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A novel method to obtain the full neoclassical transport matrix for general toroidal plasmas by using
the solution of the linearized drift kinetic equation with the pitch-angle-scattering collision operator
is shown. In this method, the neoclassical coefficients for both poloidal and toroidal viscosities in
toroidal helical systems can be obtained, and the neoclassical transport coefficients for the radial
particle and heat fluxes and the bootstrap current with the nondiagonal coupling between
unlike-species particles are derived from combining the viscosity-flow relations, the friction-flow
relations, and the parallel momentum balance equations. Since the collisional momentum
conservation is properly retained, the well-known intrinsic ambipolar condition of the neoclassical
particle fluxes in symmetric systems is recovered. Thus, these resultant neoclassical diffusion and
viscosity coefficients are applicable to evaluating accurately how the neoclassical transport in
guasi-symmetric toroidal systems deviates from that in exactly symmetric syster@@0®
American Institute of Physics[DOI: 10.1063/1.151291]7

I. INTRODUCTION sical transport in helical systems often employs numerical
methods->~2The Drift Kinetic Equation Solve(DKES)%2°
Neoclassical transport thediy describes diffusion pro- is one of powerful numerical codes to directly solve the drift
cesses caused by binary Coulomb collisions between chargeghetic equation. However, we should note that, even in such
particles in magnetically confined plasmas. In most fusiomumerical calculations, approximated collision operators
plasma experiments, observed particle and heat fluxes acrosgch as the pitch-angle-scatteririgr Lorent? collision
magnetic surfaces are dominated not by neoclassical tranfrodel are generally used instead of the full Landau collision
port but by turbulent or anomalous transpbeithough the  term?* By using this collision model, perturbed distribution
neoclassical transport theory is still useful for predictingfunctions of unlike species and of different kinetic energies
transport fluxes tangential to magnetic surfaces such as pean be solved independently, and therefore the neoclassical
loidal and toroidal flows and bootstrap currents. Especialltransport coefficients can quickly be calculated. However,
for nonaxisymmetric systems, neoclassical analyses are ingince such simple collision models neglect the field particle
portant because neoclassical transport fluxes due to particlesllision part and break the collisional momentum conserva-
trapped in helical ripplés® are expected to be significantly tion, the resultant transport coefficients neither contain the
large for high temperature and play a key role in determininthondiagonal part connecting fluxes and forces of unlike spe-
the radial electric field under the ambipolar-diffusion cies, nor recover the well-known intrinsic ambipolarity of the
condition? Recently, quasi-symmetric toroidal systems suchyadial particle fluxes in the symmetric linfit3 These errors
as quasi-axisymmetric systems are attracting much attentiofeem to be a serious problem, especially when using the
as an advanced concept of helical devices, in which the negumerical results to show how the neoclassical transport in
classical ripple transport and the neoclassical viscosityjesigned quasi-symmetric configurations differ from that in
against flows in the direction of symmetry are nearly sup-exactly symmetric systems. In the present work, it is shown
pressed by optimizing the helical configuration so as to mak@ow to obtain the neoclassical transport coefficients in gen-
the magnetic field strength independent of a certain symmesyg| toroidal systems including the coupling effects between
try coordinate!®**Thus, there are many demands for accu-ynlike-species particles as well as the collisional momentum
rate and fast calculation of neoclassical quantities includingqnservation.
the particle and heat diffusivities, the bootstrap-current coef- Here, we follow the basic idea of the moment method by
ficients, and the viscosity coefficients for the poloidal andyirshman and Sigmathat, in order to derive the neoclassi-
toroidal flows. o _ cal transport coefficients, the fluid momentum balance equa-
The neoclassical transport coefficients are obtained froons and the friction-flow relations, in which the collisional
solution of the drift kinetic equatiotr:' Because of com- omentum conservation is already taken into account, are
plexity of the magnetic geometry, calculation of the neoclasyseq together with the viscosity-flow relations obtained from
the solution of the drift kinetic equation. Since the test par-
3Electronic mail: sugama@nifs.ac.jp ticle portion of the collision operator dominates over the field

1070-664X/2002/9(11)/4637/17/$19.00 4637 © 2002 American Institute of Physics

Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



4638 Phys. Plasmas, Vol. 9, No. 11, November 2002 H. Sugama and S. Nishimura

particle portion for thé =2 spherical harmonic perturbations pairs of fluxes and forces defined in Sec. Il are related to
of the distribution function$,it is more accurate to use the each other by the Onsager-symmetric matritéghe poloi-
solution of the drift kinetic equation with the pitch-angle- dal and toroidal viscosity coefficients are included as ele-
scattering collision model for derivation of the neoclassicalments in one of the matrices. We find how to calculate these
viscosity coefficients than for direct calculation of the neo-matrices by using their relations to the monoenergetic diffu-
classical particle and thermal diffusivities, which are signifi- sion tensor obtained as an output of commonly used numeri-
cantly influenced by neglect of the field particle portion. In cal codes such as the DKES. Once these Onsager-symmetric
tokamaks, the neoclassical toroidal viscosity vanishes due tamatrices are derived, all neoclassical transport coefficients
the axisymmetry, and analytical expressions of the viscosityfor the radial particle and heat fluxes and the bootstrap cur-
flow relations are obtained for any collisionality in the rent are immediately obtained. In Sec. IV, numerical ex-
Pfirsch—Schlter, plateau, and banana regirﬁés@\nalytical amples of these procedures are shown and compared with
calculations of the the parallel viscosity coefficient in finite- several analytical predictions. Conclusions are given in Sec.
aspect-ratio tokamaks are shown to be in good agreemeit For readers’ convenience, useful formulas and relations
with numerical result8>2® In general toroidal systems with for the Boozet® and Hamad¥ coordinates, the poloidal and
no symmetry, we need to calculate viscosities in both poloitoroidal viscosity coefficients, and other neoclassical trans-
dal and toroidal directions, and these viscosity coefficientgort coefficients are written in Appendices A, B, and C, re-
are analytically derived for the Pfirsch—Sdleluand plateau spectively. Also, the case of symmetric systems is described
regimes?’?8 However, for the banana regime, analytical for- in Appendix D. Finally, Appendix E shows how to treat ef-
mulas are given only for the parallel viscositis 3t In  fects of theEX B drift on the neoclassical transport coeffi-
order to accurately calculate both poloidal and toroidal vis-cients.
cosity coefficients in toroidal helical systems for low-
collisionality regimes, we need to make use of numerical!- CONJUGATE PAIRS OF NEOCLASSICAL FLUXES
solution of the drift kinetic solution as effectively as pos- AND FORCES
sible, and the present paper shows how to do that. In general toroidal configurations, the magnetic field is
Taguchi also showed another method to calculate thevritten in terms of the flux coordinates,@,{) as
neoc]assmal transport.coeff_lments in nonaxisymmetric multi- B= /' VXV 0+ ' VX Vs=B.Vs+B,V 0+ B,V¢,
species plasma¥.He ingeniously used a momentum con- ¢ 1)
serving collision operator and its self-adjoint property to de-
rive the particle and heat diffusivities and the bootstrapwhere 6 and { represent the poloidal and toroidal angles,
current coefficient. In addition to these transport coefficientsfespectively,s is an arbitrary label of a flux surface. The
our method gives a useful recipe to obtain the neoclassicdioloidal and toroidal fluxes are given by 7Z(s)
viscosity coefficients, which play an important role in deter-=(27) "*[y(d°xB-V# and 2my(s)=(2m) *[y(d’xB
mining plasma rotation profiles. Since our work follows a - V¢, respectively, wher¥(s) is the volume enclosed by the
line of the moment method, it is more transparenﬂy Con_ﬂUX surface with the labed. The derivative with reSpeCtE)
nected or applicable to past theoretical studies of neoclassicil denoted by =d/ds so thaty’ =dy/ds and x'=dx/ds.
transport in nonaxisymmetric SySte?ﬁé_Sl’g?\NhiCh are also The covariant radial, pOlOidal, and toroidal Components
based on the moment method. Furthermore, in the preseff the magnetic fieldB are written asBs=B-dx/ds
study, the validity of our procedures is satisfactorily verified= V9B (V6xV{), B,=B-dx/d6=\gB-(V{xVs), and
by numerical examples, in which our results are compare®,=B-dx/d{=\[gB-(Vsx V@),  respectively,  where
with analytical formulas on the parallel viscosity, the ripple Va=[Vs- (VX V{)]~* represents the Jacobian for the co-
transport coefficient, and the geometrical factor of the bootordinates §,6,{). Here, we may regards(6,{) as either
strap current in various collision frequency regimes. In thisBoozer;® Hamada’ coordinates, or arbitrary other flux coor-
sense, our work is a generalization of previous comparativéinates. Useful formulas for the Boozer and Hamada coordi-
studies between numerical and analytical evaluations of nedtates are written in Appendix A, where it is also shown that
classical coefficients of viscosities and other fluxes inthe symmetry condition for the magnetic field strength in the

