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Abstract

Strong laminar electrostatic shock waves have been
experimentally observed when an ion-beam is injected into
a collisionless plasma. The structure of the shock is
qualitatively different from one with a trailing wave train.
A density depression follows behind the shock front, and no
trailing wave train due to wave dispersion is found. A
significant amount of ions reflected from and transmitted
through the shock front form a precursor. The critical
Mach number above which no shock is formed is found to be
1.5. Numerical simulations reported here reproduce the
experimental observations very well. An analysis based on
the water-bag model accounts for the observed value of the
critical ion-beam velocity which gives the critical Mach
number. It also points out that the reflected ions play an

essential role in the persistence of the shock.



I. INTRODUCTION

Formation of shock waves is one of the interesting
nonlinear phenomena in a collisionless plasma} When the
density jump due to the shock is small compared with the
background plasma density, the electrostatic shock wave is
formed if the nonlinear "overtaking" is balanced by the
dispersion of waves with large wavenumbers. This basic
process has been demonstrated in recent experiments%-7
It has been pointed out, however, that a stationary state
is achieved only when there exist energy dissipation mecha-
nism in the system§_10 Two dissipation processes can be
considered in a collisionless plasma: one is the dissipa-~
tion due to the plasma turbulence at the shock transitiorlx'll
and the second is the reflection of the particles at the
shock frontSr10,12-16

In this paper, we are concerned with laminar electro-
static shock waves in which the reflected ions play an
essential role. A strong shock (the density jump at the
shock transition is comparable with the background plasma
density) is generated by the injection of an ion-beam into
the plasma}6 Experimental observations of the ion distri-
bution in the phase plane give information on the behavior
of the ions. The experimental conditions and methods are
described in Section II. The experimental results, which
are described in Section III, include: (i) the structure
of the shock waves and (ii) the critical Mach numbers.

We have carried out a numerical simulation of our experi-

ments and describe these results in Section IV. Based on



the results of the experiments and of the numerical simula-
tion, we theoretically analyze the structure of the shocks
in Section V. The conclusions of the present study are

summarized in Section VI.

II. EXPERIMENTAL CONDITIONS AND METHODS
The experiments is carried out in a double-plasma (DP)
devicel.‘7 Typical plasma parameters are: plasma density

8 _ 109 cm_3; electron temperature Te % 3 eV; ion

nxl0
temperature"l‘i 5‘0.2 eV; argon gas pressure p = (1 - 3) x
10™% Torr; electron Debye length Ap ~ 0.3 mm; ion-thermal
velocity \ £ 7 x 104 cm/sec; and ion piasma frequency
_wpi/2w ~ 1 MHz. The phase velocity of a small amplitude
ion-acoustic wave is measured to be Cop = (2 - 2,5) x 105
cm/sec. The machine employed in the present experiment is
the same one that is described in Ref.1l8, Two plasmas are
partitioned by a negatively-biased fine mesh grid. The
application of a positive potential ¢ex to one of the
plasmas (driver plasma) injects an ion-beam into the other
plasma (target plasma) when ¢ex > Te/e. It produces only
a density perturbation in thé target plasma when ¢ex < Te/e.
The beam density ny is 109 cm_3.

The following two methods have been employed to generate
the strong shocks: (i) An ion-beam is suddenly injected
into the target plasma beginning from a certain time, séy
at t = 0 and the shock wave is generated from the leading

edge of the beam. (ii) An ion-beam is continuously injected

into the lpw target density background plasma (n < nb).



Then, the beam energy is increased suddenly to a higher
energy (faster velocity), say at t = 0. When the faster
beam overtakes the slower beam, the shock wave is formed.
The density profile of the shock wave is monitored by
observing the electron saturation current to a Langmuir
probe. The ion energy distribution is measured with an

electrostatic energy analyzer].'9

The evolution of the ion
distribution in the energy-distance or the energy-time plane

is displayed by employing a sampling technique%0

III. EXPERIMENTAL RESULTS
Propagation of the two kinds of shocks is shown in
Fig.l. When the potential amplitude applied to the exciter

