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A new nonlinear electromagnetic gyrokinetic equation is derived for plasmas with large flow
velocities on the order of the ion thermal speed. The gyrokinetic equation derived here retains a
collision term and is given in the form which is valid for general magnetic geometries including the
slab, cylindrical and toroidal configurations. The source term for the anomalous viscosity arising
through the Reynolds stress is identified in the gyrokinetic equation. For the toroidally rotating
plasma, particle, energy and momentum balance equations as well as the detailed definitions of the
anomalous transport fluxes and the anomalous entropy production are shown. The quasilinear
anomalous transport matrix connecting the conjugate pairs of the anomalous fluxes and the forces
satisfies the Onsager symmetry. 1®98 American Institute of Physi¢§1070-664X98)02607-X]

I. INTRODUCTION general magnetic geometries with large flows on the order of
Gyrokinetic equatiorls®® give a foundation for investi- the ion thermal speed. From this equation, the reduced forms
gating microinstabilities, which cause the turbulent orl‘or the slab, cylindrical and toroidal configurations are easily

anomalous transport in fusion plasmas. They describe flu@Ptained. In recent years, the effects of large flows have been
tuations with short perpendicular wavelengths on the ordefttracting much attention in refation to |mpr0;/6ed confine-
of the ion gyroradius and frequencies much lower than th&nent such as high-confinement modésmodes™ and in-

ion gyrofrequency. There are two types of methods to derivd€™Ma! trapspo7rt28 barriergITB) fo;md in reversed shear
the gyrokinetic equation. The recursive technijdewas conflguratlon§.' Artun and Ta_n@ derived th_e gyroklnetlc__
used when the gyrokinetic equation was first obtained. Th&duations for the slab and toroidal system with large equilib-
recursive method is also used for derivation of the drift ki-fium flows by using the recursive method for the ballooning
netic equatiot"*from which the neoclassical transp§it®  type of fluctuations. Hamiltonian derivation of the gyroki-
is described. Another modern derivation is based on the pef€tic equation for the toroidally rotating plasma was shown
turbative Hamiltonian formalisr;2 The gyrokinetic equa- by Brizard:?In the slab and toroidal configurations, our gy-
tion obtained by the Hamiltonian method is written for the fokinetic equation reduces to slightly different forms from
total distribution function, which is in contrast to the recur- those obtained by Artun and Tafig.It seems to be partly
sively derived form where the distribution function is sepa-because they did not treat correctly the ballooning represen-
rated into equilibrium and perturbed parts. The conservatiof@tion for the rotating system in which the temporal depen-
of the phase space, the energy and the magnetic moment afence of the radial wavenumber should be consid&téak
systematically treated by the Hamiltonian formulation. How-Stead, by using the correct ballooning representation, we see
ever, the Hamiltonian method generally considers the collithat our result for the toroidal case coincides with Brizard’s
sionless case, due to the fact that its treatment of collisiongesult™> We elucidate which term in the gyrokinetic equation
does not yet seem to be systematically clear. In the recursivié responsible for the anomalous viscosiiyr Reynolds
formulation, collisions are described by the gyrophasestres$. This term is important for rigorously describing the
averaged collision operatérdetailed structures of which interaction between the background flow and the fluctuations
have been given based on the Fokker-Planck collisionvith perpendicular wavelengths on the order of the thermal
model®-2 gyroradius.

In the present paper, we follow the recursive formulation ~ Here, we assume that the large flow velocity is approxi-
with the ballooning representation to derive the nonlineamately balanced with the radial electric field in the same way
electromagnetic gyrokinetic equation for plasmas with largeas in Artun and Tarfy’ and Brizard'?> Recently, Hahr?
flows, because we also include collisional effects that argresented the gyrokinetic equation that can treat the case
necessary for the unified description of the turbulent and colwhere the steep pressure gradient produces the large radial
lisional (classical and neoclassigadtansport processéé.?*  electric field with relatively small flow velocity.

It is also known that the turbulent system with the finite In the present work, we also show the particle, energy
transport fluxes requires finite collisionality to reach a steadyand momentum balance equations, as well as the detailed
state?®2° The gyrokinetic equation derived here is valid for definitions of the anomalous transport fluxes and the anoma-
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lous entropy production for the toroidally rotating plasma.where the fluctuating quantities are assumed t@¥é) of

This work is an electromagnetic extension of our previoughe ensemble-averaged values. Note that we canByut

work 24 =B,=---=0 sinceB is used as the basis for defining the
A basic kinetic equation for a turbulent plasma is writtenexpansion parametet. For the drift ordering, it is conve-

as nient to regard the electric chargg (instead ofB) as the
parameter of)(51): e,=e{ 1) 3051
J e 1 i J i Here we allow the large mean flow on the order of the
— V- V+ — (E+E)+ =vxX(B+B) |- —|(f,+ T, thermal velocityvr, to exist and the lowest-order flow ve-
at Ma ¢ v locity is denoted by[=O(5%]. We introduce the phase

:Ca(fa+fa)1 (1)

whereC,=%,C,, denotes a collision term and the distribu-

tion function for speciesm (the electromagnetic fielgds
divided into the ensemble average pdif (E=—-V®
—c 19A/ot,B=VXA) and the fluctuating partf, (E
=-V¢—c 19A/dt,B=V xA). Taking an ensemble aver-
age( - )ens Of EQ. (1) gives the kinetic equation fdr, as

1
E+—-vXB
c ov

J €a
—+v-V+ —

ot m, fa= <Ca>ens+ Dy,

2

where the right-hand side consists of the collision term an

the fluctuation-particle interaction terf, defined by

afa>
v
ens

Subtracting Eq(2) from Eq.(1) gives the equation for thi,
as

€/~ 1 .
Dy=—— E+Ev><B (3

{7+ V+ea E+1 X B af
gtV VTR BT EvXB)-)fa
o1 L\ a(fatty
-2 E+EVXB)'$+Ca_<Ca>enS_IDa'
a

(4)

variables &,w, u,£), in which the particle positiox is ob-
served from the laboratory frame, while the particle kinetic
energyw, the magnetic moment, and the gyrophasé are
defined in terms of the velocity’=v—V, in the moving
frame as

V!
L .
— =€, cosé+e siné,

Uy
(6)

where @,,e,,b=B/B) are unit vectors which forms a right-
handed orthogonal system at each point, ahe v b+v]
with v =V'-b.