tokamaké>%to the case of nonaxisymmetric systems. Boozer coordinates is equivalent to that in the Hamada co-
The rest of this work is organized as follows. In Sec. I, ordinates. _ _ o
we derive the linearized drift kinetic equation for the distri- ~ The distribution function for the particle speciaswith

bution functions withl=1 spherical harmonic part sub- the massm, and the charge, is written as
tracted, based on which two types of conjugate pairs of neo- . e, fl dl oE B2 oE
+ T.) BI|B5 @( i

classical fluxes and forces are specified. When we take the f,=f,y
parallel flows and the radial gradients as thermodynamic

forces, the parallel viscosities and the radial transport argvhere the local Maxwellian distribution function is repre-
regarded as fluxes conjugate to those forces. We can alsented by faMEw*S’ZnavT‘; exp(—xg) with the equili-
consider the poloidal and toroidal viscosities to be fluxesbrium densityn,, the temperatur@,, the thermal velocity
conjugate to the poloidal and toroidal flows as forces. Thet,=(2T,/m,)*? and the normalized velocity,=v/vt,.
inner product of these fluxes and forces represents the eidere, E;=E-b (b=B/B: the unit vector tangential to
tropy production rate associated with the neoclassical tranghe magnetic field is the parallel electric field/'dl de-
port processe$3*In Sec. Ill, it is shown that the conjugate notes the integral along the magnetic field line, and

+fa1 ’ (2)
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(y=$dogd\g- V' with V'=¢ded\g represents the =2. Integrating Eq(3) multiplied by 1 andim,v? over the

flux surface average. The neoclassical transport is caused locity space, we obtain the incompressibility conditions

the deviationf ,; from the local Maxwellian. We should note V-u,=V-q,=0, (8)

that the drift kinetic theory is concerned with the gyrophaseWhereu —ubtu . and bt with the diamag-

averaged part of the distribution function and tlgt is re- a “la- -la Ga=AiaD" A1 a g
netic perpendicular flows

garded as a gyrophase-averaged function in the present work

The linearized drift kinetic equation is given b 1
i iz ift kinetic equation is giv y U .= ea; Vsxb.
VHfal_C;(fal):_Vda'VfaM+ eaUHB<BEH> faMa (3) dra S) Cxaz
(B9 —2=__—2"Vsxb. 9)
N _ p. 2 e,B
where the operatoV,=vb-V and the guiding center drift Here, the thermodynamic forcé&, andX,, are defined by
velocity Vg.=(c/e,B)bX (mw?b-Vb+ uVB+e,VP) are X o T
used, and ,; andf,), are regarded as functions of the phase- Xog=—— % _ eaa—, 2= — E (10)
space variables x(E,u) (x: the particle’s position, E Ny ds Js Js

=Imuw?+e,®: The particle’s energyu=m,v, 2/2B: the respectively, where the pressysg=n,T,, the temperature
magnetic momeit Here, the linearized collision opera®f,  T,, and the electrostatic potentidi are flux surface func-

is defined by tions independent of and{. (Exactly speakingV-q,=0 is
valid to the lowest order of the small mass ratig./m;
CL(fa)=> [Can(far.fom)+ Can(fam o)1, (4  <1.) Integrating the incompressibility conditions in H&)
b gives the local parallel flows as
whereC,, represents the Landau collision operator for col- :<Uua5> CXa1~
lisions between the speciesandb. la™ (B?) e,
Hereafter, we usex(v,§) (é=v,/v) as the phase-space
: : e : 2 2 (0aB) _  CXapo
variables instead ofx(E,u). Then, the collisionless orbit 5_QHa:5_T + , (11
operatorV, is represented by pj Pa (B%) €a
1 5 whereU is given as a solution of
VH=v§b-V—Ev(l—gz)(b-VInB)a—g, (5) U 1 ~
B~V(— =Bsz~V(¥), (BU)=0. (12

where the second term in the right-hand side is related to the
magnetic mirror force. Th&X B and magnetic drifts are not As shown later in Eq(20), U is associated with the Pfirsch—

included inV, . A more general case including tBe<B drift ~ Schiiter fluxes and its specific expressions are written in
operator is treated in Appendix E. Let us consider the expanEqgs.(A4) and (A8).

sion of an arbitrary functiofr (x,v,&) by the Legendre poly- Now, let us defineg, by
nomialsP Po(£)=1P1(&)=¢,Py(¢)=3¢2—3,...] as _
(&) [Po(§)=1P1(§)=£Po(§)=3—1,..] N 13
F(x,v,8)=2>, FO(x,0,8) The neoclassical viscosities which we are concerned with are
=0 derived from thd =2 component included ig,. Substitut-

oIl (1 ing Eq. (13) into Eq. (3), we obtain
F(')(x,v,§)=P|(§)TJflanu(n)F(x,v,n). (6) V,ga—CL(ga) =HI"D+H(=2), (14)

where thel=1 andl=2 Legendre component terms in the

= (1=1) istributi
The [=1 Legendre componenty; ~ of the distribution right-hand side are written as

function f 4, is associated with the parallel flows and is ex-

panded by the Laguerre polynomial$®*?(x2) [LF2(x2) (BE))
— 1L =5—x2,.. ] as A0 2 H{=D= —v”B <Bzg famt C5(F4 D) (15)
(| 1) and
_(U”/U d UH/U)(U”/U)fal
HO= 2)_fam <uHaB>+i<QHaB> 2 O
Ta 792 (B%) "Bp, (BY) |70 2
=—&Xg| Uja | Xa— ) 2y amt 8172,
UTa ae a 5 Pa 5
(7) + oxa) Xa1+Xa2 Xa_z
where the coefficients of the first and second Laguerre poly- faM V' apa 5
nomial components are given in terms of the parallel velocity <Ua>+ <qa> X 5
T 47 2
Ua=n, fd% falv” and the parallel heat flowq,
=T.Jd% fau,(x2—%), respectively, and{;"*=2) denotes +_ (b + < o x2— 16
the sum of thegth Laguerre polynomial components with ' a Ya 2/
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respectively. In deriving Eq$14)—(16), Eq.(11) is used and

f(=11=2) in Eq. (7) is neglected by employing the thirteen-

moment(13M) approximatiort By including the high-order
parallel flow variables corresponding to the2,3,... La-
guerre polynomial components dt; ), the formulation

presented in this work can be extended straightforwardly to

the cases with the higher-order(21M, 29M,..)
approximations. In Eq. (16), u?=u,-V 6 (ui=u,-V¢) and
a9=0,-V6 (q5=0q,-V¢) are contravariant poloidaltoroi-
dal) components of the flows, an€l,,, oxa, 0pa, andor,
are defined by

Tua=—Muw?P,(£§)B-VINB=—V,(mwéB),
5 B[~ VsXb
Oxa=—V P2(§)Q— Ub+ -VIinB
a
b-V(BU)
:_Uzpz(f)Ta,

pa= — My 2P,(£)Bp-VInB, (17
Tra= —Mu?P,(£)Br-V InB,

respectively, wher®p=x'V{ X Vs andBr=¢'VsX Ve,

are the poloidal and toroidal magnetic fields, respectively,

represented by the Hamada coordinate9,( ,{y) (the sub-

script H is added to the angle variables whenever the Ha-

mada coordinates should be usadd(),=¢e,B/(m,c) is the

gyrofrequency. Then, we find that the parallel, poloidal, and

toroidal neoclassical viscosities are written in termsrgf,,
Opa, ando7, as

<B-(V-ﬂa)>=<fd3vga%a>,

<B'(V'®a)>:<fdsvgaUUa(Xg_g)>,

<BP (V- 77a)>: dsvgaO'Pa>r

|
0.) =< K vgaapa(xz— §)>

(Bp- (V- (18)
(Bt (V-1m,))= fd vgaO'Ta>,
<BT'(V'®a)>:< f davga‘TTa( Xezx_ g) > )
where =[d® vma(v” 2)fu(bb—%) and O,
—fd3vma(vH 202)(x2—3)f.1(bb—31). We also note that

H. Sugama and S. Nishimura

c - q c -~
ngz_e_a<UFHal>a T_Z:_e_a<UFHa2>, (20
respectively, with the parallel friction forces
F\Ialzf d*omau Ch(fan),
3 2 2| AL
Flaz= | d®vmgy Xa= 5 Ca(far). (21
As shown in Refs. 29 and 33,/d%vgaoxa)=Ta—TH"

=I'2" and To(f d® gaoxa(X5—5/2))=0da— 05 =03 can be
written as the sum of banana-plateau and nonaxisymmetric
parts. Multiplying Eq.(14) by g,/f,u, integrating it in the
velocity space, taking its flux surface average, and using Egs.
(16), (18), and (19, we can express the flux-surface-
averaged entropy production rété* S, associated withy,

per unit volume by the inner product of conjugate pairs of
fluxes and forces as

S,=-T <fd3v—c ga)>

(UjaB) 2
_<B (V- 11'a)> <BZ> +<B (V- ®a)>

(9,aB)

Qa
By "

Ta

v [ . (ug)
=2.-2|(Bp- (V- ) 7

<qa>

FTE™ 1+ — Xao

!