¢

ion density near the grid. Figure 1l(a) shows the nature of

ox is small, the positive excitation signal increases the

the cémpressional—wave propagation due to the applied
potential ramp which is shown on the top trace. As the wave
propagates, it steepens and is followed by a wave train
that is dominated by dispersion? The waveform of the wave
train continuously changes. In Fig.l(b), the evolution of
the shock generated by the continuous injection of an ion-
beam is shown. The energy of the injected ion-beam is
suddenly increased from 6 volts to 14 Qolts. The density
jump in this case is more than 50% and the density pulse

is relatively flat. The density of the background ions is
much lower than that of the beam. We note that the width

of the pulse increases slowly as it propagates and no trail-

ing wave trains can be observed behind the shock. The.



thickness of the shock front and the density depression

are about 10 AD. A very small amplitude noise signal21

2

(perturbed-to-unperturbed density ratio §n/n_ = 1 x 10~
is detected.

The ion distribution plotted in the energy-time plane
at a fixed distance from the beam injection point is meas-
ured. In the case shown in Fig.2, the ion-beam is suddenly
injected into the plasma starting at t,= 0.

The beam density is nearly equal to the background ion
density. 'The ﬁrofile of the density shown on the top trace
is essentially the same as that shown in Fig.l(b). The
corresponding ion distribution is displayed on the bottom.
In this figure, the dot density is proportional to the

ion distributiqn and the various components are identified
in the figure caption. Part (D) forms a foot in density
(or precursor) in front of the shock as we can note on the
top trace. The potential associated with the precursor
induces a slight shift of the velocity of the background
plasma (A).

The evolution of the ion distribution plotted in the
energy-distance plane at fixed times after the beam energy
is increased gives us more information about the shock
wave. In Fig.3, a typical sequence of pictures for the
same type of experiment as that shown in Fig.l is illus-
trated. The ion-beam (3 eV) is continuously injected into
a low density background plasma., The beam{energy is suddenly
increased to 7 eV at t = 0. We note that the high energy

(velocity) beam starts overtaking the low energy beam at an



early stage of thé evolution at 5 usec. As the faster beam
overtakes the slower.one, excess ions accumulate. Although
the electrons partially neutralize the ion charge, it is not
complete because of the high electron temperature. As a
result, a strong electric field is produced. This in turn
modifies the ion distribution. The amplitude of the poten-
tial hump as measured by the Langmuir probe is sufficiently
large to accelerate the background plasma and to decelerate
the ion-beam, and let them merge with each other. The
energy width of the ion distribution at the high density
part is wider than that in the other region. However,
this is not heating aue to random processes but simply due
to the fact that the two ion streams do not perfectly merge.
Actually, no turbulent noise is observable in this part
nor at the density jump. The contribution to the shock
from the evolution of the low density background ions is
observed to be weak. The shock structure is almost independ-
ent of the background ion density provided that the back-
ground density is small or the velocity separation between
the beam and the background ions is large. It may be under-
stood that the two experimenfs shown in Fig.2 and Fig.3
are essentially the same if we replace the background ions
in the case of Fig.2 by the slower ion beam in the caée
of Fig.3.

Time resolved Langmuir probe curves show a slight
anisotropy13 in the low energy region of the electron
tribution for the high density part of the shock structure.

However, the Boltzmann distribution is still found to be a



good approximation to describe the electron distribution

as observed by means of a Langmuir probe. The calculated
mean e-e collision time is several micro-seconds. It should
be noted however, that the electron mean-free-path is

longexr than the machine size.

The dependence of the shock structure on the ion-beam
energy is shown in Fig.4. The beam (nb = n) is turned on
at t = 0 and pictures are taken at t = 19 usec. No ion-beam
was injected when t < 0. When the potential step ¢ex is
small a shock with a wave train [fig.l(a)] is observed.
Since the spatial resolution of the ion energy analyzer is
about 10 AD which is comparable with the width of the soli-
tary wave pulse, the wave trains do not appear in the pic-
ture and only the velocity discontinuity is seen on the top
picture. The density of the reflected ions is very small
and is not seen in the picture. If the beam energy is
increased [Fig.4(b)], a potential (density) depression
appears behind the shock at x = 3 cm, and some reflected
ions are observed. The amplitude of the wave train is
very small. The Mach number just before this structure
appears is 1.25., As shown in Fig.4(c), the widﬁh of the
high density region is narrower for higher beam energy;
i.e., the ekpansion velocity of tﬁe high density region is
slower when the beam velocity is faster. The beam density
in front of the shock is nearly equal to the injected beam
density ny and the background ion density n. It is found
from a careful measurement of the ion distribution (not

