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Existence of a quasisteady state with a mean transport flux in the collisionless ion temperature
gradient driven turbulence has been confirmed by means of a direct numerical simulation of a basic
kinetic equation for the perturbed ion velocity distribution functi&fn The phase mixing generates
fine-scale fluctuations aff and leads to continuous growth of high-order moments which balances
the transport flux. The phase relation between the temperature and the parallel heat flux is also
examined and compared with a fluid closure model2@2 American Institute of Physics.

[DOI: 10.1063/1.1501823

Turbulent transport in high-temperature plasmas hast6f, represent macroscopic and microscopic entropy per
been a central subject in the fields of the magnetic fusionunit volume, respectively. Regarding Ed.), one can con-
researcH.Recent simulation studies based on the gyrokinetiaider two scenarios. One is a case with no mean transport
and gyrofluid modefshave revealed several important as-Q,=0 in atrivial statistically steady state witd(5S)/dt

pects of the ion/electron temperature gradiéMG/ETG) —dW/dt=0. where--- means time averaging on a certain
driven turbulencé;* where the main interest is taken in the . ' o
eriod, longer than characteristic times of the turbulence

nonlinear behaviors of low-order moments of the one-bod . : . .
(scenario L Another one is auasisteadytate with a mean

velocity distribution functionf (fluid variables such as den- it i )
sity, fluid velocity, temperature and so)oiThis is related to ~ transport fluxd(8S)/dt=7,Q;#0 with dW/dt=0 (scenario

the fact that the transport flux itself is described by correla2)- In the quasisteady state, continuous growth of fine-scale
tions between these low-order moments and electromagnetfdructures obf in the velocity spacéhigh-order moments of
fields. It is, however, noteworthy that the fluid variables candf) contributes to monotonical increase 66, while the
not describe fine-scale fluctuations bfgenerated by the low-order moments givingV and Q; reach steady values.
phase mixing, such as the ballistic mode. The latter case is more relevant to compare with the anoma-
Details of the distribution function should be taken into |ous transport observed in experiments. The quasisteady state
account in the problems of steady transport caused by collis regarded as an idealization of the real steady state where
sionless plasma turbulence. This is because, in order to olye high-order moments saturate as well due to collisional

serve an irreversible transport in a collisionless turbUIenC%issipation even if the collision frequency is much smaller
which is described by a basic kinetic equation with the timethan the characteristic ones of the turbulehce

reversibility, one needs to extract a coarse-grained state from Our concern here is to confirm whether the quasistead
f with small-scale fluctuations. As pointed out by Krommes : . - d y
and HE and by Sugamat al,”® the entropy balance equa- state could be realized in the collisionless slab ITG turbu-
tion in slab ITG turbulence with periodic boundary condition Ier?ce. For thaF purpo;e, we perform a Fj|rect numerical S"",“'
lation for 8f with the fine-scale fluctuations, where the basic

is given by o T o )
kinetic equation isdirectly solved as a partial differential
d SSEW) = 1 equation in the phase spaghe so-called Vlasov simulation
ﬁ( )=7Qi. @ in literature without use of anad hoc model such as the

o 5 _ finite-sized particle. In order to enable an accurate calcula-
where 6S=([d v (5f)/2Fy); (---) and Fy, denote the oy of sf satisfying Eq.(1), the simulation code is imple-
spatial averaging and the Maxwel!|an d!strlbgtlon funCt'on’mented with high velocity space resolution and a nondissi-
;isrgﬁgtr'vetl’ thse gg';entlaalsen\?vrgyils[ ld_ef|5ned+|r(1Tthﬁr.\;vave pative time integrator preserving the phase space integral of