<a>

+<BP (V- ®a)> <BT (V- 77a)>

2 <qa>
5pa ¥

We find from Eq.(22) that the parallel viscositieéB- (V
-11)) and(B- (V- 0,)) are transport fluxes conjugate to the
parallel flows (u,,B)/(B?) and (2/%,)(q,.B)/(B?) as
forces, respectively, and that the radial neoclassical fluxes
1“2” and qg”/Ta are conjugate to the radial gradient forces
Xa1 and X,,, respectively. Also, as another choice, the po-
loidal viscositieg[(Bp- (V- 7,)),(Bp- (V-0,))] and the to-
roidal viscosities[(Br- (V- ,)),(Bt-(V-0,))] can be re-

(B (V- 0,)) g (22)

the neoclassical radial particle and heat fluxes are written ”garded as transport fluxes conjugate to the poloidal flows

terms ofoy, as

Fa:<J'dgvgavda'vs>:<fdgvgaUXa>+F§S,
q 5
P [ ovosveli 3|
5 q
=<jd309a0'><a(xz 2)>+T_aa

whereI'® and q}® are the Pfirsch—Schier (PS radial par-
ticle and heat fluxes defined by

(19

[(ua)/x (2/5pa)<qa)/)( 1 and the toroidal flows
[(U ', (2150,)(aé)/ '], respectively. Now, our main
concern is how to obtain the transport matrices which con-
nect these conjugate pairs of fluxes and forces. This is ex-
plained in the next section.

Here, we consider thée=1 Legendre component term
H{=Y  which also makes a significant contribution to the
solution g, of Eq. (14) especially in the weakly collisional
regime in order to insuréf}gadgzo. Substituting Eq(7)
into Eq. (15) and using Eq(ll ) and the rotational symmetry
of the collision operatoC;, we can writeH{=% in the
following form:
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m,avd _ where(-) denotes the flux surface average. With respect to
T vé(BagtUy,), (23)  this inner product, the operatows andC™* are found to be
a antisymmetric and symmetric, respectively,

Hg=1):faM

wherea, and y, are functions of §,v) and are independent

of (6,£,£). We find in the next section that, is written in (V,F,G)=—(F,V,G), (CEASF,G)Z(F,CEASG).
terms of the parallel flows and the radial gradient forces and (30)
that y, is unnecessary for calculation of neoclassical trans-

port coefficients. Then, substituting Eq(26) into the relation ¢ £B,C7%g,)

=0, which is derived from the definition af, in Eq. (13),
we can represent, by a linear combination of the parallel

IIl. RESPONSE FUNCTIONS AND TRANSPORT flows and the radial gradient forces as
COEFFICIENTS

1
Hereafter, as an approximation of the linearized collision  a,=- Y (o0ya Gua)
operator in Eq(14), we use the pitch-angle-scattering opera- §MaTavpX3(B) = (0ya,Gua)
tor defined b
/ (ueB) 2 (@) (o SV
CPAS_ V% 9 L ) 9 ” <BZ> 5pa <BZ> a 9 Ua“Xa
a —70—5( 13 7E (24 .
2__
with the energy-dependent collision frequenéy given by’ X[Xal+xa2 *a 2) H (39
3Wr ., - . . : .
VgEE TTablxa SH(Xb), (25) Substituting again Eq.31) into Eq. (26), g, is rewritten as
b
where (3/m/4)rt=4mn.e2eZIn A(mév3,) (INA: The _fam G (UaB) 2 (qaB)( , 5
Coulomb  logarithm  and  H(x)=[(2x?—1)d(x) 9a= T. 7Y% (B? ' 5p, (B? XaT 3
+x®'(x)]/(2x%) [@(x)=27 Y2[§ exp(—tAdt The error c |
function]. The use of(?iAS in Eq. (14) is considered to Gyl Xag - Xeo| X2~ —)}meafé)’af Ddl},
be a better approximation than that in E8). from the view- 2
point of the momentum conservation because generally (32)

we have [d3umuu C5(fa)# fd3mu CP(f,,) but

I= 1=
JdPumao Ch(far— Y 1.)):0:fd3v ma_UnCZAS(fal_f(al D). where Gy, and Gy, represent the responses of the distribu-
Then, the formal solution (_)f Ec{_14) with the source terms  tion function 0. to the parallel flow(u,,B)/(B%) and the
given by Eqs(16) and(23) is written as radial gradient forcé&,,, respectively, which are defined by

_fam G <uHaB>+i<qHaB> 2 .
ga Ta va <Bz> 5pa <BZ> @ 2 gU = 1_—3(0'Ua162Ua)
. é 2m, T v3x5(B?)
+ Gyl Xa1+Xaz| X5~ E”Jfaa(GUa“L mav éB) 3(0ya,Gua)
X + B
I Gua 2maTaV%Xg Bz> Mav ¢8|,
"‘maV%?’aJ udl |, (26)
. . Gyo= Gyt 3(oyaGxa) _ 3(0ya,Gua) |~
whereG, andGy, are defined as solutions of Xa™ PXa 2m, T, r3x%(B?) 2m,T,r3x2(B2)
(V;—C9 Cual_| 7va : (27 X(GyatmaéB). (33
Gxa Oxa
In deriving Eq.(26), we have also used the relation Using Eq.(30) and the definitions ob’s, G's, andd's, we
PA can prove the following relations:
(V= C9)(Gyat maw B) =m, 13 éB. (28)
We can easily find that the last term including in the (0ua,Gxa)=(0xa:Gua)s  (0ua:9xa) = (0xa,Gua),
right-hand side of Eq(26), which is independent of, makes (34
no contribution to flows, viscosities, and radial transport
fluxes. which are associated with the Onsager symmi&tryj of the
Here, we define the inner produdE G) for arbitrary  transport coefficients.
functionsF(6,Z,&) andG(6,Z,€) by Substituting Eq(32) into Egs.(18) and(19), we obtain
. the linear relations between the conjugate pairs of
(F.G)=1} j d&(FG), (29 [(B-(V-m)),(B:(V-04)),3",0a"Ta] and [(u;oB)/(B?),
-1 (2/5pa)<QHaB>/<B >1Xalixa2] as
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(B-(V-m,)) Ma:r Maz Naz Na
<B'(V'®a)> Ma2 Ma3 Na2 Na3

bn =
g;a Nal Na2 I—al La2
Ya /Ta Na2 Na3 La2 La3

(u;aB)/(B?)

2 2
5_pa<qHaB>/<B )

Xa1
Xaz

(39

Here, the coefficientdl,;, N,j, andL,; (j=1,2,3) in the

H. Sugama and S. Nishimura

<BP'(V'77a)> Maipp Mazpp Maipr Mazpr
(Bp-(V-0,) | Mazpp Mazpp Mazpr Magpr
(Br-(V-m)) | | Magpr Magpr Magrr Mgprr
(Br-(V-0a)) Mazpt Magpr Maorr Magrr

(up!x’

N

5_pa<qa>/)(

| whry 9
2 N
5_pa<qa>/w

Here, the Onsager-symmetric polbidal and toroidal viscosity

Onsager-symmetric matrix are written in the form of the en-coefficientsM,jpp, M,jpr, andMyrr (j=1,2,3) are also

ergy integral

5\i-1
=

2 (= B
[Maj ,Naj al—aj]:na\/_; fO dK\/Re K( 2

X[Ma(K),Na(K),La(K) 1], (36)

whereM ,(K), N,(K), andL 4(K) represent contributions of
monoenergetic particles withk=x2=m,v?/2T, to M,
N1, and L., respectively, which are given by the inner
products of the source termss and the response functions
g's as

1
M a(K) = T_(U'Uanga)

1 3(0Ua1GUa) o
= — 1_
Ta(o'Ua,GUa) ZmaTay%(K)K<Bz> y
1
Na(K)= T—(O'Xa,gua)
a
1 3(oya ,Gua) o
= — 1_
Ta(g'Xa,GUa) 2maTaV%(K)K<BZ> ’

(37

1
La(K)= T_(U'Xa!gXa)
a

3(0xa:Gua)®
2m,T2v3(K)K(B?)