From the lowest orddr=O(5"1)] of Eq. (2) [or of Eq.

ma(”i)z
2B’

W= _ma(vr)za

2 K=

él)], we obtain

1
Eo+ £ VoXB=0 ()

and

f 10

9E
Thus the lowest-order distribution functidng is indepen-
dent of the gyrophasé. We also assume that the temporal
variation of the ensemble-averaged quantities is so slow that
the transport ordering/dt=(5%) is applicable for them.
Then, the ensemble-averaged inductive fiel@®
=—CcdAldt is of O(6%) while the O(5°) andO(4) electric
fields are electrostaticEq=—-V®d, E;=—-V®,;. The
lowest-order electrostatic potential is written &s ; in the

0. 8

The drift kinetic equation describing the neoclassical transPaper by Hinton and Wong,although it is denoted b, in
port and the gyrokinetic equation describing the anomalou&e present work, since we regard the electric charge-

transport are derived from Eg&) and (4), respectively.
We employ the drift ordering parameté=p,/L [p,

=v14/Q,: the thermal gyroradiusyt,=(2T,/my)Y% the

thermal velocity Q) ;=e,B/(m,c): the gyrofrequency.. : the

equilibrium scale lengthto expand the distribution functions

and the electromagnetic fields as

fa:fa0+fa1+faz+"'! fa:fr:ll_"?caz'i""!

E=Eq+E;+Ey+--+, E=E;+E,+---,

©)

BzBo, ézél+éz+,

stead of®) as the parameter @(51).
From the next ordef=0(8°] of Eq. (2), we have

€, d f a1
v-V+ HE]'. E/ faO_Qaa_gzca(faO)-

a

(€)

Taking a gyrophase averagggs -dé&/27 of EqQ. (9), we have

dw)
0

du\ ¢ ;
EO% a0

(10

a
—+

Lof 20= W

(Votofb)-V++| 5

=Ca(fa0),
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where the time derivativeglw/dt), and(dw/dt), along the
lowest-order guiding center orbit are given by

H. Sugama and W. Horton

SkL(x,t) also contains the rapid Doppler shift frequency due
to the large flow, which is given by-dS, /dt=k, -V,.
Then, we should note that, for the ballooning representation
for the system with large sheared flof¥sthe wavenumber

dw
(—t)oz—maVoVVo-bv+eaEl~bv| vector depends on the time as seen frosk, /4t
=V(aSkL/(9t)= —V(k, -Vyp). The gyrokinetic ordering em-

/ 1 / loyed here for the turbulent fluctuations is written in terms
—my(v])2b- VVg-b— Smy(v])? ploy

2 of § as
X (V-Vo—b-VV,-b),
d,u) . oed evr)Al Kk (0—k, Vo)
) = — WV VINB— (V-Vo—b-VVy-b), 11 la a9 a1 A YRt Vol
( n #Vo m(V-Vq o b) (11 o o, K, 0. 5, (13

0

respectively. Taking a gyrophase average of(t{@) part of
Eq. (2) gives the linearized drift kinetic equation, which is where —k, - V) denotes the characteristic frequency ob-
solved to derive the neoclassical transport fluxes for rotatingerved in the moving frame. The characteristic parallel and
plasmas?—3* perpendicular wavenumbers are given ky-L~* and k,

The rest of this work is organized as follows. In Sec. I, ~p_*, respectively.
the new nonlinear electromagnetic gyrokinetic equation is  The lowest-order part of Eq4) in & is written for the
derived for plasmas with general magnetic geometries anfluctuations in the WKB form of Eq(12) as
large flows. The reduced forms of the gyrokinetic equation
are given for the cylindrical and slab configurations in Sec.
[ll and for the axisymmetric toroidal configuration in Sec.
IV. Definitions of the anomalous transport fluxes and the/ -
anomalous entropy production rate are given for the toroi 'kL'V'_Qaa_J Far(ky)
dally rotating plasma in Sec. IV. Also found are complete
balance equations for particles, energy, and toroidal momen-
tum which include the classical, neoclassical, and anomalous
transport processes. In Sec. V, conclusions are given. In Ap-
pendix A, the charge neutrality condition and the Amge
law are given as the constraints on the self-consistent elec-
tromagnetic fluctuations, from which the intrinsic ambipolar-
ity for the anomalous particle fluxes is shown. Appendix B is
presented for discussing the derivation of the flow shear (

= ik, pa ik, pat
=—,e ™ aﬁ—g[e tiPafay(ky)]

:iea(kL'Vi)

- 1 "
(d’(ki)_EVO'A(kL))

terms in our gyrokinetic equation. Appendix C shows the

Onsager symmetry of the quasilinear anomalous transport
matrix, which connects the anomalous fluxes to the conju-
gate thermodynamic forces.

faOv (14)

| Ly 2 UliA K )=s
ow  Bou| ¢ 1€ L)ch

wherep,=(bXxv')/Qrepresents the gyroradius. Integrating
Eqg. (14) in &, we have

Il. NONLINEAR ELECTROMAGNETIC GYROKINETIC

EQUATION FOR GENERAL GEOMETRY

In the present work, we assume that any fluctuating field A 1 A
F is written as a superposition of components in the WKB ~ fai(ki)=¢€q <¢(kL)_ EVO'A(kJ_)) w @)
(or eikona) form
A K | fagt Galk e, (15
c [ASaTE Biu al alky )

F(txw,m,6)= 3 F(txw, &k )exdiS, (x 0],
(12

where the eikonaSki(x,t) represents the rapid variation in Whereéja(kl) is independent of.
the directions perpendicular to the magnetic field lines. The ~ From theO(5) part of Eq.(4), we have the equation for
wavenumber vector is given byfvs&. The eikonal the second-order fluctuating functidg, as
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-0 e*ikrf'ai[eikrﬂa? (k)]=- LATIVR Yo (k) - 22| Ey(k )+3v><|§ (k,)
a (9§ a2\ "L ot malav al\hLl M, AR c JARANE

of e 1 of e
ot 2 Byl )+ SvxBa(k, )) LU
T SO ot ar(K]
X El('ﬁ)*'EVXBl(kL) a——i_ca[fal(ki)] (16)

whereE,(k,)=—ik, ¢(k,), Bi(k,)=ik, XA(k,), Ex(k,)=—Va(k,)—c taA(k,)/at, andB,(k, )=V x A(k,). HereC
denotes the linearized collision operaksee Eq.(4.24) in Ref. 17 for its definitioh The solvability condition of Eq(16) is
written as

3€ S—ie”& "Pa[ RHS of Eq.(16)]=0 (17

which leads to the gyrokinetic equation.