from a display like Fig.4) that the beam in front of the



shock consists mainly of the ions transmitted through the
high density region, and the contribution of the reflected

ions is small when v, is large. The maximum density jump

b
in the shock is observed to be 0.7 n when n, = n. As shown
in Fig.4(d), the beam does not interact with the background
ions, and no shock waves are formed if the beam energy is
too high. Although the potential hump induced by the edge
of the ion beam appears initially, it damps quickly in this
case. Turbulent noise due to a two ion-stream instability
grows. The unstable waves propagate obliquely to the beam
direction. However their amplitude saturates at a very
small level as noted before and the turbulence is unable
to slow the directed beam velocity within the present ex-
perimental scale length, when the ion beam energy is high
and there is no shock. The heating of the beam in the beam
direction is also very small.

The observed Mach number M and the expansion velocity
of the high density part 2 u are plotted in Fig.5(a) as a
function of the beam velocity Vpe M increases and u'de-

creases as VvV, increases. It.should be noted that the shock

b

is formed even when Y > ZCSE where the system is stable
22

for the linear ion two-stream instability in the beam
direction. (The shock propagates in the beam direction and
the observed structure of the shock is one-dimensional.)
The shock wave disappears when Vp = 3.0 aﬂd u = 0. The
corresponding upper critical Mach number is 1.5, when the

density of the injected ion beam equals that of the back-

ground ions'.



IV, NUMERICAL SIMULATIONS

To numerically simulate the experiments, we have employ-
ed the one-dimensional Vlasov-Poisson equations for ions
and have assumed that the electrons are isothermal and obef
the Boltzmann distribution. The method we used to solve
the Vlasov equation is the same as that used by Sakanaka
et a;%3 which is based on the fact that the distribution
function is constant along the characteristics in phase

space. Typical step sizes in space, velocity and time in

the numerical computations are 0.7 ADe' 0.05 Cgr and 0.5
m;% , respectively. Numerical errors are checked by

changing the above step sizes. The iteration method is
applied for solving a finite difference scheme for Poisson's
equation with the boundary condition ¢(x = L) = 0. Here,
L is much larger than the characteristic scale length of
the shock.

IIn the reference frame moving with the average velocity
of the two ion streams (center of mass frame), the initial
condition for the laboratory experiment can be described

by the ion distribution

v + Vo 2
exp[-(——;———) ] for L >x>0
n i .
f(v,x,t=0) = —————%———
(21r)l 2vi : (v - v0)2] . 0
. exp[-(——— . or -L < x < ’
Vi

(1)
provided that the densities of the two interacting ion

streams are equal to each other. Therefore, the initial

1/2

ion density is uniform in space. Here, v, = (2T, /M) and



2vO is the velocigy jump due to the application of é poten=- .
tial step to the driver plasma. The eléctron—to-ion temper-
ature ratio is chosen to be 30.

The shock wave is generated from the above initial
condition as shown in Fig.6. The ion beam velocity vo/cS
equals 1.3. In this section, we define the ion-acoustic

1/2, and x is méasured in the center

velocity by c, = (Te/M)
of mass frame. A stationary shock front with the thickness
D = 7AD is found when t > 30. The shock transitions prop-
agate both to the right and to the left so that the high
density region expands. No trailing wave train appears
behind the shock front. The density jump is approximately
e The velocity of the shock u in the center of mass
frame is slower than Ve In the experiment shown in Fig.1l(b),
for example, two ion-beams are moving to the right. There-
fore, the density jump on the right-hand-side in the simula-
tion corresponds to the shock front in the experiment and
the one on the left-hand-side corresponds to the density
depression.

