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Abstract

Nonlinear modulation of quasi-monochromatic electromagnetic
waves propagating parallel to an external magnetic field is
investigated with particular attention to contributions of
resonant particles at the group velocity. The contributions
of these resonant particles give rise to a nonlocal nonlinear
term and modify the local nonlinear term of the nonlinear
Schrédinger equation. An explicit expression of a coefficient
of the nonlocal nonlinear term is given for a plasma charac-
terized by isotropic Maxwellian velocity distribution functions.
In a vanishing temperature limit this coefficient becomes
zero and the nonlinear Schrdédinger equation agrees with that

obtained by using a fluid model.



§1. Introduction

It has been well established that in dispersive media a
modulated nonlinear wave is asymptotically governed by ‘a
nonlinear Schrodinger equation%)’z) As far as electrostatic
waves in collisionless plasmas are concerned, examining the
resonance effects of particles moving at the group velocity
of the wave, Ichikawa and Taniuti3) have shown that their
contributions modify not only a coupling coefficient of a
local-nonlinear te;ﬁ but also bring about a nonlocalr-nonlinear
term. ' In-°the present paper, applying their extended reductive
perturbatién methcd, we investigate nonlinear wave moduldtion
of eleétrgmégnétic waves propagating in a magnetized collision=
less plasma. In particular, we focus our attention to electron
cyclot;on waves (so called the whistler modes), since there
have been'increasing interests to understand observed pul-
sations of the amplitude spectrum of whistlers?)”G) To confine
ourseives within the wave-wave coupling, we disregard the wave-
particle interaction relevant to the cyclotron damping and

o

the trapped particle effects at the resonant velocity Vp =

(w - mc)/k, where W is the cyclotron frequency and (w, k)
are the frequency and the wave number of the wave, but take
into account the wave-wave-particle interaction relevant to
the resonant contributions of particles at the group velocity
of the wave.

In 82, we present a general treatment for a quasi-monochro-

matic electromagnetic wave propagating parallel to an external



magnetic field. After lengthy calculations, we obtain a
modified nonlinear Schrédinger equation with the nonlocal-
nonlinear term associated with the resonant particles at the
group velocity. 1In §3, coefficients of the nonlinear
‘Schradinger equation are calculated for a Maxwellian velocity
distribution function of plasma particles. In the limit of
vanishing temperature, the result is shown to be in agreement
with that obtained for a cold plasma?) The expression of the
nonlocal nonlinear coupling coefficient is in agreement with
the one obtained by Suzuki and Ichikawa, who have derived a
three dimensional nonlinear Schrédinger equation by applying
a heuristic Fourier expansion method to separate slow processes
from a nonlinear system. Thus, the present rigorous approach,
though restricted to the one dimensional case, justifies the
result of their heuristic derivation. In the last section,

we present conclusing discussions.

§2., Perturbation Method for Cyclotron Waves

We assume that a quasi-monochromatic electromagnetic wave
(called the carrier wave) is propagating parallel to an
external constant magnetic field By, directed to the z-axis
in a collisionless two-component plasma. Then, the Vlasov-

Maxwell equations are reduced to
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e L | (1)

0° _ -2 02 _ 4t 2 :
(azz c SET)Ai = = 2 eafdvzfdenydeexp(tle)Fa , (2)

52 -, 3?2 ‘
(322 - at2)¢ = =47 2 eafdvzfdenydeFa , (3)

where the suffix o denotes ions and electrons, the variable

0 is an azimuthal angle in velocity space and Qa = (ea/mac)Bo

is the cyclotron frequency of the a-species in the system.
Furthermore, Fa is a distribution function of the each species,
¢ is a scalar potential, A, and A, = A * iAy are a longitudinal
and transverse components of a vector potential. They are

subject to the supplementary condition

-1 O 3 _
c 3T ¢ + 3 AZ =0 . (4)

Applying the extended reductive perturbation method to the
set of equations (1) ~ (4), we introduce the stretched variables

as
n=¢z, [=¢€“2 , o= ¢t , (5)

and expand the distribution function and the electromagnetic

potentials into the following series,

0 o]
po=F v,y ¢ Ik i e (™) (v,n, 0,0 explis (kz-wt) 1,

(6)