From Eg.(17) with Egs. (9), (10), (15 and (16), we obtain the nonlinear electromagnetic gyrokinetic equation after
lengthy calculation as

9 = .. £ d€ ik pumlit
o Lotk Vaa|Rak,) = ¢ 5 ek paCh ok, )]

i(bxk,)

d
maQa - V+{maV0 VVO+ mal)”,[b (VVO) + (VVO) * b] + eaVCDl}m fao

= ea{ﬂa( ki)

Vo-VB\[ 9 4 L — ot e,
X| V-Vo=b-VVo b+ —5 mﬂLﬁ fao—€atha(K ) Lo == Jo(va) v Ak, )5 ﬁo a0

(9fa0 (ea;ﬂa(ki))
ow

d
+£0 UHb \%

(€atha(k))) v[b-Vfa—eaxa(k,)

UJ_ B||(kJ_)(

Jd \— c ~ ~
Fvaeag &W“‘@)Eofao‘Fg,E_ [b- (K] XKD Tiha(KDR(K)), (18)

whereh,(k, ) is independent of and is related td,(k, ) by

- , - 1 A
Palky) =g Pl (k) — < (Votv)-Alky)

Vo
R . 1 . _ Vo R
fa(kl)=ea( d)(kl)—EVO-A(kL)) JO(ya)((f’(kl) Ak,) A|(kL)>
a - 1 . v] B||(ki)
x| Bk = T Vo-Alky) Hhr e
_1 /A k _ _ikL'paA k R . R 1 A
CUH H( )| —e Pa(ky) Xa(ki):elkl'pa(ikL'pa) ¢(kL)_E(V0+V,)'A(kL)

0, p —ik, -pa R Vo - .
Bop *Nalku)e e 19 ——yaama)(qs(kl)—;"-A(kl)—”;A.(kL))
. +[vado(va) = Ja(¥. >] (k” (20)
In Egs.(18) and(19), ¢,(k,) is defined by i e é Kk,
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WhereAH(kL)Eb.A(kL) andéu(kL)Eib.kaA(kL)_ Here WhereX=x— p, denotes the position of the guiding center.
Jo andJ; are the zeroth and first-order Bessel functions ofln deriving Eq.(22), we have used

va=k, v|/Q,. In Eq. (18), the first-order guiding center
drift velocity vy, is defined by

S, (D=5 (X, +ik, -pa,

_d/v'xb
Vda=& Qa
_ cu C 2 . . .
= eaB(V><B)-bb+ eaBbX[,uVBera(vH) b-Vb ha(x):% Ra(k exiSy (X)],

+€,VP1+myVo VVo+myb-VVy
+my|Vo- Vb]. (21

Representation of the gyrokinetic equation in the real %(X):%‘, z//a(kl)emekL(X)]
x-space is useful. Following Eq12), multiplying Eq. (19)

. . . " 1 "
by exmski(x,t)] and summing up with respect tg , we —{ H(X+pa)— E(Vo+V')'A(X+Pa)> (23

hav;: B A 1\/ A a0 X
a0 =es B0 = VoA | —
- 1 LA . where (- )x represents the gyrophase average Wtliixed.
+€4 1 ¢(X)— - (Votvjb)-AX) | = ¢a(X) Multiplying the gyrokinetic equatioil8) in thek, -space by
exp[iS&(X)] and summing up with respect o gives the
a0 inet i iabati ing distri-
gyrokinetic equation for the nonadiabatic fluctuating distri
% Bou +ha(X), (22 bution functionh,(X,w,u) as
[ cC_. . Lo
o1 T Lot | Vaa— g V(X)X b |-V Iha(X) = (Calfa(X+ pa) I)x
cC_. ) a a - .
=§V¢a(X)><b~ V—{maV0~VVO+mavH[b~(VV0)+(VVO)~b]+ean>1}a—W fao—€a E+£0—v”b-v Pa(X)

a0 9%a(X)
ow 2 gw Ul

, ] Vo-VB\[a 4
‘b~Vfa0—ea)(a(X) VVO_bVVOb+ + fao

B Jlow Bau
- AT J— €, , = d J \—
_eal/fa(x)ﬁom_€U\\<A\\(X+Pa)>xmﬁofao_?(VLA(XJFPa»x ﬂﬂLﬁ Lofao, (24
|
where the spatial gradient is taken with respecKtas V YaX)=> )}a(ki)exp[iSkL(X)]
=gdl9X and we have used ki

= < Pa V[ <Ai>(X+Pa)
(AX+ pa))x= 2 Jo(va) Ak exdiSy, (X)],

1 "
—E(V0+V')-A(X+pa) > . (25
X
A BH(kl) We should note in Eq(24) that differences of equilibrium
v - AX+ =—>1J e 4 q
(VLA pa))x %: (2ol k, quantities’ values at the particle’s positionfrom those at

the guiding center’s positiorX are neglected ag)(9)

X exriiSki(X)], smaller[ B(x) =B(X), Vo(x)=V(X), and f 4o(X)=f 0(X)]
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although that is not the case for the fluctuating quantifies static potential is also assumed to bg a surface function as
A, and h, because of small perpendicular wavelengths of?1=®1(r). From Eq.(26), we easily find that
O(p,)- In Appendix A, the charge neutrality condition and
the Ampee’s law are given as the constraints on the self- V- VB=V-Vo=b-VV,-b=V,- VVy-b=0 @27)
consistent electromagnetic fluctuations.

from which with Egs.(10) and(11) we have
I1l. CYLINDRICAL AND SLAB CONFIGURATIONS

Let us consider a cylindrical configuration in which the

- . . dw d _
magnetic field and the mean flow velocity are given b SWI [ ER) - /
g y g y (dt) _( dt) =0, EO—(V0+va)-V. (28
0 0
B=By(r)8+B,(r)z, Assuming the lowest-order distribution function to be homo-

geneous in the andz directions, we obtain from Eq10)
—Vg(r)?HVZ(r)i, (26 with Egs.(26)—(28)

respectively, where the cylindrical coordinates{,z) are
used and the unit vectors in tire 4, and z directions are Vo Vigo=bVfau=Ca(fa0)=0. (29)

denoted byr, 6, andz, respectively. Surfaces defined by \\hich requiresf,, to be the Maxwellian distribution func-

=const are regarded as magnetic flux surfaces. IN(E),  ion fao=Na(My/27T,) 32 exp(—wW/T,) with the densityn,