From the evolution of the ion distribution in the
phase plane, the building—up'of the density jump is uﬁder-
'stood as follows: For small times t, the two ion beams
overlap around x = 0 and generate an electric field which
is positive for x > 0 and negative for x < 0 since the
electrons do not completely shield the ion charge because
of their‘finite temperature. If we consider the beam
moving to the left (in Fig.7, it is moving downward), then

the leading edge of the beam, already in the space x < 0,
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is accelerated. The part staying in the space x > 0 is
decelerated [Fig.7(b)] and accumulates more ions which in
turn generate a stronger electric field. Although this
process is similar to that of the two-stream instability,
our shock wave is formed in the regime where the system
is stable for the linear two;stream instability. We note
here that the strong electric field is built up'in the
early stage of the evolution due to overlapping of the ion
streams. The structures of the ion distribution shown in
Fig.7(b,c) are essentially the same as those observed
experimentally (Fig.3). The two ion-streams do not per-
fectly merge with each other in the high density region.
The densities of the reflected and the transmitted ions
are lower than those of the injected beam. This suggests
that some of the injected ions are trapped in the high
density region.

We find a discontinuity of the distribution at v = x/t
in Fig.7(b,c). This discontinuity is observed to persist
for a long time since the electric field is weak and no
turbulence grows in the high density region except for a
hole at x = 0. (The discontinuity may be smeared by dif-
fusion in phase space due to numerical processes.) In the
region v > x/t the distribution consists of the ions sup-
plied from x < 0. In the region v < x/t,.it consists of
the ions from x > 0. If we follow this discontinuity, we
find that the beam in front of the shock consists mainly
of the transmitted ions.

In Fig.8, the results of the simulations which corre-
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spond to the experimental results shown in Fig.4 are pre-
sented. The beam velocity Vs is changed, keeping wpit =
40. When the beam velocity is small, vo/cs = 0.4, the
density of the beam in front of the shock front (trans-
mitted and the reflected ions) is small. For larger Vo
the above beam density increases and the width of the high
density region decreases, i.e., u decreases. When vo/cs =
1.5, the two beams do not interact and no shock wave is
formed.

Our main purpose in performing the simulations is to
find the critical Mach numbers. 1In Fig.5(b) the Mach num-
ber M and the shock velocity u are plotted as a function of
V. In the experiment, the background ions correspond to
the ion stream which has the drift velocity Vg in the
simulations. We therefore define the Mach number as M =
(u + vo)/cs. In the limit of v, = 0, u approaches 1.05 Cq

‘which is the ion-acoustic velocity {1 +‘(3Ti/Te)}1/2csiin
the finite-ion-temperature plasma. The ion-acoustic
Velocity Cy g Measured by the small-amplitude wave in the
experiment corresponds to this quantity. If vy is in=-
creased, then u decreases linearly and an extrapolation
of the data points suggests vo/cs = 1.65 when u = 0.
Although the simulation continues up to wpit = 80, no
shock wave was formed when vo/cs > l.5. We note that 1.65
is the critical value of vo/cs above which no shock wave
could be generated. The critical Mach number observed in
the simulation was 1.55 and agrees well with the experimental

value of 1.5. The left-going shock has the velocity v,ou
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in the laboratory frame. If vy - u > 0, then we find a
density depression in the experimental geometry. We obtain
a Mach number 1.3 from vV, = u and the dependence of u on
Ve
V. ANALYSIS AND DISCUSSION
A. Analytical Description of the Shock

In this section, we analyze the structure of the shock
employing the water-bag model%4 The purpose of this analysis
is to find the critical beam velocity which gives u = 0.
We consider the structure of the ion distribution in the
phase-plane sketched in Fig.9. The corresponding potential
profile is shown at the bottom. Although the ion-beams
consist of the reflected and the transmitted ions which
extend a finite distance in the experiment, we assume that
they extend to x = o so that the effects of the foot in
the density and the potential are neglected. Hereafter,

the normalized quantities;

T = wpit, y = x/AD, w o= v/cS and Y = e¢/Te ’
(2)
are used.