® to

x= % 1 "™ (n,0,0)explit (kz-ut)], (7)
n=1l =-w
where X represents A_, Az and ¢. The unperturbed plasma is
0
characterized by the particle distribution functions Fé )
(VL,VZ), axially symmetric one in velocity space. The reality

condition requires

(n)= (m) _  (m)*
a,-0 - Fa,u 0 O-p =g

(8)
A, )

z,-%  Tz,8 ! t,-8" T+,8
where the asterisk denotes the complex conjugate of the attached
quantity. After expanding and collecting terms of the n-th
powers of €, we obtain an infinite series of equations for
the n-th order component.
For the first order in €, with the help of (4), eq. (1)

) (1) (1)

determines féll in terms of A 3 and ¢2 . Integrating with
’ -

respect to 6, we obtain

e

(1) _ (1) o i@ (1) -i6 (1)
£y = fo &g ¥ .3 (e™ £ (M)A o +e T VE ()AL,
(9)
where
€a k 2 3 - (0)
fo = - (ﬁ—) kv {1 - (w/kc)?} v Fd ’ (10)
a z z
- -1 (9)
£,(n) = nd7" (n)F 7, (11)



with the abbreviations of

di(n) = n(w - kvz) 7 Qa ’ (12)
9 0

£ = (0 - kv,) o=+ kv, x— . (13)
L z

We note that a homogeneous solution is dropped in (9) since
in the initial state only the carrier wave exists. Substitu-

tion of (9) into the first order terms of (2) and (3) yields
e2x2e, (0, 2k)a 1) =0 (14)
+ ’ £, ’

and

(1)

22k%[1 - (w/kc)zle"(zw,zk)¢£ = 0, (15)

where the dielectric functions €, and ¢, are defined as

e
W, 2 2T, 2 o 2
e (wk) =1 + 87 5 ié av_|av,v, —=— 2 () (17
waAE - k m z L'L y=kv_ 3V o
a o z z

In the present analysis, the carrier wave is specified by

Aili or Afli; thr former is associated with a left circularly
7 14

polarized wave, i.e., an ion cyclotron wave and the latter

with a right circularly polarized wave, i.e., an electron

cyclotron wave (so called whistler mode). When either
polarized wave Aili or Afli is considered to be the carrier
4 4



wave, e+(w, k) or e¢_(w, k) does vanish and e¢_(w, k) or €,

(w, k) does not vanish, respectively. At the same time €
(w, 2k) with 2 # *1 and ¢, (2w, 2k) never vanish irrespective

to the polarization of the carrier wave. Hence, Afli (or
r

Aili), Afl; (2 # *1) and ¢él) are determined to be zero from
14 -~ :

egs. (14) and (15). As for the %= 0 component is concerned,
)

, and é%) are equal to zero. This is consistent

we set A_f_l
=7

with the present problem to examine the nonlinear wave modula-

(1) (l))
+,1 -,17"

To the second order in e, firstly we consider the components

tion of the carrier waves A (or A

of 2 = 0. Eg. (1) gives

. & £l2) =0

o 36 Ta,o0 ' (18)

while eq. (2) is automatically satisfied for fézi specified

4

by (18). Eg. (3) requires that

)X eufdvzfdviyLﬁ(z) =0

o ’

yet the zeroth harmonic component fézz , called a slow mode,
14

can not be determined explicitly at this stage.

Turning to the components of %= 1, solving eq. (1), we

obtain
(2) _ (2) o i6 (2) -ib (2)
fa,l =£,9, + Zmac (e f—(l)A-,l + e f+(l)A+,l)
ie , .
o (1f (1) -i@ (1)
- 2 (e fl'_ Al te f1,+ AL ) (20)



where jfl . 1s a differential operator with respect to the
,

slow variables n and ¢ , defined as

-1 -1 d d 3_4p (%)
Foo=97 W, MWD - J gty v T (1)

r
with

3 3
=55+, 37 - (22)

Substituting (20) into egs. (2) and (3) withn =2, % =1,

we obtain

ke, w0al ) iz s & A - (2L) 2 : ;i
Jdszdvlyi_fl’i}Aéti = 0, (23)
and
k21 - (w/ke)?len(w, K)0!P) = 0. (24)