By(r), B,(r), Vy(r), andV,(r) are flux surface functions —na(r) and the temperatur@,=T,(r). Thus we have
independent of¢ and z. The lowest-order electric field f ol Ipn=0.

is given from Egs.(7) and (26) as Eo=—[d®o(r)/dr]r Using Egs.(26)—(29), the gyrokinetic equatioril8) is
=—C Y Vy(r)B,(r)—V,(r)By(r)]r. The first-order electro- simplified for the cylindrical configuration as

J
E"‘(Vo‘f‘l)”/b)‘V‘f'ikJ_'Vda

" dé . R
ha(k,)— jgge'kl'”acé[fa(kl)]

— 5 I(kaL) a ”
—euilall ) g |V Vs Ve PV (b (P  (VVo)-by
ea J y ¢ 2 ”\17 '\ "
gt Ve ¥ )tﬂa(kﬂ faot g 2 [be(k XKD TPa(kDAA(K)), (30

ki +k =k,

whereh,(k, ) is related tof (k) by

fao+ha(k, )e ki Pa, (31)

o €/ ~ 1 ~
fa(k )=- -ITa( d(ky)— EVO'A(kL)

The gyrokinetic equation for th&-space is obtained from E¢B0) by applying the same procedure as in deriving &4) [or
directly from Eq.(24) with using Eqs.(26)—(29)]

+| Votv[b+Vya— %V%(Wb ~V}ﬁa<><>—<c;[?a(><+pa>]>x

at
C_ .
== Vil(X)xb| ¥ V¢>1+ v0 YVt o ”{b (VVo)+(VVy)-b} |f
e ][ d .
+T—a E"'VO'V ’pa(x) faOv (32)

whereh,(X) is related tof ,(x=X+ p,) by
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- €l ~ 1 . "
fa0 == d() = Vo AX) [fao+ha(X). (33
a

In a similar way as in the case of the cylindrical configu-
ration, we can consider a slab configuration in which the

magnetic field and the mean flow velocity are given by

B=B,(X)y+B,(X)z, Vo=V, (X)y+V,(X)z, (34)

respectively, where the Cartesian coordinatesy,z) are
used and the unit vectors in the y, andz directions are
denoted byx, y, and z, respectively. Planes defined by
=const are regarded as magnetic flux surfaces. In(&,
By(X), Bx(X),Vy(X), and V,(x) are flux surface functions
independent ofy and z. The lowest-order electric field is
given from Egs.(7) and (34) as Eg=—[d®(x)/dx]x
=—c‘l[Vy(x)BZ(x)—Vz(x)By(x)]f(. The first-order elec-

trostatic potential is also assumed to be a surface function

®,=>,(x). Then, for the slab configuration, Eq27)—(29)
are still valid andf .4 is the Maxwellian distribution function
fa0=na(M,/27T,)%? exp(—-W/T,) with the density n,
=n,(x) and the temperatur€,=T,(X). Thus we find that

H. Sugama and W. Horton

J _ c
EQ‘FVQ'V"‘”(L' TeBbX(ZieBV(Dl—’_ miVO'VVo)}

edp(k,)
Te

cTe
" eB

efﬁ(kﬂ
Te

X[ (1+k2p2) +ik,

b

B

X| —=bXVIn ng+BVX

1
= Ecspg

>

ki +k =k,

eda(k]) epa(k))
Te Te

[b- (k] XK)I(K)?

—(kD)?] (35)
where cs=(Z;To/m;)¥2and ps=cs/Q;. Equation (35 is
valid for the both slab and cylindrical configurations, and
reduces to the Hasegawa-Mima equation derived by Frieman
and Chenin the limit of Vo—0. The energy balance equa-
tion is obtained from Eq(35) as

J 1 .
Ta_to_FVO.V) % (EHimi<|VE(kl)|2>ens

1n.e? . )
+§ Te <|¢(kj.)| >ens>

the gyrokinetic equation for the slab configuration is also

given by Eq.(30) [or Eq. (32)] with Eq. (31) [or Eqg. (33)]
andV,y-VVy=b-VVy=0. In Eq.(30), the flow shear term
with (VVg) - b survives in the slab limit, in whicdV,(x)/dx
anddV,(x)/dx are contained.

We see from Appendix B that, in E¢30) [or in Eq.
(32)], the term with ¢/dt+V,- V)i, also contains the flow
sheard(r ~1V,)/dr anddV,/dr for the cylindrical case and
dV,/dx anddV,/dx for the slab casgsee Eqs(B1)—(B4)].

= —kZ nimi(VE (K VE(K L) Yens: (Y Vo), (36)

whereve(k,)=—i(c/B)d(k, )k, Xb is the EXB drift ve-
locity due to the electrostatic fluctuations. Equati@® and
(36) are rewritten in thex-space as

J Cc
|:(?—t0~|—[vo+ TeBbX(ZiEBV(b1+ miVO'VVO)] V:|

These flow shear terms were missed by Artun and Tang

when they derived the linearized gyrokinetic equation de-
scribing electrostatic fluctuations in the slab system with

sheared equilibrium flowlsee Eq(30) in Ref. 6 and Appen-

dix B]. Compared to their gyrokinetic equation, our gyroki-

netic equation30) [or (32)] is not only nonlinear and elec-

tromagnetic, but also contains even in the linear electrostatic
limit these new flow shear terms, which are deeply related to = cspibx V

the anomalous viscositfor Reynolds stregs

X[(l—ini)(e(ﬁ_(X)) +Ce—TBe —bXVIn ng+BV
b ed(X)
“\B VL( . )
ed(¥)| __,[ed(x)
T )‘V L( T ) 50

It is instructive to derive the Hasegawa-Mima equaifon and

from the gyrokinetic equatiorf30) and see how the flow

shear effects enter it. Following the same procedure as i
Frieman and Chenwe consider a collisionless plasma con-

sisting of adiabatic electronsn{/n,=e®/T,) with T,
=const and a single species of ions with chaegeZ;e and

low temperaturel;<T, (k, p;<1), and assume that the ion

nonadiabatic distribution function has the forim(X)

=f,,n{"@(X)/n; . Then, from the electrostatic version of the

gyrokinetic equatior(30) [or (32)] for ions with the charge

neutrality conditionn,=Z;n,, we obtain the generalized

Hasegawa-Mima equation in the fluid limit as

1 - ) 1ne€” .
EWLVO'V Enimi<|VE(X)| >ens+§-|—_e<|¢(x)| >ens

= — M (Ve(X)VE(X) Yens: (Vo) (39)

respectively, where V,=V-bb-V and  Vg(X)

=—(c/B)V¢(x)Xb. The right-hand side of Eq36) [or
(38)] represents the energy transfer from the background
sheared flow to the fluctuations through the Reynolds stress
multiplied by the flow shear.