It is assumed that the structure in the right-half-
plane (y > 0) moves to the right with the velocity s and
that in the left-half-plane (y < 0) moves to the left with
the velocity -s. We also assume that y takes its maximum
value at y = 0 and vanishes at y = *». The ion distribution

function has a constant value h in the shaded region in
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Fig.9 and vanishes elsewhere. The bounding curves I - IV

evolve according to

w ow . 93y _

3T+w8y+8y 0, (3)
and

2

2V - exp(y) - N, (4)

oy?

where N is the ion density and the Boltzmann distribution
has been assumed for electrons. The density is normalized
by the density at y = «, Because of the symmetry of the
system, we need calculate the distribution and the poten-
tial only in the right half plane y > 0 by introducing a
variable z = y - sT and connecting the two symmetric solu-
tions at y = 0. Then the bounding curves and the potential
are functions of z. Rewriting (3) and (4)_in terms of z

we have

-sw + % w: + 4y =1, (5)
and

_a_ﬂk = exp(\p) - N

9z2

’ (6)

where A is an integration constant to be determined by
the boundary conditions. The velocity LA which defines

the bounding curve I is calculated to be

wp =s - [(w2 + s)2 - 2111]1/2 | (7)

by imposing the condition W ='-w2 at z = » where y = 0.

- 14 -



Curve' IT is calculated in the following way. From the
symmetry of the system, Wi obeys the condition

wII(y=0) = —wI(y=O) 2w, . | : (8)

Employing Eq.(7), we have

wip=st [w, - )% + 2p(y=0) - 29112 (9)
The positive sign should be chosen when W > s and the
negative sign when W < s. In the present analysis, we
treat the case w, > s; otherwise the structure shown in

Fig.9 cannot be formed. By putting w “Wy at z = o,

III
the bounding curves III and IV are:
_ 2 _ 172
Woop = S {(wl + s) 2y} ’ (10)
and
= 2 _ 1/2
Wiy =8 + {(w, +s) 2y} . (11)

Substitution of (7), (9), (10) and (11) into the expression

for the ion ‘density
N = h{w . v (Wpy = Wrrp) 00w, + 8) 2yl ,  (12)

gives an equation for y from Eq.(6). Here, 6(x) is the unit

step function

1, x>0
0 (x) ={ '

0, x <0 .
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We now look for the shock solution of Eg. (6); i.e.,

Y jumps from 0 to a positive constant value wo when z

26

changes from o to - Multiplying Eq.(6) by 3y/9z and

integrating once, we find

h2+ v =0, (13)

N

where V(y) is defined by

Y .
v = - [ @t le vt - Nl (14)
o
An integration constant which appeared in (13) has been
determined by the fact that the electric field oy/oz
vanishes at z = o where y = 0., If oV/3y and V = 0 when

Y = 0 and v

wo’ then the shock potential profile is ob-
tained [see Fig.1l0]. These conditions correspond to those
of charge neutrality and no electric field at z = #® and

are explicitly written as

h(a +b - 2¢c) =1 : (15)

nia® - 2902+ 62 - 29 )2 < expry) (16)
and

nia® + b3 - 263 - (2% - 29 )3/% - % - 2y,)3/%)

=exp(y)) - 1. (17)
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Here,

w, + s)2, b2 29 (y=0) ,

1]
1

2 = (w; = s)
and

c” = (w, + s)2 . (18)

1
It is anticipated that y approaches wb very quickly

behind the shock, so that an approximation, w(y=0) = wo“

can be employed. (Errors of this approximation willlbe.

estimated later.) The set of equations (15), (16), and

(17) is solved numerically for s, wo and h. The dependence

of s on the beam velocity Wy [= (wl + wz)/2] is plotted

in Fig.5(c). Here, we have defined the velocity width

2 0 = VWi In order to compare with the

experimental and the simulation results, the width is chosen
1/2

Aw 2w, —W_ =W
: o

to be Aw = (2Ti/M) /cs = 1/4. As W, is increased, s
decreases and becomes zero when W, = 1.35 which is in
satisfactory agreement with the experimental value of 1.5
and with the simulation result of 1.65. In the limit of
Aw -+ 0, Wy = 1.6, when s = 0. Far upstream from the shock
where y = 0, the input ion-beam density is (a - c¢)h and
the density which consists of reflected and transmitted ions
is (b - ¢)h. The solution of (15), (16) and (17) shows
that the density ratio R = (b - ¢)/(a - c) equals unity
when s = 0 and the R decreases as Yo decreases. This fact
qgualitatively agrees with the experimental and simulation
results.