1

Since g, (w, k) does not vanish, (24) determines that ¢fz)

is equal to zero. 1In (23), since the first term vanishes for
a given linear dispersion relation of the carrier wave, the
second term specifies dependence of Aéii on the slow variables

n and o. Substituting (21) into (23), we observe that the

second term of (23) is reduced to a simple expression



(s + Agxl A1) =0,

_,1

where A is equal to the group velocity

=B _du
MERT &
with
eZ
A = w/kc?{1 - Zg_ z I-n-o—‘ Idvzjdv_,_vj_d? (1) [d;l L9
(¢ o
2
2 e -1 -1
B=1-20 ;¢ IdeJdVL vial' (1) lv,a7’ (1P
o a
) 3 (0)
Vz 3v, t Vs av w i Fa -

(25)

(26)

a ]F(o)} ,

V.L o

(27)

(28)

The equality (26) can be seen by differenciating the equation

k29+(w,k) = 0 with respect to k. Hence, (n,o) dependence of

A (1) is determined as a general solution of (25) as follows,

+'1

(n,o58) = A, (n=ro,z) .

(29)

The second order terms with 2= 2 are reduced as follows:

from (1), (4) and (9), we get



e . _: 2
. o 2
+ ( o )2 {e216 £ A(l)z + e 216 f2'+ A_l(_iz } ,

(30)
where £, (2) is given by (11) with n = 2, and
1 ,-1 -1
£,: =797 WMID - (0= kv Iv, 1£, (). (31)

Then, with the substitution of (30) into (2) and (3), we have

(2k)zei(2w,2k)Aifz) = o0, (32)

(20211 - (w/ke)?len(20,2K)¢ ") = 0. (33)
Since the coefficients of Aifi and ¢§2) do not vanish, the
second order & = 2 components of the electromagnetic field
are not induced in the system.
To the third order, we first consider the fundamental
components with £ = 1. With the help of relations obtained

so far, egs. (1) (4) are reduced to

~

- k2e, (w,0A%) + TalP) 4 ik 24

t,1




- - - - (0),3 _ €a
U g%, ,e = v E, (VZS%I V"'S-‘a’_z-)Fo‘ I3t = m "

(B +2(-kvvilf, ,|al'l]|z +0£()) Alf:i =0, (34)

2,2177¢,1

and

k(1 - (w/ke)?le,w, k)0 ) =0, (35)

(1)

where an operator <J is the same one that operating on A

r 1

in (23). Therefore, the second term of (34) is eliminated

2
by requiring that Af ) depends on (n,o0) through the combina-
- 7

1

tion of n - Ao, while the first term of (34) vanighes because
of the linear dispersion relation of the carrier wave. Eqg.

(3)

(35) determines that ¢, should vanish identically. Thus,

defining a set of new variables (§,T) as

o
Il

T = T/X ’ (37)

we obtain a generalized nonlinear Schrédinger equation for

A,

t,1

52 2
i+ A ) + BBEZ Ai,1 + yz|Ai’1| A+'1
2r?) - S 1 (2)
m _ﬁ 2 3= 2 -
+ Koz § m Jdvzjde V_L_di (l)&)fa’oAi,l— 0o . (38)



Here, the coefficients are‘défined as follows;

2

N

) 2 e
. ™
o =1~

o -2 o e T 9 ) (0)
ke i m, IdVZJdVLYiﬁi (1). 0wt ) vy gv_iﬂavz§VI]Fa ’

(39)

Aer A 2 % 1
. _ _ (2,2 ¢ _O lav w2q=' -)
B = ET{-{l N (E)z (C) g mu, [dVZJdVLVLdi (1) (Vz >\)flri]’ !
(40)
A 2T 2 eza o\ 2 -1
Y,= < 3% (—5_-)2.2 = Crar=) Idvz Jd‘_’;vidi (1)
o o o
. : C =1
[ & + 2(w - kv v, 1f Jx (41)

where fl,i

is a function of v and v_ defined by

_ —nya-? - (v-ndta) = -t y=2—r ()
£y, = L,70A7 (D = (v=0a0 () ggm + vud, (WgeIFy

(42)
Now, we come to a stage to determine the slow mode contribu-~

2 _
tion fé ) from the zeroth harmonic components of (1) and (4)
14
with theirithird order terms of €. Eq. (1) gives rise to an
equation having following structure,
3
PO T
o

) + .5 () - (e—independent terms)
ae a'o (1,0 :

+ (periodic terms in 6). (43)