) P k kyOT A el T (5f)2,° which had not been pursued in gyrokinéticand
— L)l 44|72 (see the next paragraph for definitionsIof conventional Vlasot? simulations. We employ a periodic

and the perpendicular ion thermal fl@Qk). Here, the parallel . . ) . . .
. . o . wo-dimensional slab configuration with translational sym-
nonlinear term is neglected by the gyrokinetic ordering an . o . P .
metry in thez direction. The uniform magnetic field is writ-

the adiabatic electron response is assumgds given by AR ) '
m=L, /Ly, whereL, andL represent the density and tem- €N Py B=B(z+ 6y) where #<1. The governing equations

perature gradient scale lengths of the background ions witGonsidered here are derived from the inte:gral of gyroki-
distributionF, . &S is rewritten as6S= Sy, —S,, whereSy, netic equations by assumingsf(v,,v,)=T(v,)Fu(v,).
=—Jd% FyInFy and S,=—(fd% fInf), with f=Fy  They are written in the wave number spdce (k k) as
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where the electric potentiad, is related toW, by ¥ (b) 40 T T T T T wio filter
—e 2g, with k2=k2+ kZ. The above equations are nor- gg i y liew=647/5
malized in the so-called gyrofluid units, suchyasx’/p;, 75 L
y=y'lp;i, v=v'lvyg, t=t'vy/L,, T=F'L,y/piny, and 820
d=ed'L,ITip;, wherev;, p;, Ny, €, andT; are the ion }(5) i
thermal velocity, the ion thermal gyroradius, the background st {hew=102475
plasma density, the elementary charge, and the background 0 I hicw=20487/5
ion temperaturéT;=m;v2 ; m; means the ion masespec- 0 100 200 300 400 500 600

tively. Prime means a dimensional quanti®y.is defined as Time

O=06L,/p;. T'y(k? is given by I'g(k?)=exp(—k)lo(k?).  FIG. 1. Time histories ofa) d(8S)/dt, dW/dt, — 7,Q;, (b) S and its
I4(z) means the Oth modified Bessel functionzofDorland  low-pass filtered values fop; =10 and®=2.5.
and Hammett employed'34k?) for W,/¢, instead of

_ k2 . . .. . .
e k2 in their finite-Larmor-radius closure mod&lwhich

gives the same linear dispersion relation as that in a fulihe average during the simulation run. In order to keep the
treatment ofsf, (v ,v,). The difference betweee *"?and  velocity space resolution, the computation should be stopped
Fé’z(kz) is small for k<1. Furthermore, we drofk,=0  when the velocity space scale of the ballistic mode reaches
modes off, from computations, since they are included in the grid size(att~600 for the present case andtat800 for

the background part with constant density and temperaturthe case without the zonal flow shown late®n the other
gradients in thex direction® However, these conditions are hand,dW/dt fluctuates around zero, which shows that the
not essential to the conclusion of the present study. We alspotential fluctuations are statistically steady. The diffusion
assume the background electron temperaifiyre T; and the  coefficient x;=Q;/#; in the gyro-Bohm unit averaged
adiabatic electron response, such thai= ¢, for k,#0 aroundt=600 is y;~3x 10 ° pizvti/Ln, and also continues
andTig =0 for ky=0. In this systemgS, W, andQ; are, 10 decrease in time. The final state in the case shown in

respectively, defined assS=3,fdv,[f|¥2Fyu(v,), Q  Fig. 1ais, ther.efore, gpproximately regarded as ttiaal
=Ekfdvu(—ikyesz’ngk)vﬁ_k/Z, and W:2k[1_5ky’0 steady state with no increase 68 and no thermal flux

- (TJT) (1T )] | 4|2/2, which satisfy Eq(1). [d(8S)/dt=5;Q;=0], which corresponds to scenario 1.

