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National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan

(Presented 7 May 2012; received 7 May 2012; accepted 17 July 2012; published online 9 August
2012)

The large helical device Thomson scattering system was designed for the target electron temperature
(Te) range, Te = 50 eV–10 keV. Above 10 keV, the experimental error becomes rapidly worse. In
order to obtain reliable Te data in the temperature range above 10 keV, we are planning to extend
the measurable Te range by following two methods. First we have installed one more wavelength
channel that observes shorter wavelength region in polychromators. Next applying forward scattering
configuration is another candidate. We estimate the data quality when the two methods are used. Both
of the two methods are expected to improve Te data quality at Te ≥ 10 keV. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4740525]

I. INTRODUCTION

The large helical device (LHD) Thomson scattering sys-
tem (TSS) measures electron temperature (Te) and density
(ne) profiles along the LHD major radius. The LHD TSS
was designed for the electron temperature range of Te =
50 eV–10 keV.1, 2 The data quality becomes worse rapidly
in higher temperature region, Te ≥ 10 keV. It is origi-
nated from the fact that the TS spectrum becomes wider
than the wavelength region observed by our polychromator
as shown in Fig. 2. In order to obtain reliable and accu-
rate Te data in high-Te plasma experiments, we tried sev-
eral methods: guasi-simultaneous laser firing of three lasers
and raw data summing methods. They have been success-
fully applied.3, 4 However, these methods have disadvan-
tages too. For example, many lasers are needed for the
guasi-simultaneous laser firing method, and many fixed
plasma discharges (experiment time) are required for a raw
data summing method. Therefore, we consider other methods
to obtain reliable Te and ne data from a plasma discharge by
using a laser. We are planning to extend the measurable Te

range by following two methods. First we have installed one
more wavelength channel that observes shorter wavelength
region in polychromators. Next forward scattering configura-
tion, in which the TS spectrum becomes narrower than current
backward scattering configuration, is another candidate. We
estimate the data quality by using mock TS signal data when
the two methods are applied. The mock data take some LHD
plasma parameters into account, and TS spectrum are calcu-
lated by using Selden’s formula.5, 6 In this paper, we describe
the estimation of the Te and ne data quality at Te ≥ 10 keV
and discuss the extension of measurable temperature range of
the LHD TSS.

a)Contributed paper, published as part of the Proceedings of the 19th Topical
Conference on High-Temperature Plasma Diagnostics, Monterey,
California, May 2012.

b)Author to whom correspondence should be addressed. Electronic mail:
yamadai@nifs.ac.jp.

II. EXTENSION OF THE MEASURABLE Te RANGE

A. Increasing polychromator channel

The original polychromators of the LHD TSS have five
wavelength channels for observing Thomson scattered light
in the wavelength region of 680–1050 nm, and a Rayleigh
scattering calibration channel. In the filter selection, spectral
response curves of all TS channels show a similar behavior
above 10 keV then accurate determination of Te becomes dif-
ficult in such high-Te region. To extend measurable Te range,
adding one more wavelength channel that observes shorter
wavelength region is effective. Up to seven wavelength chan-
nels can be installed in the LHD polychromators as shown in
Fig. 1. Then we have added the sixth TS channel for 20 poly-
chromators that see the center plasma region. Figure 2 shows
an example of spectral response of the polychromators. The
reason why there is a gap between the fifth and sixth channels
is to avoid the Hα line whose wavelength is 656.3 nm. Fig-
ure 3 shows estimated experimental errors in Te and ne when
wavelength channels #1–#4, #1–#5, and #1–#6 are used in
the data analysis. We note that the error estimations are car-
ried out at electron density of 5.0 × 1019 m−3 throughout this
paper. In the LHD TS diagnostic, main error source has been
found to be originated from shot noise in measured TS sig-
nals, the δTe/Te at different densities can be empirically esti-
mated from δTe/Te ∝ ne

−1/2.3, 4 In the case where #1–#5 wave
length channels are used, the Te error becomes rapidly larger
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FIG. 1. Schematic diagram of the LHD 6 wavelength channel
polychromator.
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FIG. 2. Spectral response of the LHD 6 wavelength channel polychromator.
Thomson scattering spectrum at Te = 3 keV and 30 keV are plotted.

above 10 keV, and reaches 100% at 50 keV. This agrees well
with the experimental results. On the other hand, the Te error
is less than 10% even at 30 keV when the signal of the 6th
channel is also taken into account. Concerning density error
δne/ne, the difference among the three cases is small, and all
of them are less than 5%.