The water-bag model fails in constructing the distri-

bution shown in Fig.9 when W is small and W, is smaller
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than s; we therefore have to choose the negative sign in
Eq.(9). The numerical solution shows that W, < s when

W, < 0.72 for Aw = 1/4. Only a solitary or oscillatory
solution exists in this region. A realistic ion distribu-
tion, however, has a tail so that this drastic disappearance
of the transmitted ions does not take place. In the above
analysis, the reflected ions play an essential role. With-
out these reflected ions no shock solution can be obtaiﬁed.
The thickness of the shock front D is estimated from the

relation

%o (19)
D =
- 1/2
( zvmin)

to be about 5, i.e,, n SAD in unnormalized units., Here,

Vmin is the minimum value of V. The meaning of Eq.(19) is

illustrated in Fig.9.

To estimate the error of the approximation y(y=0) = wo’
V is expanded around y = wo in a Taylor series up to terms
2
of 2 Z. Because 9V/0y = 0 when y = wo' the expansion is
oy
2
V=v({y) +lu’-(6lp)2 ' (20)
o 2 a2

where Yy = wo + 8Yy. From Eq.(13), the equation for §y is

CECLINETE 3—2‘2’-)1/261:; . (21)
oy

The solution of (21) can be approximately written as

-18-



'ﬁf!ql/z

sy = =¥, epr('- 20 (y - yo)] ' (22)

when the argument in the exponent is larger than unity.
Here, Yo is the position of the shock front and (—32V/3w2)l/2

is calculated to be

22v,1/2 _

: 1+ (a% - 29 ) 722 - 29 ) T4 2expd g )
Y

o
(23)

with the aid of Eq.(16). Since the right-hand-side of

Eq.(23) is larger than unity, we find from Eq. (22) that

the quantity 6y (y=0) which is neglected in our analysis is.

very small if Yo >> l; i.e., if the width of the high

density (potential) region is much wider than a Debye-

length. The disconsinuity of the electric field at y = 0

due to the artificial connection of the two solutions for

y >0 and y < 0 is also found to be very small.

We note here that the above structure of the ion dis-
tribution is an example of a nonlinear equilibrium of the
Bernstein-Green—Kruskal27 type in each half space. However,
the nonlinear equilibrium cannot be synthesized if we impose
a realistic smooth ion distribution at y = *» for the fol-
lowing reason. Let us consider the situation which is
found in the experiments and the simulations, that of a
potential hump which grows initially around y = 0 and the
shock fronts propagate to both sides. " In the high density
part, the ions freely stream since the electric field is

very weak. Because of the symmetry of the system, the ion
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distribution f(w) is an evenfunction at y = 0,. However
0f/9w is discontinuous at w = 0 except for the case when
it vanishes. The discontinuity extends aloné the line y =
wT because the ions freely stream. The line y = wT moves
iﬁ the shock frame. This discontinuity is observed in the

simulations, see Figs.7 and 8.

B. Discussion

Under the present method for the excitation of the
shock, a émall potential step applied to the driver plasma
generates a shock with a trailing wave train (quasi-shock).
In this case the density of the precursor is very small. |
For a higher potential step, the density of the transmitted
and the reflected ions increases and a model for a laminar
shock wave given by Sagdeevlo does not apply.

