically large distance d~¢’1/2|£n(1—m2)|. Then

wg .d"'¢!/? whereas as in the discussion preceding eq.(l.5.c)

Qi ~0(€3/2). Neverthless, the effect of the "trapped" particles
on the K-dV equation may not become negligible, because in

the limit m=1 (i.e., a soliton), by the result of Kato et i£§)
for the precursor, reflected ions are still significant. Thus

it appears that the usual criterion of comparing Wy and Qi must

be applied with care in the case of long wavelength.

§4. Outline of a Regorous Perturbation Theory

. (o
It was briefly noted in Section 1 that assuming E%(%é;( ))A
J

= 0(e) leads to asymptotically singular dependences on Ee.
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Actually, in the theory of Section 2, the small quantities
)1/2

(me/mi and (Te/’l‘i)3/2 exp (-Te/2Ti) were merely assigned
to order € when they appeared (cf.eq.(2.37)). These were
numerical orderings, with no consideration of any functional
dependences on & which would have to be included along with
(2.4), (2.5), and (2.29) in any rigorous perturbation method
applied to the Vlasov-Poisson system (2.1) and (2.2).

It may be mentioned that a rigorous expansion theory
which remedies both the difficulty of singular e-dependences
and that of specifying §, the resonance velocity interval, is

possible if we decompose the initial ion distribution function

as
fi(°) = fl0) 4+ gr(0) (4.1)

in which both F (%) and F(9) are normalized to ng over v: (=«,x),
and F(®) differs appreciably from fi(°) only in the neighbor-
hood of v=)A where there is a plateau such that the derivatives
of F(°) vanish. Thus F(°) will be responsible for the effects
(o)

of the non-resonant ions while represents the resonant

ones. (An unperturbed distribution function of this type has

been used by Frieman and Rutherfordlo)

in their quasi-linear
theory of a weakly unstable plasma.)
For the electron distribution function, a separation like

eg.(4.1) is inappropriate because for Te/Ti reasonably large,

. (0) )
although %i(%éﬁ )A is small, fe(°)(x) is not. Hence, in

- 27 =



this section we shall focus attention on ion effects and
regard the electrons as a dynamic background described by a
Boltzmann distribution normalized té n,(l+e). This choice,
of course, will mean that electron Landau damping of the ion
wave 1is suppressed.

For the ion distribution function,

gm0+ ™o ve 1 MM w0
n=1 n=1
(4.2)

(n)

with u=(v—A)e_1/2. The components f_ denote the resonant

part of the distribution function, where afr(n)/au = 0(1).
The procedure of solution resembles that presented in

3/2

Section 2 and we shall merely give an outline. Order €

of the Vlasov equation is

af (1) Bf(l) ﬁi(l) _
35tV 3F G (v) 3¢ =0 (4.3)
where G (v) = (BF(O)/BV). This leads to the dispersion relation
for A:
I w -A)"'G)dv -1=0 (4.4)

- 00

By the properties of F(°) , the integral is well defined.

order ¢5/2 of the Vlasov equation is



(1) (1)

(2) (2) (1) (2)
af "2t el paft 2 26 T4 26" 'af
5o + VBE + VaS G(V)BE + G(V)as + 3E X, +
Sy @edt), 2 20 (1) _ 9P e ™)
K Go T Vir ~C3 T35 3 <=0 (4.5)
Grouping £; = £ .+ f_  where f_ = F(y 5P ™) ang

£ = e{r ()4 an/zfr(n)} and requiring both f_ _ and £_ to
satisfy the Vlasov equation, we can divide eq. (4.5) into two
equations which have been encountered before, namely egs. (2.13)
and (2.30). The equations, and thus their solutions, are
identical except for the replacement of g(v) by G(v) in eq.
(2.13) and by G(v) in eq.(2.30). As before, we shall drop the
term representing nonlinear resonance effects and solve for
the modification due to Landau damping only. A modified K-dVv

equation is easily derived:

3, (1) (1) (1) (1) o
%E% + a%%— + a*%% + B¢(‘)%% - Y'PJ (z-z')~!
(1)
x %%, dz' =0 (4.6)
with
o = - [§% J (v - z)7! G(v)dv]z=l (4.7.a)

- 00

- 29 =



e}
r

ar = - P (v - A)~! G(v) av (4.7.b)

v
-0

p 0O

B = (v - A)7%G(v) dav - 1 (4.7.c)

y = G (1) | (4.7.4)

It is important to note that G(v) in the integral of eq.
(4.4) is functionally independent of €. Also, any difficulty
with specifying the region of resonant particles is neaty
avoided.

Mareover, since F(O) is appreciable only in the immediate

vicinity of v=A, a*30. By the same reasoning,
P I (v - M) 'G(v) =P I(v - x)'lgj(v)dv , etc.,

so the dispersion relation and modified K-dV equation derived
above are nearly identical to those of Section 2.

In conclusion, however, we would emphasize that the modi-
fied K-dV equation derived here represents a partial under-
standing, and that eq. (4.6) should be modified further to
incorporate nonlinear resonance effects in order correctly to

describe the behaviour of the ion acoustic wave.
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