The reaction of the divergence of the Reynolds stress on
the flow profileV, is given by
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J A m, 3/2 ma(vr)Z
E(nimivo):_V'(nimi<VEVE>ens)+' T (39) faozna 27TTa ex - 2Ta
Thus the change in the kinetic energy in the flow profile m, \¥2 €
=Na| 5—=]| exg-—=— (44)
27T, Ta

J (1 A o~
ﬁf Enimivé d3x=f NiMi(VEVE) ens: V Vo d3X+ - - - _ o
40 which satisfiesLyf ;0= Ca(f40) =0. Here the temperature
(40 Ta=Ta(¥) and N,=N,(W¥) are flux-surface functions, al-
is equal and opposite to the change in the total energy in thiough generally the density, depends on the poloidal

turbulent fluctuations in the absence of sources and dissip@ngle 6 through=, and is given byn,=N, exp(~Za/T,).

tions. The direction of the energy flow between the shead he charge neutrality ;e,n,=0 imposes the constraints on

flow and the turbulent fluctuations depends on the phase reb; andN,.

lations, or equivalently, the tilting of the vorticAWhen the

turbulence is driven by the ion temperature gradient, the

shear flow is typically ggnerated: Now we consider howA_ Gyrokinetic equation

these processes appear in the axisymmetric torus where the

zeroth order flow must be toroidal. Using Eqs.(41)—(44) with the independent phase-space
variables k,e,u,£), we find that, for the axisymmetric con-

figuration, the gyrokinetic equatiofi8) simplifies to

IV. AXISYMMETRIC TOROIDAL CONFIGURATION 3

In this section, we consider an axisymmetric system, for{ﬁ +(Votu[b)-V+ik, -Vaa
which the magnetic field is given by

~ C
haki)-g 2 [b(k]

ki +k =k,

A%W ''\IA ” df ik, - ¥
B=1(¥)V{+ VXY, @ XK (K Ra(K )~ § 5=e"mCh [T,(k)]

where( is the toroidal angleW represents the poloidal flux, i(bxk,) e, d(®) m
andl (¥)=RB; denotes the covariant toroidal component of = —e,i,( kL)—QL' \Y [ T—a \Pl + T—a( R2V¢
the magnetic field. Hinton and Woffgshowed that, in the Maila a d a
axisymmetric systems, the poloidal flow decays in a few | aVé e[ d .
transit or collision times and that the lowest-order flow ve- + Evﬁ)ﬁ}v‘l’ faot 57 E"'VO'V) Pa(ky)|fao
locity Vq is in the toroidal direction and is derived froly, a
+VoxBlc=0 as = f a0l War (K1 ) X81 +Wan(K, ) X5, +Wav(K, ) X5y

IPo(¥) +War(k ) Xr], (45)

Vo=Vol, Vo=RV!=-Rc

o (“42)

where the lowest-order electrostatic potentaj(V) is a which is written by thex-space representation as
flux-surface function andEg=—V®y=—(9Py/9V)VP.
We should note that the toroidal angular velocityf
=—cddy/dV is directly given by the radial electric field
and is also a flux-surface quantity. Then, we easily find that Lea
Vo-VB=V-Vo=b-VV,-b=0 andV,-Vb=b-VV,. Here —(Calfa(X+pa)I)x
it is convenient to use independent phase space variables

0 c_ . ”
E+(Vo+v|’b+vda— 5 V(X)X .V}ha(X)

(X,e,u,&) instead of &,w,u,£&) where the new energy vari- C_. € HP1) my( _, p

ablee is defined by =g V)X |V - g [ RV

e= My )2+E,, E.=e,d;— tm,V2. (43) | ave e[ d .
o BoTe o e g0l 33 Y| faot 1| | 51+ Vor V| #X) |fao

In Eq. (43), ®,=®,—(P,)[=O(8)] is the poloidal-angle- R R R
dependent part of the electrostatic potential andm,V3 = f a0l Wa1(X)X51 + Waz(X) X85+ Way(X) X5y
represents the potential for the centrifugal force due to the - A

toroidal rotation. The magnetic flux surface average is de- +War(X) Xar]- (46)
noted by(-). It is shown thate and u are conserved along S S _
the lowest-order guiding center orbide/dt),=(du/dt),  1he nonadiabatic part of the fluctuation distribution function

=0. Thus we haveCy=(Vo+v b)-V with the independent ha(k,) in Eq. (45) [h4(X) in Eq. (46)] is related tof 1 (k, )

variables &, u,£). [f.2(¥)] by Eq.(31) [Eq. (33)].
The lowest-order distribution functiofy is written in In the right-hand side of Eqg45) and (46), we have
the Maxwellian form defined the thermodynamic forceX%; ,X5,, X5, X5,) as
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9 IN(N.T,) ey HPy) alnT, In deriving Egs.(48) and (49), we have used Eq$B1) and
A= T oy T, av ' a2 gp (B5) in Appendix B andk, - (R9)=—B~1(k, xb)-V¥.
The gyrokinetic equatiof45) [or (46)] is slightly differ-
A 1 V¢ ¢ &, A1 ent from that derived by Artun and Tahtpr the toroidally
XN= T 29 - T. o2’ a7 (47 rotating plasma. Their equatigfl) [or (56)] contains a dif-
a a 0¥ a ferent magnetic fluctuation term from ours and they do not
seem to treat correctly the ballooning representation for the
rotating system in which the temporal dependence of the

and the fluctuating functionsi(y; ,W,o,Woy,W,1) as

\,”\,al(kL)EiCkL . (RZ) ‘Aﬂa(kj_)! radial wavenumber should be considef@éhterestingly, by
the ballooning representation, we see that our gyrokinetic

- , " A e 5 equation(45) [or (46)] coincides with Brizard’s resuft ob-

Waa(k ) =ick, - (RE) ‘/’a(ki)(-r_a_ E) g tained by the Hamiltonian method for the collisionless case

[see Eq.C8) in Ref. 12. The use of the correct ballooning
representation is crucial for obtaining the formulas in Appen-
dix B and the expression faw,, which is deeply related to
the definition of the anomalous momentum transgortvis-
cosity) as shown later.