Forslund and Freidberg8 have reported that laminar
shocks are possible between two critical Mach numbers.
When the ions are cold, their lower critical Mach number
is essentially the same as the one proposed by Sagdeev.
Below this number, no reflected ions are present and above
this number, the reflected ions play an essential role for
the persistence of the shock. Although we do observe in
our experiments, the two different types of shocks that
are demonstrated in their numerical simulations, the tran-
sition from one to the other is continuous and no definite
lower critical Mach number is found. (The water-bag model
manifests definite ion-beam velociﬁy W, = 0.72 for Aw =‘l/4,

which introduces lower critical Mach number, since there
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is no tail in the distribution.) The difference between the
upper and the lower critical Mach number defined in Ref.8
is dominated by the potential jump due to the "foot". In
the simulation of Forslund and Freidberg, the electrons are
a one-dimensional collisionless fluid and they do not shield
the reflected ions very well. Therefore, the fesuiting
large potential jump at the foot modifies the ion trajectory
and introduces a large range between the two critical Mach
numbers. In the experiments reported here, the electrons
are nearly isothermal and provide more shielding of the
ions than the case of above numerical simulation. The ex-
periments have demonstrated that the shift of the ion dis-
tribution due to the foot is very small, as a result the
upper critical Mach number is not large.

Finally we note again that the turbulence excited by-
‘the ion two-stream instability saturates at a very small
level. It does not slow nor heat the ion-beam within the
28

/w_.) which is the value suggested by MacKee\

distance 10(vo pi

Under the present experimental conditions a turbulent shock
would not be formed in spite of the two ion-streams gener-

ate turbulence.

VI. CONCLUSIONS

Strong laminar electrostatic shocks have been observed
experimentally when an ion-beam is injected into a colli-
sionless plasma. The features of the shock are as follows:
(i) The density jump in the shock is comparable in magnitude

with the'background plasma density. (ii) No trailing wave



train due to wave dispersion is found. (iii) A density
depression follows behind the shock front. (iv) A signifi-
cant amount of ions reflected from and transmitted through
the shock front are found. (v) The upper critical Mach
number is 1.5 and the corresponding ion-beam velocity is

3 Sk above which the beam does not interact with the back-
ground ions. (vi) The thickness of the shock front is a?out
10 AD.

Numerical simulations based on the Vlasov-Poisson equa-
‘tions have reproduced the above experimental résults very
well. An analysis using the "Water-Bag" Model of the above
shock structure has accounted for the critical beam velocity

reasonably well and has suggested that the reflected ions

play an essential role in the persistence of the shock.

ACKNOWLEDGMENT

The authors appreciate the helpful discussions with
Professor T. Taniuti. One author (KEL) participated in
- this research while on research leave from the University
of Iowa at the Institute of Plasma Physics, Nagoya Univer=-
sity and he was supported in part by the National Science

Foundation.

- 22 -



REFERENCES

10.

11.

12,

13.

D. A. Tidman and N. A. Krall, Shock Waves in Collision-

less Plasmas (Wiley, New York, 1971)

S. G. Alikhanov; V. G, Belan and R, Z. Sagdeev, Zh.
Ekxsp. Teor. Fiz. Pis'ma Red. 7, 405 (1968) [JEPT Lett.
7, 318 (1968)]

R. J. Taylor, D. R. Baker and H. Ikezi, Phys. Rev. Lett.

4, 206 (1970)

———

S. G. Alikhanov, Zh. Eksp. Teor. Fiz. 60, 982 (1971)
[JETP 33, 532 (1971)] |

A. Y. Wong and R. W. Means, Phys., Rev. Lett. 27, 973
(1971) .

D. Cohn and K. R. MacKenzie, Phys. Rev. Lett; 28, 656
(1972)

K. Saeki and H. Ikezi, Phys. Rev. Lett. 29, 253 (1972)
D. W. Forslund and J. P. Freidberg, Phys. Rev. Lett.
27, 1189 (1971)

D. Biskamp and D. Parkinson, Phys. Fluids 13, 2295
(1970)

R. Z. Sagdeev, Reviews of Plasma Physics (Consultant

Bureau, New York, 1969) Vol.IV

D. A. Tidman, Phys. Fluids 10, 547 (1967)

Y. Kato, M. Tajiri and T. Taniuti, Phys. Fluids 15,
865 (1972)

D. W. Forslund and C. R. Shonck, Phys. Rev. Lett. 25,

1599 (1970)

- 23 -



14.

15.

16.

i7.

18.

19.

20.

21-‘

22.

23.

24.

25.

26.

27.

28.