= T_a(a'Xa1GXa)+

3(oya,Gua) -t

>< —
1 2m, T3 (K)K(B?)

In the same way, we obtain the linear relations betwee

the conjugate pairs of (Bp- (V- ,)),(Bp-(V-0,)),(Br
(V-12)),(Br-(V-©,))]  and  [(ug)lx',(2/5pa) (a2)/
X' (U (2/5p,) (A ¢ ,] as

written in the form of the energy integral

5\i-1
=

2 o0
— / -K
[MajPPyMajPTiMajTT]_na\/;fodK Ke ( 2

X [Mapp(K),Mapi(K),Mar(K)],

(39
where M ,pp(K), M, p1(K), and M+1(K) represent contri-
butions of monoenergetic particles M,jpp, M,jpr, and
Mgr7, respectively, which are given in terms bf,(K),
N,(K), andL4(K) as shown by Eq(B5) in Appendix B.

Now, we need the solutionS,, andGy, of Eq. (27) in
order to obtain the monoenergetic coefficients
[M,(K),Na(K),L,(K)] in Eg. (37). Since, in the DKEE"?°
and other numerical codes for the neoclassical transport co-
efficients, the drift kinetic equation to be solved is not Eq.
(14) but Eq.(3) with the pitch-angle-scattering operator, they
appear at first to be irrelevant to calculation of the
(Gua:Gxa) and[M,(K),N4(K),L,(K)]. However, in fact,
these codes can be made use of to obtain them as shown in
the following.

When solving Eq(3) by the DKES, the right-hand side
of Eq. (3) are written as a linear combinations of the source

termso; andoj defined by°
2

s v e olbxvyme.v

o= 30, > 2(6) nb-Vvs,
U2 B

3 =—5Py(&)B-VInB=V,| Zvé], (40)
vh Vb

which are associated with the radial particle flux and the
bootstrap current, respectively. Here, it is noted that, since
we have neglected:- Vf,, (ve=cEXB/B?) in Eq. (3), o5
defined in Eq.(40) corresponds tary (Es=0) in Rij and
Hirshman? This definition ofo; based on Ref. 20 differs
from that in Ref. 19 in that the former excludes the Spitzer
flow part from the total parallel flow. Effects ofg- V{4
such as nonlineakc-dependences of the neoclassical trans-
port can be included by the procedures described in Appen-
dix E. It is useful to find thato, and G, are directly
related tooy and (F3 +F3), respectively, by

i a _+
Oya™ ~Muvpos ,

Gua=—marp(F3 +F3), (41
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and thatoy, and Gy, are written in terms ofr; and F;
+F7), respectively, as

. (B
Oxa=—01 V) Q—ava ,

a

vpB (1.
0. fUdl.

Here, F;+F;) and (F;+F;) represent the response
functions associated with the source terms and o3 for
the case oE,=0 in Rij and Hirshmarf’ where the super-

B
Gxa=—(Fi +F;)— q-véU+ (42)
a
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and plateau regimes, the terB%2»3/302)(U?) of L,(K)
in Eq. (43), which corresponds to the Pfirsch—SdRhuflux
part, is negligibly small.

Now, we have found that numerical solvers such as the
DKES can be utilized to calculate the -coefficients
[M,(K),Na(K),La(K)] by wusing Eqg. (43. Once
[Ma(K),N,(K),L,(K)] are given, the monoenergetic poloi-
dal and toroidal viscosity coefficients| M, pp(K),
M,p1(K),M,11(K)] are immediately derived from E¢B5)
in Appendix B, and the energy-integrated coefficients

scripts+ and — denote the even and odd parts with respecfMajsNaj;Laj) and Majpp,Majpr,Majrr) are obtained by

to ¢ respectively. Then, substituting Ed4.1) and (42) into
Eq. (37), we have

3maVS(K)D33(K)}l

m3

a 3m,r3(K)Dgy(K)] t
Na<K)=T—avs<K>Dm(K>{1— 2]}1['):K<823)3( } 43
1 2028
La(K):T_a(Dn(K)_ 392 U2>
3myrp(K)[D13(K)]?
2T, K(B?)
3mr3(K)Dgg(K)| 7t
~ 2T.K(B? :
where

1
Dijk(K)= %f_ldﬂ(ff':f) (1,k=1,3), (44)

Egs. (36) and (39), respectively. Then, all the neoclassical
transport coefficients for radial fluxes and parallel currents
can be calculated fromM,;,N,;,L,j) as shown in Appen-
dix C. It should be noted that the parallel momentum balance
equations and the friction-flow relations with collisional mo-
mentum conservation are used to derive the neoclassical
transport coefficients in Appendix C. Therefore, these coef-
ficients include the coupling effects between unlike-species
particles as well as they recover the intrinsic ambipolarity of
the radial particle fluxes in the symmetric limit. These prop-
erties are not obtained by only solving the drift kinetic equa-
tion (3) without the field particle collision term
Cab(fam,fp1). For the symmetric casé) 5(K), N,(K), and
L.(K) are proportionally related to each other as shown by
Eq. (D4) in Appendix D.

In the Pfirsch—Schher regime,[v3(K)>uvra/K/Le,
(L.: The characteristic length of magnetic ripples along the
field line)], the plateau regime v aVK/L > 13(K)
> (6B/B)¥%1,VK/L,, (8B: The field strength variation in
the magnetic rippleg, and the banana regimgvj(K)

represent the transport coefficients for monoenergetic par<(B/B)*%1,/K/L.], the monoenergetic coefficients

ticles which can be obtained as an output of the DRE®r

M,(K) and N4(K) associated with the parallel viscosities

the case oE¢=0). For collision frequencies in the banana can analytically be given By

)
2
=M2,7o((B-V INB)A)K[ 7,,v3(K)] 2

(Pfirsch—Schiter)

5
1
Ma(K)= —wmavTa<BZ>1’2(4w2/V'>( > Ian|2|mx’—n¢’|)K3’2 (plateay
4 (m,n)%(0,0)
2
3Ma7aa (fe/fe)(B2K[7aarB(K)]  (banana
\
(2
§<(B' VInB)?)[v3(K)/v] ! (Pfirsch—Schiter
1
=Mau7aK*?X ZW<BZ>1’2(47T2/V’)( > Iﬁmnlzlmx’—ndf’l) (plateay (45)
(m,n) #(0,0)
2
‘§<ft/fc><82>[v%<K>/v] (banana
and
G(BS)
- (46)

Na(K)=— WMa(K),
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respectively. HereGgBS) is a flux-surface function, which represents the geometrical factor associated with the bootstrap
current?9-31:3339see the paragraph after E49)], and is determined by the magnetic configuratiotr'&s

BS)
GPY

@AmNV'Y(B-V InB)2)~ 1 [BPE**(aIn B/36y) (B-V InB)) —B{P***Y (9 In B/9¢y)(B-V InB))]  (Pfirsch—Schilter)

_ -1 (47)

g Bl MY =nw |2 B A(MEBEP - nBE) (my —ny ) [my’ —ny| - (plateau)

and the analytical expression @th5> for the banana regime
is given in Refs. 5 and 29-31. When we evalua{g® for

. < Ty al Ma2
(B-(V >>} (8- { }

. B- (V-0
the Pfirsch—Schier regime given by Eq47), Eq. (All) is (B-( V) Maz Mas
-1
useful. In Eq. (45), fi=1—f, and f.=¥B?) Emag\ \/ (UiaB)
((1—\B)*?)) represent the fractions of trapped and circulat- || 2 5 —GgBS)e— Xal . (49
ing particles, respectively, and%(K) for the Pfirsch— 5pa<q”a ) al Ma2

[ H H H a__ a a__
Sch[ugf regime is given by i=3vj+vg=(3Vn/ As shown by substituting Eq49) into the parallel momen-
4)Zp7ap [{P (%) ~ 3G (o)} x§+4(Ta/'2I'b)(l+mﬂlrna)G(xb)/ Xal " tum balance equatiorfsee Eq.(C1) in Appendix J, G
with G(X)E[q)(x)_xq),(x)]/_(zx ). 'Ijh'us, in order to cor- represents the geometrical factor which enters the coeffi-
rectly reproduce the viscosity coefficients for the Pfirsch—