- I oA
WaV(kL)EmaC< R2VE+ Evﬁ)iki'(Rg)wa(ki)

1 N “
+eak_2(kLkL):(R§)(V\P)Xa(kL) )
1

B. Entropy production by anomalous transport

~ d - Vo In the same way as in Refs. 23 and 24, the contribution
K )=e.J — Vo V|| bk )~ — Ak { ' \
War(K)=€3do(va) ot 0 )(‘75( ) c (k) from the turbulent fluctuations to the entropy balance is rep-
, , resented by
- T | +edalra s
c INRL a’1lYa) 7 <S§>5—< f dSU( In f_a1+ 1)(Da—£nf"§)>
SRRV (él(kl)> (48) 19
a0 k ' =—— (V'35 a
" v v Y Isd +Hoa), 0

which are written by theX-space representation as ) )
where the surface-averaged radial anomalous entropy flux is

given by

War(X)=2 Wai(K,)exdiS, (X)] .
" Jo= Se_Ea ray Ja (51)

Sa Na Ta a Ta
and the surface-averaged anomalous entropy production rate

is written in the thermodynamic form as

C .
=~ 5V I(X)Xb- V'V,

Waa(X) =2 Waa(K, )exdiSy, (X)] 1
= ) (o) =TaXG+ T aXG+ IIAXA,+ QiXar. (52
a
Cos e 5 A A AA -
=— EVwa(X)x b-v¥ T 73 The anomalous quxesFQ,qa/Ta,Ha ,Q3) conjugate to the
a

forces X5, , X5, ,X4,,X4;) are given by the correlations be-
tweenh, and W,1,Wao,Way,WaT) @S

(49 F§E<<f d3vk2 ﬁ;(kj_)\;val(kj_)>>

Way(X)= 2 Way(k,)exiSy, (X)]
cC [ 1 oA
= —§V(¢<x>—5<vo+v >-A<x>)

xb-V«pma(v0+v')-(R?;)> , A
X Qa

<<Jd3vk2 ﬁ;<kl>v”va2<kg>>
War(X) =2 War(k, )exdiS, (X)] o
< =<< [ & ha<><>waz<X>>>,

d i, (53
=ea< (a_t +V0(X) . &

devKE ﬁ§<kl>6vav<ki>>>

. 1 A
— —(Va+V')-A .
d(X) C( otV') (X))>x =<<fdsv ﬁa(X)WaV(X)>>7
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2

Qas<<fd3v§ ﬁ;<kl>v‘vaT<ki>>> <(z man, R2vz>+$%( » na)

:<<J'd3vﬁa(x)WaT(x)>>a E <fd v maU{(D +Ia)> (57)

where((-)) denotes a double average over the magnetic sur-

face and the ensemble. Whereva—Bp/(471-Zan;,1m‘,31)1’2 is the poloidal Alfven ve-
From the gyrokinetic equatiofd5), we obtain the bal- locity, v, =RZ-v= R?V+(1/B)v | +RE-v| is the covariant

ance equation for the fluctuation amplitude as toroidal component of the particle velocity in the laboratory
frame,V'=27$d6\g (0: a poloidal anglgis the specific

d 1
— 3 _z
3t<<Jd vZfaO k.

) st 1 volume, andyg=(V¥-V6xV{) 1=1/B? is the Jacobian.
- U; In the energy balance equatid¢s6), p,=n,T, is the pres-
sure, EW=—c"19A/4t is the inductive electric field, and
u,q is the first-order flow velocitysee Eq.(16) in Ref. 24].
Taken in the order of appearance, the right-hand side of Eq.
(56) describes the viscous heating, the work done by the
radial electric field during the transpdrt,, the work done
>>

sz F‘z(kl)eiki"’acé[ﬁa(kﬁe_ik“’a]>>
1
d
= E< < f d3v2f by the inductive electric field on the surface flowg,, the
cooling from a secular rise in the local density, the heating
3 CLif by the secular rise in the moment of inertia, the collisional
j d —ha(X Cilha(X)1) ) =(0%). (54 and turbulent energy transfers in the plasma frame and the
auxiliary injected power.
Thus in the stationary turbulent states, the anomalous en- In the right-hand side of Eq$55—(57), the terms with
tropy production driven by the turbulent transport equals thela are written to represent the case where the right-hand side
collisional dissipation of the fluctuating distribution function, of EQ. (2) contains external sources such as neutral beam
which results in the positive definiteness of the total anomainjection. Since we assume thag= 0(5°), the gyrokinetic
lous entropy production= ,T,(o58) = — 2 T.((J d3 (1/f ,) equation(45), which is of O(6), is not affected bﬂa _
Xﬁa(X)C;[ﬁa(X)]»BO. The symmetry for the quasilinear In Egs. (55—(57), the surf_ace-averaged radial particle
anomalous transport matrix relating the anomalous fluxefuX I'a, heat fluxd,, and toroidal momentum flukl, are
(2,027, 112,Q% to the conjugate forcesX(, X%, Wrttenas

XAy, X57) is described in Appendix C.
r E<Jd3v fav-vqf>

C. Balance equations for particles, energy,

and toroidal momentum :Fg|+l—~gcl+l—~;|+l—‘gE)+an0m’
Taking the velocity moment and the magnetic surface
average of Eq(2), we obtain the particle density equation: s 5
<fd vf (T———>v V‘If>
9(Na) 3 : (58)
+— W(V ry= d>v 7,); (55
at \ J ncl (E) anom
_qa+qa +qa +q q '

the energy balance equation:

Haz< J d3vfamav§v~V\If>

34 1 9 v’ N 5_|_ r
E;(pa> Vﬁ Ua o la a
hy ) =I5+ TP+ TG + TP + IO,
:_Haﬁ_eara oW +(Na€alay- E(A)>

Here the superscripts “cl” and “ncl” represent the classical
~ ONgy and neoclassical fluxes, respectively. The fluxes with the su-
—ea< <I>17> _(V§)2_<man R?) perscriptsH and () are the gyroviscosity-driven and
inductive-electric-field-driven parts, respectivelgee Egs.

5 (20), (22—(24), (A6), and (A7) in Ref. 24 for definitions of
+< J d*v S(Ca+Da+Ia)>; (56)  these fluxek The anomalous fluxed "™, g2 T, , T2
are rewritten in terms of the gyrophase-dependent part of the
the toroidal momentum balance equation: fluctuation-particle interaction operatét, as
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ranom_ _

aCU@I% @avi-(Rb>,
1 u
e <fd3v D (Ti——) <R§>>,

2

mg;C ~ 1 <
%[ ).