Employing the kinetic model described above, we haveEven if the saturated flux is observed in a longer simulation

. . . . run with a larger number of grids in the velocity space, the
performed two types of simulations with and without the saturation level is expected to be negligibly smial least
zonal flow components dk,=0. In the latter case, thk, P gigibly

. 5 52, . ime-hi i
—0 modes are artificially fixed to zero. In order to keepXi =310 pivi/Ln). The time-history oS is plotted by

enough resolution for the phase mixing process, we hav_g sphd line in Fig. 1), where das~hed and dc;tted lines also
employed 8193 grid points for discretization of the velocity Indicate values °f550ut:2kfdvl\|(fk/‘/':_'\/l~)curj /2 that are
space,—5<v,<5. The minimum and maximum values of calculated from the Fourier componentsfg{v,)/VFu(v))

the wave number are set to bg;,=0.1 andk,,=3.2 for  Wwith the velocity-space wave numbdysof [I;|<Ic. 6Sqy

both of thek, andk, directions with the 3/2 rule for dealias- for lower I, peaks and starts to decay at earlier time, and
ing in the spectral method. Exponential decay ¢f| spec- then, stays at a smaller value. It means that the finer-scale
trum is observed fok> 1, which ensures the convergence of fluctuations off, generated by the phase mixing have larger
the results. contributions tosS at later times of the simulation.

The time evolutions ofl(4S)/dt, dW/dt, and — #;Q; As shown in the above, the zonal flow excited by the
for the case with the zonal flow are plotted in Figa)l  turbulent stress suppresses the transport flux down to a quite
where =10, ®=2.5, and the time stept=0.0125. For small level, which is considered to be closely related to im-
these parameters, the parallel phase velocity 1s24 for the  proved confinement such as the H-mode and the internal
longest wavelength mode witky=k,=0.1 and—1.28 for  transport barriet* Here, it should be recalled that, in a tor-
the linearly most unstable mode wikh=0.1 andk,=0.3. In  oidal geometry, the zonal flow is severely damped by the
order to make the plot clear, fast time-scale fluctuations areollisionless transit time magnetic pumping eff&tt® Thus,
eliminated in the figure by taking the running average of they; observed in th&. mode of a toroidal system is on a much
results for a time period of=5. Since the zonal flow sup- higher level than that obtained in the above. Also, from the
presses the turbulence after the peaking of the potential enviewpoint of fluid modeling of kinetic effects on the turbu-
ergy att~160, d(8S)/dt and »;Q; continue to decrease on lence saturation, it is valuable to examine how generation of
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FIG. 2. Same as Fig. 1 but without the zonal flow. . o . .
FIG. 3. Profiles of the perturbed distribution function of the linearly most

unstable modgk,=0.1 andk,=0.3; (1,3) modd normalized by the poten-
. . . ) tial at four different time steps for the case without the zonal flow.
fine-scale fluctuations aff due to the phase mixing contrib-

utes to determination of a transport flux. In the following,

therefore, in order to take account of the collisionless damppjex conjugate mode of the linear eigenfunctidp (Ref. 17
ing effect existing in toroidal systems, we consider the casgith a similar amplitude to that of,, is excited to cancel
without the zonal flow components. Im(~fk/¢k). The result shown in Fig. 3 reminds us of the

In the abf?iance of the zonal flojsee Fig. 2a) where .3-mode ITG solution given by a linear combination fgf
At=6.25x10"°; other parameters are the same as those '%n fx 818

F'g' 1], the turbulenge 'S, enhanced by more than a hundre Es(kistence of the quasisteady state is a fundamental as-
times of that shown in Fig. T(5S)/dt and#;,Q; apparently  gmption in collisionless fluid closure mod&f&By compar-
keep a constant level in t.he steady turbulence for Ipw—orde{ng a balance equation similar to Eq), which is obtained
moments (W/dt~0), Wthzh correqunds to sce_nano;_a. from equations of fluid moments,nszdvﬁk, Uy
fluctuates aroung;~0.36 p; vy /L,,. Since Eq(1) is satis- do T dT th that ai b ding Ed2

fied with the constant transport flugS linearly increases in ._f vy fvy, andTy, with that given by expanding aj )

time [see Fig. 2b)]. More rapid growth 08S,, is found for " f[he Hermite polynpmlalsl-|n(v“) with the Maxwellian
larger ey, while 8S., for smaller I increases more weight function, one fin