) ) T ) cients relating the parallel flows to the thermodynamic
Schiiter regime, we should replacg with v/3 when using  ¢,ces Also, it is directly confirmed from Eq$46), (C5),
the pitch-angle-scattering operator in E84) for that colli- (C8) and (C11)—(C13) that the geometrical facta®®® ap-
sional region. In Eqs(45) and (47), Bmn for the plateau 4

. h Hic i th ' ! ) pears in the neoclassical transport coefficients for the boot-
regime are the coefficients in the Fourier expansiolo strap current as well as in the nondiagonal coefficients con-

necting the electrons’ fluxeforces with the ions’ forces
(fluxes. For symmetric systems described in Appendix D,
the geometrical facto®> defined by Eq(46) is indepen-
B=By/ 1+ >  Bmiexdi(mé—no1l, (48) dent of the collision frequendysee Eq(D5)] and, therefgge
(m,n)#(0,0) Eq. (49 is always satisfied. For exampIeG )
B(B°°Zer)lx in the axisymmetric case. However, for non-
axisymmetric systems, E9) is not generally validexcept
for the limiting collision frequency regimgsand therefore,
where we should note that the existence of the plateau rehe two independent 22 matrices[M,;] and [Ng;] ob-
gime required 8,7/ <1 and that it does not make a signifi- tained from the energy integral in E¢6) should be used
cant difference which of the flux-coordinate systerag({) instead for relating the parallel viscosities to the parallel
is used to calculates,,, for the plateau regime. If all the flows and to the radial gradient forces.
particles in the velocity space are dominantly contained in  We can analytically express the monoenergetic coeffi-
either of the Pfirsch—Schier, plateau, and banana regimes,cient L,(K) for the Pfirsch—Schler and plateau regimes
we obtain from Eqs(35), (36), and(46), as®

(4m?IV)X(B-VInB)?) X[BE**YaInB/agy) —BF***NaInB/azy)1?)  (Pfirsch—Schiter)

L ( K) CZM a( K) -1
= ! ! ! !
S el(B?)? > | Bmdl’lmx —ny| | B (mBE—nBECN) 2/ my’ —ny'|  (plateay
(m,n)#(0,0) (m,n)#(0,0)
e 2(4mIV)2(B)X[BE** Y In B/ agy) BTN In B/ o) P)vi(K)/v] ™t (Pfirsch—Schilten)
__a 3/2
- 2 Ut K - ’ ’ ' !
ey a %77< BZ> 3/2(471_2/\/ )(m n)E#(O ) |,8mn|2(m B(gBoozer)_ n B(ﬁBoozer)) 2/| my’ — n¢ | (plateal)

(50
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which shows that, for these regimds,(K) has the same IV. NUMERICAL EXAMPLES

dependence on the collision frequency and the energy as , , .
M (K). Here, in order to illustrate the validity of the procedures

It is well-known that, for nonsymmetric systems, the described in the previous sections, we present numerical re-

centers of trapped-particle orbits move across magnetic supults for the simple nonsymmetric system, in which the mag-
faces and cause the neoclassical ripple transport in th@€tic field strength is given by

weakly collisional sub-regiméso-called 1 regime.>~8 The

bounce-averaged part of the distribution functi¢fy,), B=Bo(s)[1~ €(s)costg— ex(s)cogl Gg—n{p)]. (53)
=(¢$f,.dl/v))/($dl/v;) makes no contribution to the paral-

lel viscositieS*® and consequently td,(K) and N,(K), The mean minor radius of the flux surface is used for the
while it contributes dominantly to the radial particle and heatradial coordinates. For simplicity, we consider a single flux
fluxes and toL,(K) in the 14 regime. Using the analytical surface of a large-aspect-ratio torus with the minor radius
solution of the bounce-averaged drift kinetic equation by=0.4 m and the major radiuR=4 m. Then, parameters

Shaing and Hokird,we obtainL ,(K)[ = 1/+3(K)] as used for numerical calculations are determineBgs 1 T,
€&=0.1, 0O<e,<0.1, ¢'=04Tm, x'=015Tm (q
m.c |2 K2 =4/ Ix' =2.6667), B{°%0=4 T.m, B{P***"=0 T-m (no
La(K)= —(_, V3 Taa———— G net toroidal current | =2, andn= 10 (corresponding to the
427%T, \ €atp Taa?p(K) Large Helical Devic®). Using these parameters and Eq.
L me? (1) (53), we can c(g!)t(:)g!gt(eB?}Z éloqzrezr/ € SZd 0sf57d{gB~?) and
_ o g K2 a V'=47%(y'BY +x'BE?Y)(B?),  Hereafter, sub-
2vam? € 0 () vp(K)/v] scripts representing particle species are omitted.
The monoenergetic diffusion coefficients

(for the 1 regime, (51)  [D11(K),D15(K),D35(K)] are obtained by using the DKES.
Figure 1 showsD3}=D,(K)/[v1(Bv/Q)?K¥?], D3,
where G{*) represents the geometrical factor for the neo-=D 15(K)/[ 2v1(Bv1/Q)K], and DX=Da(K)/(3v1K"?

classical ripple transport defined by as a function ofvp/v for €,=0, 0.005, 0.01, 0.02,
0.05, and 0.1. Substituting these monoenergetic diffusion co-

) 27 a1 der\? der\ [ dey)? efficients into Eq.(43) and using Eq.(B5) give other

Ga :fo do €3G, Er T monoenergetic  coefficients [M(K),N(K),L(K)] and

[Mpp(K),Mp1(K),Mt(K)], which are illustrated in Figs.

aGH 2 —9.
3 ' igure 2 showsvi* = mut as a function o
+Gs| - (52) Figure 2 showsV* = M (K)/(muK%?) as a function of

vplv. Here,M* is written in terms ofD}; as
with G, =16/9, G,=16/15, andG;=0.684 for the magnetic

field strength B=Bg[1+ e1(s,0) + ey(s, 8) cos(6 M* = (vp/v)°D3, 54
—n)] (Jer]<1)ey|<1). Here, the safety factoq(s) o $(vp lv)DEJ(B2) (54
=y'lx’ is assumed to satisfyq(s)>1. For this case, the 3

1/v regime is defined by 6),<vj(K)/ey<epvral(RIN), | Fig. 2, dotted curves with open circles and solid lines

whereR denotes the major radius of the torus gm, rep-  represenM* obtained from numerical results Bf%, in Fig.
resents the bounce-averaged poloidal angular velocity of het and from the analytical formulas in EG45), respectively.
lically trapped particles[Note that, in the present study us- When the formula for the Pfirsch—Sctéu regime given by

ing Eq. (3) as the basic equation, we do not treat the case ofq. (45) is used in Fig. 2y is replaced with 3 . However,
cEr/(rBo)~<b)b> v3(K)/ey (r: the minor radius of the as mentioned after Eq47), the correct functional form of
torus]. In the 1k regime, M (= v8) and Ny(=v]) make  v(K) should be taken into account when we calculate the
little contribution to the radial transport fluxes so that Eq.energy-integrated viscosity coefficients. We can see an excel-
(35) gives =L, Xa1+LapXa, and q¥T,=LaX.  lent agreement between the numerical and analytical results
+L43X42, in which dependence oX,; andX,, with b#a  except for transition regions between the banana, plateau,
are negligible. This fact justifies conventional calculations ofand  Pfirsch—Schter regimes. A simple rational
the neoclassical ripple transport using the pitch-angleapproximatiorf, which smoothly connects the three analyti-
scattering collision mod€t® in which the collisional mo- cal expressions, would be useful for this case.

mentum conservation and the nondiagonal coupling between  Figure 3 showd.* =L (K)/[ 2(v1/T)(Bv1/Q)?K%?] as
unlike-species particles are not taken into account. Howevep function of vp /v. Here,L* is given in terms oD%, and

in general, we should use all elemeMsg;, N,;, andL; in D*, by
Eqg. (35) to calculate the total neoclassical transport fluxes,
especially when the magnitude of the banana-plateau trans-

3 *\2 2
port induced by the parallel viscosity is comparable to or L*=D%— 2(vp/v)(Ud)+ 2(vo/v)(D1)7/(B7) .
larger than that of the ripple transport as is the case in quasi- 1— 3(vp/v)D%J(B?)
symmetric system¥12 (55)
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FIG. 1. D3=Dy(K)/[5vr(Bur/Q)°K%] (a), Di=Diy(K)/
[3v:(Bur/Q)K] (b), and D%=Da(K)/(30-KY? (o) as a function of

H. Sugama and S. Nishimura

=== numerical

analytical

v/v (m")

FIG. 2. M*=M(K)/(mvK*? as a function ofvp /v for e,=0, 0.005,
0.01, 0.02, 0.05, and 0.1. Dotted curves with open circles and solid lines
represenM* obtained from numerical results Bf; in Fig. 1 and from the
analytical formulas in Eq(45), respectively.