[ranom. _

where v/ -(RQ)
E%A[vﬁj(vi)] =
(RO(RY).

Comparing the anomalous fluxes defined by E&§S)

with those defined by Eq$59), we find that

FA Fanom

anom

ga=da

MMA=112nomy <<fd3v f A (ROV- V\If>>

We see from Eq(60) that the anomalous heat fllq{: and
the anomalous toroidal momentum fli; include the fluc-

tuating potential energy transpoet((/d3v fo(d—c 1V,
-A)v-V¥)) and the toroidal momentum transport due to the
fluctuating vector potential e /c)((Jd% f,A-(R)v

-VW)), respectively.

In the right-hand sides of Eq&6) and(57), we find the
anomalous termgfd3v eD,) and = ([d3 mav Dy). The
anomalous heat production terfid®v £D,) in Eq. (56) is

rewritten as

1
<f d3v 8D> Qa v &‘If[ norr)]
VS’)

A anol
+ (I3 —T15"M) | — T

which shows that, in the energy balance equati@®) with
(58), g> andII” replaceq2™™andI12"Mand thatQ’ appear
as the anomalous heat transfer term. Thus the definitions d
the anomalous transport fluxes given by Exp) are reason-
able not only from the viewpoint of the thermodynamic ex-
pression for the entropy production in E§2) but also from

=-B }{v'Xb)-V¥  and 2(?;2
[RAVE+(1/B)wf v - (R) + S ALE

+ea<<fdsv fa(fb— %VO~A)V-V‘I’>>,

H. Sugama and W. Horton

Ea: <fd3v mau§Da>

—(V'((E,EY+BB")))

e 8‘If
1 1 A
== |V g (kRO
XlA(kL)|2>>+§ (HQ—HQ”"”)”, (63

where the ordering ¢~V,y-Alc is used and terms
of O(V3/c?) are neglected. We see from Eq$63)
that the anomalous momentum production frafy is
due to the Maxwell stress of the fluctuating electromagnetic
fields. When Eq(63) is substituted into the momentum bal-
ance equation(57), the Maxwell stress gives—(4
V') (019W) [V' {2k (((k k) (RO(VW)[A(KL)I))]
and replace$I2™to 115 .

Using the charge neutrality condition and the Amrgie
law for the self-consistent fluctuatiofisee Appendix A we
have the ambipolarity of the anomalous particle fluxes
Eaeal“g\zo and the cancellation of the total anomalous heat
transfers ,Q4=0, which shows that the self-consistent fluc-
tuations cause no net heating of the total particles but result
in the anomalous heat exchange between different species of
particles.

V. CONCLUSIONS

In this work, we have presented the nonlinear electro-
magnetic gyrokinetic equation for plasmas with general mag-
netic geometries and large flow velocities on the order of the
ion thermal speed. In the derivation, we have used the recur-
sive formulation to give the relation of the perturbed distri-
bution function to the equilibrium distribution and the elec-
tromagnetic fluctuations, since it is useful to retain
collisional effects and synthetically formulate the turbulent
and collisional (classical and neoclassigafransport pro-
cesses. The reduced forms of the gyrokinetic equation for the
slab, cylindrical, and toroidal configurations were obtained
Fom the general ongsee Eqs(18), (24), (30), (32), (45),
and (46)].

We specified the source terms in the gyrokinetic equa-
tion, which is related to the anomalous momentum transport

that of the energy balance equatlon The anomalous toroidhfee Egs(B3)—(B5) andw,y in Egs.(48) and(49)]. We also

momentum production term ,( fd3v mav /D,) in Eq. (57)

is given by

> <jd3v manga>

a

)

. 1 .
E+ —-vXB
c

-3 e (R0 [,

derived the generalized Hasegawa-Mima equatig) [or
(37)] which correctly describes the energy transfer between
the background sheared flow and the turbulent energy
through the Reynolds stress tensor contracted into the flow
shear tensofsee Eqs(36) and(38)].

Based on the gyrokinetic equation for the toroidally ro-
tating system, we have defined the conjugate pairs of the
anomalous transport fluxes in E¢p3) and the thermody-
namic forces in Eq(47), the inner product of which gives

Using Eq.(60) and the Maxwell equations for the fluctuating the anomalous entropy production rate in Esp). The On-

electromagnetic fields, E@62) is rewritten as

sager symmetry of the quasilinear matrix relating the anoma-
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lous fluxes to the conjugate forces is shown. Also given are

’ ; : A_
complete balance equations for particles, energy and toroidal Ea: Qa=0. (A8)
momentum including the classical, neoclassical, and anoma-
lous transport fluxefsee Eqs(55)—(57)]. The self-consistent fluctuations cause no net heating of the

total particles since the source of the anomalous heating is
the energy of the fluctuating electromagnetic fields, which
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In the right-hand side of the gyrokinetic equati(B0)

APPENDIX A: SELF-CONSISTENT [or (32)], we easily find the shear flow term which is propor-
' ) ional {b-(VVy)+(VVy)-b}. We al hat th

ELECTROMAGNETIC FIELDS AND AMBIPOLARITY thna tOvH{b (v Q) (v 0_) b}. We also .See.t atthe term

CONDITION with (d/dt+ V- V)i, contains other contributions from the

flow shear by noticing the following formula:
Here we show the self-consistent constraints on the tur-

: ; ; ; J Jd |\ 17 I\~
bulent fields, which are given by the charge neutrality con, | ~ L2 — Z 2
iyl €a| 7+ Vo(X): o | da(X) =eal | 7 +Vo(x)- = || $(%)
_of - Vo . 1 " A .
Ap“| ¢(k)— Ak —cVotV)-AX) ) +Pa,
X
(B1)

=47, e f d% Jo(va)ha(k Al
2a 2 ol valha(k) (A1) where the first group of terms in the right-hand side repre-
and, the parallel and perpendicular components of the AmSents the increase of the fluctuation potential energy7and

pere’s law is given by
. 4 X .
kaH(kl)=%TZ eaJ d* Jo(va)ha(k )v[,  (A2) Pa=ea<(Vo-Vpa—pa-VVo)~V
. 1 R
B = T e[ o sl (83) [ do0- Govorv-aom) | " 52

where Eg. (31 and the Debye length \p In deriving Egs.(B1) and(B2), we have used the ballooning
E(4W2anae§/Ta)_1/2 are used. The use of the Anpés representatioril2) for the system with the large flow.