slowly. In other words, the high-order moments fgf con- — ik@_ .| d n! )
tinue to grow, while the low-order moments are steady on the ~ 7iQi= ~ ; Re —— Tilk :§; 24 7|‘Pnk| ’
average. It is, therefore, concluded that thmsisteadystate (4)

is obtained in the simulation shown in Fig. 2. h he | deri<3) fluid in th .
Development of the fine-scale fluctuations is directlyVhen the low-order<3) fluid moments are in the statis-

recognized in profiles of the distribution function in velocity ic@lly stéady state. Hereg, denotes theth coefficient of
space as shown in Fig. 3, where real and imaginary parts ¢he Hermite polynomial expansion 6f. Equation(4) tells
./, of the linearly most unstable modi,=0.1 andk us that o_btalnlng _the steady transport in a collisionless sys-
=0.3 for the present parameters; this is calléB) modeyz, tem requires continuous growth of the higher-order mgments
hereaftet are plotted at different time steps for the same caséthe gquasisteady stateBy taking the fluid moments of,
as in Fig. 2 without the zonal flow. During the linear growth, Shown in Fig. 3, we have found that Hd) is approximately
T/ ¢y is represented by the linear eigenfunctign for the ~ Satisfied, that is,— 3, Re(k, 0T, /2)/7,Qi~0.86 where
normalized potentials =1 (see the plot at=100 in Fig. ~the time average is taken from=700 to 800. The quasi-
3). Even in the turbulent state, a coarse-grained form omSFdeadyt ;tatet o%talged fby the prgfﬁnt r':_'”ﬁt;? ?:j'ml%'at'lorz. pro-
= - - vides the standard reference with which fluid simulations
Eaergfé/Zﬁ%rl?h\évepltle;Izﬁéoé;r?ﬁéesotk;ﬁtgﬁé)né8;2;2800112 using the collisionless closure models should be compared.
; . . ~ - As seen in Eq(4), the phase relation betwe@hp andq
amplitude of the cparse—gramed pI‘OfI.Ie of Tply) is . __Is crucial in constructing a fluid closure model. In the
damped, and then, is goyerned by th*e fine-scale fIUthat'onl'S-lammett—Perkine{HP) closuret® of which applicability is
This means the correlatiorRe(k, Tk#) and RekyTidi)  argued in comparison with other fluid models and kinetic
almost vanish as discussed later, whege= [dv i (vf~1)  approache&® a constant phase angle is given ky
andqy= [dvfi(v}—3v)). Itis also suggested that the com- =arg(/Ty)=— /2 for k,>0 so that —Re(k,T,q) is
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(a) 03 (b) 02 with a mean transport flux in the strongly driven collisionless
55025 1So01s ITG turbulence. The phase mixing plays a key role in gen-
‘; 0.2 ‘; erating the fine-scale fluctuations in the velocity space and in
F 015 7 01 increasing the functionadS. It is currently examined how
£ 0ly %0.05 the observed properties of the coarse-grained distribution
A 005 A function depend on the parametejsand ®. The obtained
O_E 057 0 057 = O_H 057 0 057 7 phase relations between the fluid variables show disagree-
3 & ment with those of the HP model for the linearly most un-

G4 Ph o fandq, for @ the | enath stable mode, and motivate other closure methods such as the

. 4. Phase angle histogramsTaf andq, for (a) the longest wavelengtl icci ; 8 ; ;

mode [k,=k,=0.1; (1,1) modg and (b) the linearly most unstable mode nondISSIpatll/e closure mOdéNc_M) which includes _the_

[k,=0.1 andk,=0.3; (1,3 modd. case of Imf./¢,)~0. Comparison between the kinetic
simulation and the NCM fluid simulation results is in
progress and will be reported elsewhere.

positive—definite. From the simulation results &f in
the absence of the zonal flow, we have evaluaigd of
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