In the same way as in Fig. 2, dotted curves with open circles
and solid lines in Fig. 3 represeht obtained from numeri-
cal results ofDY;, Di3, and D%; in Fig. 1 and from the
analytical formulas in Egs(50) and (51), respectively. We
see that, in the Z/regime withe,=0.005 and 0.01, numeri-
cally obtained_* are significantly smaller than the analytical
predictions. This is because, for such sn&gls, the fraction

of helically trapped particles are overestimated by the ana-
lytical formula in Eq.(51), where the lowest-order guiding-
center motion is regarded as a toroidal one instead of a par-
allel one under the condition ohg>I. Recently, an
improved formulation of the neoclassical ripple transport has
been given by Beidler and MaaRbérg.

We plot the geometrical factor for the bootstrap current
GBS=— (e(B2)/c)N(K)/M(K) [see Eq.(46)] instead of
N(K) as a function ofvp /v in Fig. 4. Here G(®® is written
in terms ofD}; andD3; as

(B*)D1;
(vp/v)D3’

In Fig. 4, dotted curves with open circles repres&igS)
obtained from numerical results @75 and D35 in Fig. 1.
The axisymmetric case with,=0 is given by the constant,
G(BS)=p(Boozen) ' =26 667. Analytical results given by Eq.
(47) for the Pfirsch—Schher and plateau regimes are repre-
sented by thick line segments, which are in good agreement
with the numerical results, although the latter do not show
clear constancy in the plateau regime.

Figure 5 shows [M§p,—Mpj1, M3 ]=[Mpp(K),
—Mpr(K),M+(K) V[ (472 Ymu+( x')?K3?] as a function of
vplv. For €,<0.02, M, takes small negative values
around the plateau regime, which are not plotted in Fig. 5. As
€p, increases in the Pfirsch—Sctduand plateau regimes, the
magnitude of the viscosity coefficientd o+ and M1 in-

GBS)=— (56)

vplv for e,=0, 0.005, 0.01, 0.02, 0.05, and 0.1 obtained by using theCr€ases more rapidly thaMpp. It is also seen that, in

DKES.

the 1k regime,Mpp=—Mps=M11x1/vy, which reflects
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10° e

--<C==- numerical

analytical

10° 10" 10° 10°? 107" 10° 10’

v/v (m")

FIG. 3. L*=L(K)/[ 3(v+/T)(Bu7/9)2K3?] as a function ofvy /v for e,
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10" 10° 10"
viv (m")

FIG. 5. Poloidal and toroidal viscosity coefficients as a functiompfv for

=0, 0.005, 0.01, 0.02, 0.05, and 0.1. Dotted curves with circles and soligh=0. 0.005, 0.01, 0.02, 0.05, and 0.1. Curves with circles, crosses, and

lines represent* obtained from numerical results Bf;;, D35, andD%;in
Fig. 1 and from the analytical formulas in Eq50) and (51), respectively.

from the fact that the parallel viscosityB- (V- r,))

=(Bp- (V- ar,))+ (Bt (V- ) ) (> vp) is much smaller than

the viscosities in other directionsc(/vp).

triangles represelfpr, — Mgy, andM%, respectively.

(Mgj,Nyj,L4), relates the parallel viscosities and the radial

fluxes to the parallel flows and the radial-gradient forces as
in Eg. (35, and the other, represented by
Majpp,Majpr,Lajrr), connects the poloidal and toroidal

From the results shown above, it is confirmed that allViscosities to the poloidal and toroidal flows as in E8g).
neoclassical coefficients for the viscosities, the bananalVe have shown that the matrix elemenis j,N,;,L ;) can
plateau and nonsymmetric radial transport fluxes, and thB€ obtained readily from the output of commonly used nu-
geometrical factor associated with the bootstrap current ar@e€rical codes such as the DKES and that the poloidal and

obtained straightforwardly by using our method.

V. CONCLUSIONS

toroidal viscosity coefficientsM 4jpp,Mjp7,Lajr7) Can be
derived directly from M;;,N,;,L,;). Using the matrix ele-
ments M;;,N,j,L,;) in the parallel momentum balance
equations combined with the friction-flow relations yields

In the present paper, we have presented two types ahe neoclassical transport coefficients for the radial particle
Onsager-symmetric matrices: One of them, with the elementand heat fluxes and the bootstrap current, which include the

F (Y ~ £ .
- oo —— N
20 AN . .
C IRV N 1,0.005
G(BS) C Vro . |
15 | PR \ | ]
C A \\ AY |
r VL = 000 S ]
10 C vy Al ' S ]
C N *0.02 ¢ =
5 F
of .
5 C ] I 1 1 1 . ......:I

FIG. 4. The geometrical factor for the bootstrap cur@fit® as a function

of vp /v for €,=0, 0.005, 0.01, 0.02, 0.05, and 0.1. Dotted curves with open

circles represenG(®®) obtained from numerical results @3, and D% in
Fig. 1. The axisymmetric case witk,=0 is given by the constanG(®®
=pB(Boozer) ' = 26 667. Analytical results given by EGi7) for the Pfirsch—
Schiiter and plateau regimes are represented by thick line segments.

coupling effects between unlike-species particles as well as
the intrinsic ambipolarity of the radial particle fluxes in the
symmetric case. These procedures for accurate calculation of
neoclassical viscosity and transport coefficients, the validity
of which has been verified by numerical examples, are con-
sidered to be useful especially when evaluating how these
neoclassical coefficients in quasi-symmetric toroidal systems
such as quasi-axisymmetric systems deviate from those in
exactly symmetric systems.
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APPENDIX A: BOOZER AND HAMADA COORDINATES

We consider general toroidal configurations, in which
the magnetic field is written as in Eq(1) of Sec. Il. In the
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Boozer® coordinates §, 65 ,{g), the covariant poloidal and which is rewritten as
toroidal components of the magnetic fiddare flux-surface

functions given by __ J G= (B% 1. (A7)
s X 50. 905 B2
(Boozer)_ IX 2 . . . ~ .
BY B- Fr cl(s), Comparing Eq(12) with (A7), we find thatU is related toG
by
X 2
B(Boozer)E B — = —|d S). Al - \VA
¢ dlg C p(S) (A1) U= 2BB><VS-VG
Here, the poloidal and toroidal currents are defined by
p(S) fsd(s)B dS and I4(s)= fST(s)B dS, respectively, _ B (B(Boozer)aG (BBoozer)aG)
whereSd(s) represents the part of &= constant surface that (B 908 Ze

lies outsidethe flux surface with the label and S;(s) is the 1 G 9
part of aZ = constant surface that liéssidethe flux surface. B( g”amada)ﬁ %Hamada)aT). (A8)
The Jacobian for the Boozer coordinates is given by H
V'(s) (B2) From Eq.(A5), we obtain
Vge=[Vs: (V8sXVig)] =7 "7 (A2) ox
: . 905 aeH @B
Next, in the Hamad¥ coordinates §, 6, ,¢), the con-
travariant poloidal and toroidal components of the magnetic ~ gx ax
field B and the Jacobiax/gy are flux-surface functions writ- s ) Al @ B, (A9)
ten as B H
2 and
4 — Am ’
B(HamadaFB'VeH:V/—(S)X (s), JG _ <BZ> JG
90y B? a6y’
¢ 4772 ,
B{Hamadai=B- V§H:V,—(S)¢ (s), (A3) IG (B?) 4G A10)
dls B Ly’

VOu=[Vs- (VO X V)] 1——},

ype where the partial derivatives 96, andd/ 9, are taken with

the Hamada coordinates, @, ,{y) used as the independent
respectively. Here, the poloidal and toroidal fluxes are giverariables. Using Eq4A9) and (A10), we have

by 277')((5) (277) Yyed®xB-Vo  and  2mi(s)
=(2m) 1S V(s)d xB-V ¢, respectively,V(s) represents the
volume enclosed by the flux surface with the lageand the
derivative with respect ts is denoted by =d/ds. Then, we
find that, using the Hamada coordinates, Ep) is easily
solved to yield

B(Boozer)a InB B(Boozer)a InB

¢ 90y 0 aly

A dG\dInB
— (Hamada)_{_ A
(Bg m<B >5’§H) 90y

5 E B({Hamada)_ <B£VHamada} (B(Hamadali_ Ve ) dinB
N B2 (BZ> 4qr 40y Iy
(Hamada) (Hamadai ! A
_ BBy  (By ) (Ad) = 7-2(VsXVInB)-| B+ F<|32>VG)
l//, BZ <BZ> ’ v v
where B{?Ma%B. (9x/96,,) and B{aM9aLB. (9x/9¢). _ B? B (Boozer), % (8 4G\ dlnB
We should also note that(B{1amada) — g(Boozen g (B[ ¢ 472\" ' ot 96g
<B(Hamada> B(Boozer)
The transformation from the Boozer to Hamada (B(Boozer) 2< 2> aInB (A11)
coordinate® are written in terms of the generating function Am 393 24

G as
0H= 05+X,G(Sl 0B,£B),

{n=4stT ¥’ G(s,05,{p).