- 12 -



Since fézz is shown to be independent of 6 by (18), and at
’

3
the same time fé z should be a periodic function of 0 , eq.
14

(43) can be decomposed into the following equations,

- Qa ;% féfz = (periodic terms in 6 ), (44)

and explicitly

(2) _ %a 3 (2) 13, (2)y 8 ()
Ao Tm, Gn %0 T 35 R0 Ta
o 2 3 1, _ 9 9 (1) 2

M (Zmac) {[’6(57_ + GI) an T+ sz]f+lA+,1|

P 2+ (0 -xv v i Lal) 2 (45)

W VIV M, elBy ) .
Eq. (4) yields
-1 9 (2) d (2) _
cTlags b, tgmh,, =0. (46)

In solving egs. (45) and (46), we expand the slow mode into
the Fourier-Laplace integral with respect to the variables
n and ¢ as

+o

dK expli(kn - Qo)1X(XK,Q) .,  (47)

- 00

X(n,0) = (2m)~° [dQI
C
where the contour C is lying in the convergent region parallel

to the real axis. Then, we obtain from (45),

- 13 -
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z(2) . _ _ o 1-(9/cK)? d (0)x(2)
fa,o(v-’-’vz’K’Q) - m_ Q=Kv K oV Foc ¢0
o b4 zZ
e N (V A% )
_ 0 2 ' LI7g
Groe)* —oRe, KR, (48)

’

1
where Y (K,Q) is a transformation of |A£ ilz
bl 4

¥(K,Q) = G(Q—K)\)j dK'A,  (K")A, , (K'-K), (49)

and Ni(vL, vz) is defined as

9 1 3
Ni(V_L,Vz) = [(Vz - >\.) (WJ: + \7—'——-) - V_L W;]fi
w—kvZ
+ (H + T s (50)

The electro-static component of the slow mode ~§2) can be

determined from the Fourier-Laplace transformation of (19)

with substitution of (48) as follows

2
e - v
_ 2 a i (o)~ (2)
[1 (R/cK)“] £ = Jdvz dv, oRe - v Fa ¢0

o o ’ z zZ

e ¢ N, (v v_)
- - _Q 42 'z
= 5 ea(Zmac) JdvZ ‘devL kv, Y(K,Q). (51)

~ (2
Eliminating ¢§ ) from (48) with the help of (51), we determine

E(Z) in terms of Y (K,Q).
0,0
)

1
Returning to (38), we evaluate the coefficient of Af . of
i 4

the last term as

- 14 -



(2m)~* Idﬂ JdK expl[i(Kn - Qg)]{--...%ézz}

C
-2 ) w2
= (2m) Jdﬂ IdK expli(Kn -Qo)] (5 + C)Y(K,Q),
C
(52)

where

_ 2w €0 , o 2 2 3=1 K
C = - W z m_ (2_11:[—(-3_) de dV.LV.Ldt (l)@n‘:’ﬁr Ni ’ (53)

o a o z

_ _ 8m2A K

P=-"% I & JdeJdVJ.VJ- kv, S (34)
272\ e, K

_2am _o 24-1

W= S5 o [dvzjva_v_,_di (1) D s G,
o a z

_ _ 8m3) o 2 K

= % g eOt ('Z—IT.LC—) IdeJdVJ_ V.L m—z— Ni ’ (55)
with the abbreviation of

e
o z

The equality between the second line and the last term of
(55) can be proved by carrying out the integration by parts
with respect to v, and v, Deforming the contour C to the

Landau contour with real , we use the relation

K = P
Q—KVZ (Q/K)-—vz

- iﬂsgn(K)S(vz—(Q/K)), (57)

- 15 -



where P stands for the principal value and sgn(K) = K/|K| .
Referring to (49), we may replace Q/K by the group velocity
A in various terms of (52). Hence, the integrand of (52) is

reduced to a simple form

WZ

(F +O¥EM= 1@ - isgnk @YK, (58)
in which C% and @Q are independent of K and Q@ . They are
given as