R. J. Mason, Phys. Fluids 14, 1943 (1971): 15, 845
(1972)

N. Yajima, T. Taniuti and A. Outi, J. Phys. Soc. Japan
21, 757 (1966)

P. H. Sakanaka, Phys. Fluids 15, 1323 (1971)

R. J. Taylor, K. R. MacKenzie and H. Ikezi, Rev. Sci.
Instr. 43, 1675 61972)

H. Ikezi, Y. Kiwamoto, K. Nishikawa and K. Mima, Phys.
Fluids 15, 1605 (1972)

H. Ikezi and R. J. Taylor, J. Appl. Phys. 41, 738
(1970)

H. Ikezi and K. E. Lonngren, to be published.

R. J. Taylor and F. V. Coroniti, Phys. Rev. Lett. 29,
34 (1972)

T. E. Stringer, Plasma Phys. 6, 267 (1964); B. D. Fried
and A. Y. Wong, Phys. Fluids 9, 1084 (1966)

P, H. Sakanaka, C. K. Chu and T. C. Marshall, Phys.
Fluids 14, 611 (1971)

H. L. Berk and K. V. Roberts, Phys. Fluids 10, 1595
(1967)

R. C. Davidson, Methods in Nonlinear Plasma Theory

(Academic Press, New York, 1972) p.45

G. Joyce and D. Montgomery, J. Plasma Phys. 3, Pt.l,

1 (1969)
I. B. Bernstein, J. M. Greene and M. D. Kruskal, Phys.
Rev. 108, 546 (1957)

C. F. MacKee, Phys. Rev. Lett. 24, 990 (1970)

- 24 -



FIGURE CAPTIONS

Fig.l.

Fig.2.

Fig.3.

Plot of electron density (saturated electron cur-
rent to the Langmuir probe) versus time with dis-
tance as a parameter. (a) The case when a density

perturbation is applied. (b) The case when the

~ion-beam is continuously injected and its energy is

suddenly increased from 6 volts to 14 volts.

Plot of electron density versus time (top trace)
and ion distribution (dot density) in energy-time
plane (bottom). The distance from the beam injec-
tion point is 12 cm. (A) Background ions in the
target plasma. (B) Injected ion-beam. (C) Back-
ground ions and refiected ions from the density
depression. (D) Ions reflected from the shock
front and transmitted through the high density part.
(E) High density region. '

Pictures of ion distributions for the case where
the ion-beam is injected into a low density plasma
and the beam energy is'instantly increased by 5
volts at t = 0. (A) High energy ion beam injected
into the target plasma t > 0. (B) Low energy ion-
beam injected into the target plasma t < 0. (C)
Ions reflected from the potential jump in front of
the shock and transmitted through from the high
energy beam. (D) Ions reflected from the potential

jump in back of shock and transmitted through from

 the low energy beam as the shock passes. (E) Ions

- in background plasma. (F) High density region.
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Fig.4.

Fig.5.

Fig.6.

Fig.7l

Fig.8.

Fig.9.

Fig.10.

Dependence of the shock structure on beam energy,
showing two types of shocks and no interacting

beam. Time is fixed at 19 ﬁs after the beam injéc4
tion. | o
Shock velocity in the center of mass frame (the
reference frame moving with the velocity vb/Z) and
the Mach number as a function of the beam velocity.
(a) Experimentai results. c_p is the ion-acoustic
velocity measured by the propagation of small-am-
plitude wave. (b) Results of numerical simulations.
cg = (Te/M)l/z. (c) Results of an analysis based
on the water-bag modél.

Evolution of the ion density Te/Ti = 30, and vo/cs
= 1.3,

Ion-distribution of the shock with time as a param-
eter, Te/Ti\= 30, and vo/cS =1.3. (a) w_.t = 10,

. pi
(b) w_:t =40, (c) w_.t = 70.

i pi
Ion—d?stribution of the shock with injected beam
velocity’as a parameter. Te/Ti = 30 and wpit = 40.
(a) v /e, = 0.4. (b) v,/eg = 1.0. (c) v,/cg = 1.5
(no shock wave).

Ion-distribution in phase-space and potential pro-
file for "water-bag" analysis.

Plot of V as a function of potential y from which

the shock solution is obtained.
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