Here, the generating functio@(s, 0g,{g) is periodic infg
and ¢z and satisfies the magnetic differential equation

(A5)

1
B-VG= — (A6)

J— os'

which is useful when evaluatings® and L, for the
Pfirsch—Schlter regime[see Eqgs(47) and (50)]. We also
find from Eq. (A7) that

B.V JG B 2 JdInB
0y Joy 908’

B.v G 2 dInB (A12)
d{p Jou T
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Here, let us assume that,dB/dfg+c,0B/d{g=0, where the flux-surface-averaged poloidal and toroidal flows
wherec, andc, are constants ana{,c,)#(0,0). This con- in the left-hand side do not depend on what flux coordinates
dition implies that the magnetic field strength is written as(s,6,{) are chosen. From E¢17), we obtain
B=B(s,c,0g—C1{g), and it is satisfied approximately in

) : : . e
quasi-symmetric systems, where the neoclassical ripple x' Bz (B2) —flﬁ'x'

2
transport is suppressed. The axisymmetric, poloidally sym- Opa|_ &7 Oua
metric, and helically symmgtric cases correspond:lte 0, Otal V' ap’B(BOOZG')/(Bz> € , Oxal
c,=0, andc, - c,#0, respectively. Under this symmetry con- ¢ c ¥'x
dition c,0B/d0g+c,0Bld{g=0, we find from Eq.(Al12) (B2)

that ¢,0G/d0g+C,dG/d{g is a flux surface function, and
therefore,c,9G/ 960z +C2dGIld{g=(C1G/I0g+ G/ I{g)
=0. Then, we also obtainydx/dfg+ Codx/I{g=C1IX/ IOy
+Cyoxl 3¢y andc19G/ 96y +CrdG/d¢y=0 from Eqgs.(A9)
and (A10), respectively. Consequently, we hageiB/d6},
+C,0Bld{y=C10Bldbg+ Cr0Bld{g=0. Inversely, if
C10Bl30y+cCco0Bldly=0 is assumed, c¢1dB/d6g

Then, we find from Eqg18), (19), and(B2) that the poloidal
and toroidal viscosities are written in terms of the parallel
viscosities and the radial fluxes as

<BP'(V'7Ta)> <BP'(V‘®a)>
(Br+(V-m)) (Br(V-0y))

+¢,0B/d{g=0 is concluded. The equivalent conditions de- ’B(Booze’)/(82> _ %1//' ,
scribed above are summarized as A2 X Bo c VX
VA , e
B B B 9B y'BE(B?) flﬁ’x’

— 4 Ch— = — 4 Cy— =
Cl&ﬁB CzagB O@ClﬂaH CzagH 0

(B-(V-m,)) (B-(V-0,))
X bn bn . (83)

4G G 9G G I'a 9a’Ta

< Cla_aBJrCZg_ga_O d Clﬁﬂzz‘@_o Using Eqs(35), (39), (B1), and(B3), we obtain the relations
between the poloidal and toroidal viscosity coefficients

ox ox ox ox (Majpp,Myjp7,Myj7r) and the coefficientsN ,j,Ngj L))

& G 4 G = Oy —— 4 Gy ——— (a13)  for the parallel viscosities and the radial fluxes
Yabs  Pals oy oLy

MajPP MajPT
dvlajPT MajTT

Thus, either Boozer or Hamada coordinates can be used
describe the symmetry condition for the magnetic field

e
strength to suppress the neoclassical ripple transport. X' BEeN(B?)  — fl//'x'

_4r Maj Na;}
' e Ny La
l///B(gBoozer)/<Bz> ?a(/f,X, aj aj
rp(B 2 rp(B 2
APPENDIX B: POLOIDAL AND TOROIDAL VISCOSITY X'BEN(B2) g BECEN(B?)
COEFFICIENTS x| %tﬂ’x’ %tﬂ’x’ , (B4)
. : : c c
The poloidal and toroidal flows can be linearly related to _ _
the parallel flows and the radial gradient forces as and correspondingly those between the monoenergetic coef-
ficients [M4(K),N,(K),La(K)] and [Mapp(K),Mapr(K),
<Ug>/)(, 4721 _CB(gBoozer)/(eaXr<Bz>) MaTT(K)]v
<Ug>/lﬂ’ :7 1 CB%Boozer)/(ealﬂ%BZ» Mapp(K)  Mapr(K)
Map(K)  Marr(K)
« <UaB>/<BZ>} o
Xa1 ) o X/B%Boozer)/<82> _?awl)(,
2 - ' ' p(Boozery /n?2 €a ror
5pa<qa>/)( 4772 1 _CB(gBoozer)/(eaX/<BZ>) ¢ c
i<q§>/¢, C V1 B (e (BY) X'Ma(K) Na(K)}
5pa | Na(K)  La(K)
2 r /B(Boozer)/ BZ /B(Boozer)/ BZ
5_<QHaB>/<BZ> X0 (B 0B (8%
x| SPa : (B1) X & , , e , (B5)
Xa | Tevx VX
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APPENDIX C: NEOCLASSICAL TRANSPORT O[(me/ma)llz]_ Then1 neg|ecting thes@[(me/ma)llz]

COEFFICIENTS FOR RADIAL FLUXES terms in Eq.(C3), the lowest-order parallel flowBu,,) and
AND PARALLEL CURRENTS (Bqya) for ion speciesa(#e€) can be expressed as a linear
combination of the thermodynamic forc&g, and X, (b
#e), and these expressions are substituted into(E4) in
order to write the electron parallel flow8u,.) and(Bqe)
in terms of the thermodynamic force&., Xeo, Xp1, Xp2
(B-(V-m,)) —Ngea( BE)) =(BFja1), (b+#e), and(BE,). Substituting these expressions(&ue)

_ and (Bge) in turn into Eq. (C3), the parallel ion flows
(B+(V-02))=(BFia2)- D (Bu,é) alngI(BqHa> (a#e) of the next order can be given in
The parallel friction forcesF,;=/d%m, C5(f.;) and terms of the ion and electron thermodynamic forces. Once
Fl‘azzfd%maU”(maUZ/zTa—5/2)c;(fa1) in the right-hand the relations of the parallel flows to the thermodynamic
side of Eq.(C1) are related to the parallel flows, andq,,  forces are obtained for all specias substituting them into
by the friction-flow relationgin the 13M approximation Egs.(35 and(B1) and using Eq(B3) yield the expressions

of the radial neoclassical flux¢g§'>",q2", the parallel, po-

Integrating Eqg. (3) multiplied by mg, and
mav (M ?/2T,—5/2) and taking the flux surface average
give the parallel momentum balance equations

(BF1) |ab - —jab (Bu) loidal, and toroidal viscosities [(B-(V-my)),(B-(V
[(BFm)}: jab |ab : (C2) +04))(Bp (V- 7)), (Bp-(V-04)),(Br- (V- 7a)), (Br(V
laz/d b |7l 22 5pb<Bqu> .®,))], and the poloidal and toroidal flows

uf (), (ué) ,(q%)], in terms of the thermodynamic
where the coefficientt}’ are defined by Eq4.4) in Hirsh- Eérézzé[(;?)fxai <>((1;1>]Xb2(b¢e) (BE)] y
el el Ll il .

- , o ab_ b
mar;band Sigmaf,and satisfy the condition’=Iyf" and Applying the procedures described above to the case of a

24l =0, which are derived from the self-adjointness i, 5idal plasma consisting of electrons and a single species
and the momentum conservation property of the linearizedyt jons we can derive the following transport equations for
collision operator, respectively. The parallel viscositiesyg negclassical radial fluxes of particles and heat and the

(B-(V-m,)) and(B- (V- 0,)) in the left-hand side of Eq. aocjassical parallel electric curreffiootstrap current
(C1) are written by Eq.(35) in terms of the parallel flows

- | ee ee ei ei e =

(Buja) and(Bgqy). Then, combining Eqs(35), (C1), and rbn o be koo b bed.