WZ
- 1 1 -2 2

@ =c, + ol oy T|~%(r,w, - T,W,)?, (59)

w3 1 \

@ =C, + — - = |T|™T,w, - T,W) , (60)

r, T,

where C,, C, , T I, and W, , W, are defined by decomposi-

1’ 2

tions of the quantities C,I' and W as

c=¢C, - 1isgn(K)C, , (61)
r=r, - i sgn(K)P2 ’ (62)
W=w - i sgn(K)W2 ’ (63)

respectively. Remembering that

+CX‘)
sgn (K) = £ J df explike] & (64)
- 00 g

- 16 -



we obtain a modified nonlinear Schrédinger equation for a

small but finite complex amplitude A _,

2
+o |A _(E',71)]2
P + , -
+ @2 [ F—p—dg'a, = 0. (65)

- 00

To conclude this section, we show that the coefficient
B of the dispersion term is actually proportional to the second
derivative of w(k) with respect to k. We have, after

straightforward manipulations,

dZ
dk?2

axr k, _
ai(x)u = 0, (66)

(k2e, (w,k)] = 2(35)8 - 2

which yields that

2w

dk?

ol

_ o
B =5 (67)

Furthermore, we add a remark on effects of the cyclotron

damping. The linear cyclotron damping rate is given as
dv_ |dv,v28 (w-kv_3IQ )Z)F(o)
z L7 z+t"a o °
(68)

If yc/w(k) = 0(e?), a replacement of

-17 -
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5t~ 3t T & e
is consistent to accommodate the linear cyclotron damping
process into the present analysis. Thus, we obtain a modified
nonlinear Schrédinger equation for the cyclotron waves
propagating through collisionless plasmas as

82
+ T YAt) + P — A, + qIAile

., 0
i(x= A
oT % 9E

+

d&;'AJ_r =0 , (69)

o+ 1A, 1?2
Pl e

o

where Y = y_/e* , p = (1/2)d%w/dk?® , q= (v, + @)/
and s = @,/a . Eq.(65) is in agreement with the one dimensional
version of a generalized nonlinear Schrddinger equation

8)

derived by Suzuki and Ichikawa on the basis of Fourier-
expansion method for separation of slow processes in nonlinear

systems.

§3. Cyclotron Waves in a Maxwellian Plasma

We investigate nonlinear modulation of the cyclotron
waves in a two-componenet plasma by applying the result of
the preceeding section. We assume that the unperturbed state
of the system is characterized by isotropic Maxwellian dis-

tribution functions,

- 18 -



(o) 0)

F = noFé Fio) y (70)

with
F{) = m/2mm)/? exp(-mvZ/2m (71)
F{") = (m/2nT)exp (-mvZ/2T) , (72)

where T represents a reduced temperature of the particles
and the suffix for particle species is omitted and n, is the
number density of the particles. The linear dispersion

relation is, after integrating over v, of (16), given as

e (w,k) =1 - ()2 + 3 ((-D-E)2 %ZV d-l(l)F(o)( ) =0
£ kc © ke z z Vz' T O

- 00

(73)

Similarly, the coefficient o given by (39) is calculated

After being integrated over v, , the expression of Y, (41)

is reduced to

- - K 5 y2e 2 (0) mw -3
Yz 4c? p(ﬁE) dv, F, 'L - kT Vz 943 (1)
2
+ (20 +kvaztm - ELarswy),  (75)

- 19 -



which represents the coupling between the carrier wave and
its second harmonic beat wave. In order to obtain an explicit
result, we consider the low temperature limit of (75) by taking

the following limits for the vz—integration;

(0) m (o) _ T L (0)
F,o0 > S(v,), FV,F, 7 §'(v,), ~F, " >0, (76)
Then, (75) is evaluated as
- kA 2 2 (&2 - oyt
Y, = o we Z wy ()" (@ % Q) . (77)
Now, turning to the evaluation of @z and ®, , we

calculate the real parts of various.quantities such as C, T

and W under the same approximation.of (76). We get

= - kA 2 €42 -y =" 2 2 _ W a-Wy2
c, = oY z Wy (=) (W) {w? + Q%[1 - & (1+gy) 1},
(78)
-1
r,o= (k) pX w; , (79)
W= E w2 —S () (0321 - £ 1T 9] . (80)
' 2mc ¥ k2 o

On the contrary, the imaginary parts of these quantities are
calculated, by taking advantage of the factor of G(Vz - A),

as follows,

- 20.-



_ kA Ko, e 0mkd o o (0)
c, = 71"——402 z (k) (I'E) (B:k_)\‘_:ﬁ) )\FZ ) (81)
ro= 22 p k2 r)
2 k d "z ' (82)
_ A2 2 & _w-k) (0)
" " 2ke? Lkimamosa B ) . (83)
with the abbreviation of ké = 4ne2n0/T . In other words, we

notice that relevant temperature effects manifest through the

contribution of resonant particles with the group velocity.