law is justified, since the displacement current is neglected .For th? slab and cylindrical cases considered in Sec. lII,
due to the gyrokinetic ordering. Equations1)—(A3) are  Pa Is rewritten as

rewritten in thex-space as oV c 1
752——y<m A y( —)V dX)— =(V +v’)-A(x))
N Vo . o a ox \ A B c 0
)\Dz(fﬁ(x)—?o'A(X) =47, eaf d3v ha(x—p,),
a R v, N -
(Ad) Xb-x) ——(my!-z| — =|V| &(x)
x OX B
2 A Am 3. R ’
“VEA)= 2 e | d% ha(x—pavf.  (AS) 1 A .
a — s (Votv')-A(x) | xb-x (B3)
. 4 3 , X
VB|()Xb=—-2 e | d% Ry(x—pa)V. . (A8)  and
-1

Substituting Eqs(A1)—(A3) into the definition of the P=— M< mavi-(rb)( - E)V( d(X)— E(Vo
anomalous fluxes in Eq53), we find that the anomalous ar B c
particle fluxes are intrinsically ambipolar oV

+v')-A(X) ><b-F> —a—rz<mavi-2
> e 4=0. (A7) X
a
C - 1 " ~

From Egs.(20), (48), (53), and (A1)—(A3) with the quasi- (—g)V<¢(x)—E(Vo+V’>-A(X) ><b-r> ,
steady state ordering - )end dt=O(5%), it is shown that the X
species summation of the anomalous hea@ﬁgvanishes (B4)
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respectively. ThusP, is given by the product of the flow €
shear and the perpendicular momentum transport due to the m_a<V¢(X:x+Pa)'[EQ-(BS)]>x
fluctuations.

Equation (B1) is still valid for the axisymmetric case
considered in Sec. IV if we note that the spatial gradient
dldX should be taken with the energy variakldixed (not - R
with the kinetic energyv fixed as in the slab and cylindrical X (bXx)-V(x))x fag (B9)

caseg Then, the first group of terms in the right-hand side of\\hich is found to be the same as EB7) by using Eq.(B3)

Eq. (B1) is written asw,r(X) in Eq.(49) andP, is given by  for the electrostatic slab case anb>(X) (bxx)=1—bb
the product of the toroidal flow shear and the anomalous ::

transport of the toroidal component of the perpendicular mo-

maC . - -
=g [ (Vo) (X [(bXK) v,

Artun and Tang also derived the nonlinear electromag-

mentum as netic gyrokinetic equation for the toroidally rotating axisym-
A oV A c A metric systend. In fact, (&/at+V0~V)fz/a appears in their
Pa=— a—\lf< m,v; - (Rg’)( - §) V( d(X) gyrokinetic equatiort56) in Ref. 7. However, the term in the

form of Eq. (B7) is still missed in their gyrokinetic equation
because they did not use the ballooning formalism taking
X b'V‘I’> (B5  account of the temporal dependence of the radial wavenum-
X ber. Actually, our gyrokinetic equatid@5) for the toroidally
L . A rotating system is found to coincide with Brizard's reSult
which is used to obtain the expression fegy in Eq. (49). by the correct ballooning representation. Here, we will see

If we use the same fluid approximation as made to derive, iy that the term in EqB7) can be derived also from their
the generalized Hasegawa-Mima equai@b) [or (37)], the  hrhcedure in Ref. 7. To show this briefly, we only explain

velocity-space integral of the nonadiabatic ion distributiony, ;.\ o derive the electrostatic part of E@®7). Artun and

1 A
~ Z(Vo+v)-A()

function h;; multiplied by 7; gives Tang seem to have missed the contributions of the third
group of terms in the right-hand of EB1) in Ref. 7, which
f dsv<ﬁi(x)’i)i(x)>ens:_nimi<\7E(X)\7E(X)>ens:(VVO)a are written in our notation as

BO L pv, v —v - TVexb
40,

where V,=V—bb-V and vg(X)=—(c/B)V(X)xb.

Equation(B6) represents the energy transfer from the back-

ground sheared flow to the fluctuations through the Reynolds 1 gV¢ 1

stress multiplied by the flow shear, which coincides with the = o in . (Rg)(z Ib+VW¥XDb

right-hand side of Eq(38)]. ThusP, is deeply related to the a

anomalous momentum transpdidr viscosity, which re- where Eqs(41) and(42) are used. Then, we find from Egs.

duces to the Reynolds stress in the fluid limit. (44) and(50) in Ref. 7 that the terms in E¢B10) lead to the
Artun and Tang derived the linearized gyrokinetic equa-following additional term in the right-hand side of the gyro-

tion describing electrostatic fluctuations in the slab systenkinetic equation

with sheared equilibrium flowHowever, their gyrokinetic e

equation misses the contribution frgBy in Eg. (B3), which — _afa0<VJ_ &(X:XﬁLPa) -[Eq.(B10)])x

is included in our gyrokinetic equatidi832) and is written as Ta

+Vv]| Xb-VVy+VVqy-v| Xb)

: (B10)

1 MaC (M( "(ROV (X)X b- VW), f (B11)
T Pafao- (B7) BT, o¥ * * x Ta0
a
which is found to be the same as the electrostatic part of Eq.
Now, we will see that these terms can be derived from th€B7) by recalling Eq.(B5).
last term in Eq(27) of their papenRef. 6, which is written
in our notation as

1 m APPENDIX C: ONSAGER SYMMETRY OF
X (VVo)- (X ) T[(bXX)-v' 1(bXX)f.o, (BS QUASILINEAR ANOMALOUS TRANSPORT
o T, X (Vo) (0X R JL(bX 30V (bX ) Tg, (B8)  ZOASILITER

whereV, is given by Eq.(34). It seems that Artun and Tang Here we assume that the spectra of the electrostatic fluc-
did not retain this term’s contribution to their resulting gyro- tuations¢(k ) are givena priori and that the nonlinear term
kinetic equatiorfsee Eq(30) in Ref. 6]. Following the pro- in the gyrokinetic equatiod5) [or (46)] is negligible. Then,
cedure in Eqs(24)—(28) of Ref. 6 and retaining the term in using the definitions in Eq(53) with the solution of the
Eqg. (B8), we find that the following additional term should linearized gyrokinetic equation, we obtain the quasilinear
appear in the right-hand side of the gyrokinetic equation: anomalous transport equations
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