(C2), we obtain .| | L L L L ||

Sap | Ma1 Mg jab - —jab (Buyp) Enibn = L?I.el I162 L;l ;2 L?I.E iil ,

we(@ Moo Maj_[—lz‘? ISSD - (Bay Tes'| | VB L2 Lh e L]l
L I-El I-E2 LEl I-E2 I-EE_

_ [ Nal Na2 Xal naea<B E||> (CS)
- [Na»  Nag|[ Xaz 0 yvhere the forceXg associated with the parallel electric field
is denoted by
- Bu
g g (B Xe=(BE)/(B) (co
+ _|ae ae = S . . .
[~lar 122 | 5 (BQqye) and the bootstrap curred® is defined by the difference
Pe between the total parallel electric curréigtand the classical
Ny NazHXal parallel electric currend?,
=— for ion speciesa(#e) (C3)
[Naz  Nag[Xa2 JE°=Je— JE=nee(B(U;i—Uje))/(B)?~ o Xe, (CT)
and with the classical Spitzer conductivity og
N g (Buye) E(neezree/me)fgzl[[il”gz— (1$,)?]. Here, the dimensionless
1 [Ma Me| | ln —li ) friction coefficients|fj=—(7aa/nama)If* are given bylf,
(B[ Mg Meg| | —188 158 $<Bq”e) =7, 15,=32;, 15,=v2+%Z;, and1,,=v2 with the ion
e

charge numbeiZ;, and high-order terms with respect to

Net Nez|[Xe] [nee(BE) (me/m;)Y? are neglected. Defining thex22 matrices for
= No Nog [XeZ — 0 } electrons and ionsa=e,i) by
Lar Laz T Mai Mg
ea __jea <BuHa> ﬁaE ¢ : }, aELBQ{ : ¢ )
S 1 12 c4 Laz Las NaMa(B%) [Maz Mgg
aze | =137 133 5p, (Bdia) 7an [Naz Nao 10
) Na= rmalNg Ny 150 o) €8
Here, general cases of multispecies of ions are considered. atalMaz a3
We should note thah,/m,<1 for ion species and that the Til _|A'1=2 0 0
parallel electric field term and the ion—electron friction term A= e e |0 A= ~ b
in Eq. (C3), are smaller than the other terms by a factor of -5 1% 0 I3
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the transport coefficients in EC5) are explicitly given by

LIt L33
_ 1
L M
+ S o Mi(Mi+ A LM
ee(B >
e DM+ A) TN, (C9
ei ei ie ie
11 12 11 21
ei ei| ™ ie ie
21 L2 12 L2
NeMe _
=—m/\fe(/\4e+/\e) A 1M
+A) TN, (C10

Ne€
[LE: LE)=—[Lie Lie]= rgzmll OJ(MetAe) AL,

(C1)
[LiEl iEZ]:_[LilE LiZE]
nee _
_W[l 0](Me+Ae) l-/\/legll
X(Mi+A) 7N, (C12
Ne€Tee B 11
Lee=— [1 O{Ag'—(Met+Ap) 1}[0}- (C13

In the right-hand side of EC9), the term withs,; (=1 for

a=i, 0 for a=e), which is of O[(ms/m;)¥?], is kept in
order to reproduce the intrinsic ambipolar particle flukgs
=Zi_ll“e in the symmetric casésee Appendix D It should
be noted that the transport coefficients given in EQ9)—

(C13 satisfy the Onsager relations

L LkJ, f‘E=— Ej (a,b=¢e,i;j,k=1,2). (Cl149
APPENDIX D: SYMMETRIC CASE
Here, we consider the symmetric case, in which

How to calculate the neoclassical viscosity, diffusion . . . 4651
L (Bp- (V- o))+ 2 (B (V- )
_I . . ﬂ —, . . ﬂ
X P a l// T a
(Bp (V- ®a)>+ Z(Br-(V-©,)=0,
Copmo 2y Sy 2y g (D2)
X/ ajPP lp’ ajPT Xr ajPT lﬂ’ ajTT .

The expressions for the banana-plateau particle and heat

fluxes for the symmetric case in terms of the parallel viscosi-
ties are derived from Eq$18), (19), and(D1) as

- C(ClB(gBoozer)+ CngBoozer))

3 ey(cyy —cx')(BY)

gp C(ClB(HBoozer)+ CZB((Boozer))
Ta  eac —cox')(BY)

Using Eg.(D3) and the parallel momentum balance in Eq.
(C1) with the charge neutrality conditioB,n,e,= 0, we ob-
tain the well-known intrinsic ambipolarity condition that, in
the symmetric case; aeal"gpz 0 is satisfied for arbitrary val-
ues of the thermodynamic forces.

Equations(36), (37), (46), and(D1) give the relations of

(B-(V-m2)),

(B-(V-0@,)).  (D3)

the coefficients  [Mg;,Ngj,L4] and  [M,(K),
Na(K),La(K)],
Naj :ﬁ: Na(K) _ La(K)
Maj Naj Ma(K) Na(K)
- C(ClB%Boozer)_i_ CZB(gBoozer)) (D4)
ea(Ciyf’ —Cox')(B?)
and the geometric facta{®,
(Boozer) (Boozer)
G(BS):C BY + By | (05)

a —C1f' +Cox’
for the symmetric case.

APPENDIX E: EFFECTS OF THE EXB DRIFT

In the left-hand side of Eq(3), the collisionless orbit

c19B/dfg+C,dB/d{g=0 holds. It should be recalled that operatorV, contains only the part of particles’ parallel mo-
the axisymmetric, poloidally symmetric, and helically sym- tion because other drift motions are neglected as higher-order
metric cases correspond eq=0, c,=0, andc-c,#0, re-  terms in the gyroradius expansion. Here, in order to consider
spectively. As shown in EqA13), this case is also described additional effects of th& x B drift on the neoclassical trans-
by ¢,0B/d6y+c,0Bl/dfy=0. Then, Eqs(17) and(B2) yield  port coefficients, we use the drift kinetic equation given by

o o € (BE)
e ez =0, Viar=Ca(far) = Voo Viaw 1 viB gz fam:
a
(B ) (B ) ED
oozer oozer,
€18y +2C285 UUa+(_C1¢’+02X,)%0—Xa: 0, where the operatov=V,+ Vg consists of the parallel mo-
(B) c tion partV, given by Eq.(5) and theEXB drift part Vg
(DD defined by
ClB(()Boozer)_FCzB(gBoozer)G +(=c zjf'+C ’)%G =0 Vo= V= V XB-V, (E2)
(BZ> Ua 1 2X c “xa— Y E=VE- V= (Bz> S

Thus, we find from Eq(18) that the viscosities and the vis- with V taken for @,£) being fixed. TheE X B drift operator
cosity coefficients associated with the symmetry directionVg given by Eq.(E2) has the same form as employed in the
vanish DKES!®? and by Tagucht? Here, following Tagucht? we
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10% —— where it appeargNote that, by doing this replacement in Eq.
3 6 g ] (40), definitions of botho; and o coincide with those in
[ ¥Iv=3X10"m" 1 Rij and Hirshmaf® even for E¢#0.] Also, Egs.(46) and
10'E €,=005 ] (54)—(56) are available. Thus, using these formulas, we can
: ] calculate dependence of the neoclassical coefficients on the
M;P I ] radial electric field. Figure 6 shows the normalized monoen-
« 10°E 4 ergetic neoclassical viscosity coefficieriss,, M5+, and
My, : E *; as a function ot E¢/v, which are numerically obtained
M’frT [ ] in the same way as in Fig. 5. Here,=0.05 andvp /v =3
10°'L 4 X 10" % are used while other parameters are the same as in
o F —M ] Sec. IV. These parameters correspond to therégime for
(m TH PP ] the case 0E,=0. In Fig. 6,Mpp=—Mpr=M77 and their
e —-M_ 4 reduction with increasingcEs/v are clearly seen. The
E —A—MTT 3 E.-dependent neoclassical transport coefficients for radial
[ ] fluxes and parallel currents can also be calculated in the same
103 i ol Lol pol 44 way as in Appendix C.
107 10°° 107 10 10° 10
cE /v (T)

FIG. 6. Poloidal and toroidal viscosity coefficients as a functior Bf/v
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