2 .
Examining the structure of fé z given by (48) and (51),
’
we notice that the term C represents the nonlinear coupling
between the carrier wave and the virtual electromagnetic slow

mode. Hence, adding C, to y,, we have

2A2
Q
= = - XM Ly2 P - v T v 2
Yem -~ T2 t G oz © (e (0z) * 1 - 1 +gh1%
(84)

At the same time, we have also the contributions of the
electrostatic slow mode, expressed by the second and the third
terms of (59). In the limit of vanishing temperature, since

', and W, approach zero very rapidly, we have for the gsecond

term of @ ,

12
st = KA gy e _Pp W (1T Y2
Yepe = ITIW2 = =2 (zw?)”1{r = [1 - =1 + 3)1}2.
ES 1 1 4c? P mc (WEQ) 2 ka 9

(85)

- 21 -



We also notice that the coefficient o is equal to unity in
the limit of small temperature. Hence, we get the local non-

linear coupling coefficient q of (69) as

kA 2y=1,2 2
- + = e e— .
9 =Ygy * Ygsg 2 (pr) W5i%e
(R FoTro- e FpI1r . (86)

Using the linear dispersion relation in the cold limit,

2

ke, 2 = _ v
(T)ZZ n2 =1 - Z mgﬁ—)— ’ (87)

and a relation obtained by taking a derivative with respect

to k of (87),

o =n"? - zw;<1n)/2w(wln)21 ' (88)

we can express (86) in a form without summation,

a?k3a

252
idn B,

q* = - [2 - 5@ + 0?17, (89)
where a? = B§/41Tno(mi + me)c2 is a squared ratio of the
Alfvén velocity to the light velocity. The coefficient g*,
given by (89), is in agreement with the one obtained by
Kako(7) on the basis of the fluid equations for a cold plasma.
Now, turning to effects of the resonant particles at the

group velocity, we observe that the third term of @m is

- 22 -



negative definite and expect that it will represent relevant
temperature effects besides temperature dependent terms coming

from the various factors Y, » C, liand W, . Furthermore,

1
essential contributions of the resonant particles at the group
velocity give rise to the following expression for the non-

local nonlinear coupling coefficient s,

L2, , Fife (w-kk)wza \
s ==~ T '(——)? [e* 74 (Z = )
2 2ke 2 TiTe w’k>\+ﬂa
¥ +
eB m(w+QB)-kAQB

2 2471 e 2 2 _B
+ (T2 +I7) {éuo)kda g W pB[mB (wlﬂs)z

) w=kA 2
T m, kAR tol ) (90)
o o
where Fu = Féoi (A). This expression is in agreement with
14
the result obtained by Suzuki and Ichikawas). Here, however,

we reserve ourselves from estimating these quantities explicitly
for plasma existing in nature. In a separate paper, we will
discuss in detail the nonlinear wave modulation of whistler

modes in the solar wind.

§4. Discussion

Employing the reductive perturbation method extended by
Ichikawa and Taniuti3) to take into account the effect of
resonant particles at the group velocity, we have studied the

nonlinear wave modulation in a magnetized plasma. The result

obtained in the preceding sections is in agreement with one

- 23 -



8)

dimensional form of the result obtained by Suzuki and Ichikawa
who have applied a heuristic Fourier expansion method to
separate the slow modulation process from a nonlinear system.
Our rigorous derivation of the generalized nonlinear
Schrédinger equation confirms that their heuristic introduc-
tion of the group velocity was indeed a plausible procedure.
In the present analysis, we have disregarded the resonant
particles having the velocities of the order of (w - wc)/k.
These resonant particles will give rise to the trapping effects.
Recently, Karpman and his collaboratorsg) have been investi-
gating the trapping effect of these resonant particles on the
whistler modulation phenomena. Although we admit their
relevant importance, we have forcussed our attention to the
nonlinear wave modulation with account of the resonance effect
at the group velocity, restricting ourselves to low frequency

cyclotron waves propagating through low temperature plasmas.
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