B. Use of forward scattering configuration

Since the LHD TSS has a backward scattering config-
uration, TS spectral width and peak shift are greater than
those in traditional right-angle scattering configuration TSS.
When the forward scattering configuration where the laser
beam direction is opposite is applied, The Te error in the
forward scattering configuration is expected to be smaller
because a greater proportion of the TS spectrum is covered
by the spectral range of this TSS, as shown in Fig. 4. Fig-
ures 5(a) and 5(b) show comparisons of estimated Te and ne

errors respectively, in backward scattering and forward scat-
tering configurations. In the estimation, wavelength channels
#1–#5 were used. The scattering angle of the LHD TSS is
163◦ and 17◦ at the plasma center when the system is op-
erating in backward and forward scattering configuration re-
spectively. As expected, the forward scattering configuration
is better for the temperature range above 5 keV, whereas it
is not good for lower Te range. When such forward scatter-
ing configuration is applied, Te error, δTe/Te will be reduced
less than 10% even at 50 keV. Concerning the ne error, back-
ward scattering configuration provides better result in almost
whole region studied. Figures 6(a) and 6(b) show similar com-
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FIG. 3. Estimated Te (solid curves) and ne (dashed curves) errors. Crosses,
triangles, and squares show Te and ne errors when wavelength channels #1–
#4, #1–#5, and #1–#6 are used respectively.
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FIG. 4. Thomson scattering spectrum at Te = 3 and 30 keV, and the scatter-
ing angle of 17◦ and 163◦. The broken and dashed lines show lower wave-
length limits of the 5th and 6th channels respectively.

parisons when the wavelength channels #1–#6 are used in the
determination of Te and ne.

Recently some multipath TS diagnostic systems have
been developed to increase effective probing laser energy.7, 8

The laser beam after going through plasma is reflected by a
mirror, and transmitted again in plasma. In these cases, the TS
spectral shapes produced by the first and second pulses are the
same. However, the spectrum significantly differs from each
other in the LHD TSS as a result of the change in the scat-
tering angle, as shown in Fig. 4. Therefore, TS signals from
the first and second pulses may be required to be separately
observed. For this, a long temporal delay path is needed be-
tween the first and second pulses. In our case, more than 10
m delay path is needed. Since it is not easy to install such
long delay path in the LHD TSS, we consider that the mixed
backward and forward scattering signals are observed. The
red lines in Figs. 5 and 6 show the estimated δTe/Te error for
the case where the mixed scattering pulses are observed with-
out using a temporal delay path. From low temperature region
to 1 keV, the δTe/Te error is in the same level as that obtained
from the backward scattering signals. The mixing ratio of the
backward and forward scattering configurations is assumed to
be 100:100 in the calculation. Above 10 keV, the δTe/Te error
is somewhat larger than that obtained from the forward scat-
tering signals, however is significantly lower than that from
the backward scattering signals. Therefore, it is expected that
reliable Te and ne data can be also determined from mixed sig-
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FIG. 5. Estimated Te and ne error when the wavelength channels #1–#5
are used for the backward scattering configurations, squares and forward
scattering configurations, crosses. Diamonds show the result for the hybrid
backward-forward scattering configuration.
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FIG. 6. Estimated Te and ne error when the wavelength channels #1–#6 are
used.

nals. However, the mixing ratio will be changed from 100:100
in real experiments. For example, decrease in effective prob-
ing energy of the returned pulse due to misalignment of the
return path may cause a systematic error. To estimate the sys-
tematic error, we studied the mixing ratio dependence of it, as
shown in Fig. 7. In the calculation, we used data analysis table
obtained on the assumption that the mixing ratio is 100:100,
and mock TS signal data are generated at some mixing ratio.
As expected, the systematic error becomes minimum at the
ideal case of the mixing ratio of 100:100, and rapidly worse
as the difference between the assumption and real situation
becomes large. This result says that a proper data analysis ta-
ble that takes real probing energy ratio of the incident and
return paths into account should be used in the data analysis.
It is noted that the ratio itself is not a major problem. If the ra-
tio of the effective probing energies is 100:80, using the data
analysis table calculated by using true ratio, 100:80, provides
the best results.
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FIG. 7. Systematic errors in Te and ne obtained from the data analysis table
produced on the assumption that the ratio163: ratio17 = 100:100.
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FIG. 8. In backward scattering configuration, parallel component to the laser
beam of Te is observed whereas vertical component is obtained in forward
scattering configuration.

Finally we note that electron temperatures measured in
the backward and forward scattering configurations is essen-
tially different. Nearly parallel and vertical components of Te

are measured in backward and forward scattering configu-
rations respectively, as shown in Fig. 8. Therefore a hybrid
backward-forward TSS may be useful for not only extending
measurable Te range but also searching anisotropy of Te.

III. SUMMARY

We are planning to extend the measurable Te range of the
LHD TSS by two ways. One is adding one more wavelength
channel that observes shorter wavelength region in polychro-
mators, and the other is applying forward scattering configu-
ration. We estimate the data quality by using mock data when
the two methods are applied. Both of them will provide more
accurate Te data in high-Te region of Te ≥ 10 keV. The Te error
will be reduced from 52% to 10% and 4% at Te = 30 keV by
using the new polychromators and applying the forward scat-
tering configuration respectively. It will be further reduced to
3.5% when both the methods are simultaneously applied.
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