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Nonlinear electromagnetic gyrokinetic equation for plasmas with large
mean flows
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A new nonlinear electromagnetic gyrokinetic equation is derived for plasmas with large flow
velocities on the order of the ion thermal speed. The gyrokinetic equation derived here retains a
collision term and is given in the form which is valid for general magnetic geometries including the
slab, cylindrical and toroidal configurations. The source term for the anomalous viscosity arising
through the Reynolds stress is identified in the gyrokinetic equation. For the toroidally rotating
plasma, particle, energy and momentum balance equations as well as the detailed definitions of the
anomalous transport fluxes and the anomalous entropy production are shown. The quasilinear
anomalous transport matrix connecting the conjugate pairs of the anomalous fluxes and the forces
satisfies the Onsager symmetry. ©1998 American Institute of Physics.@S1070-664X~98!02607-X#
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I. INTRODUCTION

Gyrokinetic equations1–13 give a foundation for investi-
gating microinstabilities, which cause the turbulent
anomalous transport in fusion plasmas. They describe fl
tuations with short perpendicular wavelengths on the or
of the ion gyroradius and frequencies much lower than
ion gyrofrequency. There are two types of methods to de
the gyrokinetic equation. The recursive technique1–7 was
used when the gyrokinetic equation was first obtained. T
recursive method is also used for derivation of the drift
netic equation14,15 from which the neoclassical transport16–18

is described. Another modern derivation is based on the
turbative Hamiltonian formalism.8–13 The gyrokinetic equa-
tion obtained by the Hamiltonian method is written for t
total distribution function, which is in contrast to the recu
sively derived form where the distribution function is sep
rated into equilibrium and perturbed parts. The conserva
of the phase space, the energy and the magnetic momen
systematically treated by the Hamiltonian formulation. Ho
ever, the Hamiltonian method generally considers the co
sionless case, due to the fact that its treatment of collisi
does not yet seem to be systematically clear. In the recur
formulation, collisions are described by the gyropha
averaged collision operator,3 detailed structures of which
have been given based on the Fokker-Planck collis
model.19–21

In the present paper, we follow the recursive formulati
with the ballooning representation to derive the nonlin
electromagnetic gyrokinetic equation for plasmas with la
flows, because we also include collisional effects that
necessary for the unified description of the turbulent and
lisional ~classical and neoclassical! transport processes.22–24

It is also known that the turbulent system with the fin
transport fluxes requires finite collisionality to reach a stea
state.23,25 The gyrokinetic equation derived here is valid f
2561070-664X/98/5(7)/2560/14/$15.00
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general magnetic geometries with large flows on the orde
the ion thermal speed. From this equation, the reduced fo
for the slab, cylindrical and toroidal configurations are eas
obtained. In recent years, the effects of large flows have b
attracting much attention in relation to improved confin
ment such as high-confinement modes~H-modes!26 and in-
ternal transport barriers~ITB! found in reversed shea
configurations.27,28Artun and Tang6,7 derived the gyrokinetic
equations for the slab and toroidal system with large equi
rium flows by using the recursive method for the ballooni
type of fluctuations. Hamiltonian derivation of the gyrok
netic equation for the toroidally rotating plasma was sho
by Brizard.12 In the slab and toroidal configurations, our g
rokinetic equation reduces to slightly different forms fro
those obtained by Artun and Tang.6,7 It seems to be partly
because they did not treat correctly the ballooning repres
tation for the rotating system in which the temporal depe
dence of the radial wavenumber should be considered.29 In-
stead, by using the correct ballooning representation, we
that our result for the toroidal case coincides with Brizard
result.12 We elucidate which term in the gyrokinetic equatio
is responsible for the anomalous viscosity~or Reynolds
stress!. This term is important for rigorously describing th
interaction between the background flow and the fluctuati
with perpendicular wavelengths on the order of the therm
gyroradius.

Here, we assume that the large flow velocity is appro
mately balanced with the radial electric field in the same w
as in Artun and Tang6,7 and Brizard.12 Recently, Hahm13

presented the gyrokinetic equation that can treat the c
where the steep pressure gradient produces the large r
electric field with relatively small flow velocity.

In the present work, we also show the particle, ene
and momentum balance equations, as well as the deta
definitions of the anomalous transport fluxes and the ano
0 © 1998 American Institute of Physics
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lous entropy production for the toroidally rotating plasm
This work is an electromagnetic extension of our previo
work.24

A basic kinetic equation for a turbulent plasma is writt
as

F ]

]t
1v•¹1

ea

ma
H ~E1Ê!1

1

c
v3~B1B̂!J • ]

]vG~ f a1 f̂ a!

5Ca~ f a1 f̂ a!, ~1!

whereCa[(bCab denotes a collision term and the distrib
tion function for speciesa ~the electromagnetic fields! is
divided into the ensemble average partf a (E52¹F

2c21]A/]t,B5¹3A) and the fluctuating partf̂ a (Ê
52¹f̂2c21]Â/]t,B̂5¹3Â). Taking an ensemble aver
age^•&ens of Eq. ~1! gives the kinetic equation forf a as

F ]

]t
1v•¹1

ea

ma
S E1

1

c
v3BD • ]

]vG f a5^Ca&ens1Da ,

~2!

where the right-hand side consists of the collision term a
the fluctuation-particle interaction termDa defined by

Da52
ea

ma
K S Ê1

1

c
v3B̂D • ] f̂ a

]v L
ens

. ~3!

Subtracting Eq.~2! from Eq.~1! gives the equation for thef̂ a

as

F ]

]t
1v•¹1

ea

ma
S E1

1

c
v3BD • ]

]vG f̂ a

52
ea

ma
S Ê1

1

c
v3B̂D • ]~ f a1 f̂ a!

]v
1Ca2^Ca&ens2Da .

~4!

The drift kinetic equation describing the neoclassical tra
port and the gyrokinetic equation describing the anomal
transport are derived from Eqs.~2! and ~4!, respectively.

We employ the drift ordering parameterd[ra /L @ra

[vTa /Va : the thermal gyroradius,vTa[(2Ta /ma)1/2: the
thermal velocity,Va[eaB/(mac): the gyrofrequency,L: the
equilibrium scale length# to expand the distribution function
and the electromagnetic fields as

f a5 f a01 f a11 f a21•••, f̂ a5 f̂ a11 f̂ a21•••,

E5E01E11E21•••, Ê5Ê11Ê21•••,
~5!

B5B0 , B̂5B̂11B̂21•••,
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where the fluctuating quantities are assumed to beO(d) of
the ensemble-averaged values. Note that we can putB1

5B25•••50 sinceB is used as the basis for defining th
expansion parameterd. For the drift ordering, it is conve-
nient to regard the electric chargeea ~instead ofB) as the
parameter ofO(d21): ea5ea

(21) .30,31

Here we allow the large mean flow on the order of t
thermal velocityvTa to exist and the lowest-order flow ve
locity is denoted byV0@5O(d0)#. We introduce the phase
variables (x,w,m,j), in which the particle positionx is ob-
served from the laboratory frame, while the particle kine
energyw, the magnetic momentm, and the gyrophasej are
defined in terms of the velocityv8[v2V0 in the moving
frame as

w5
1

2
ma~v8!2, m5

ma~v'8 !2

2B
,

v'8

v'8
5e1 cosj1e2 sin j,

~6!

where (e1 ,e2 ,b[B/B) are unit vectors which forms a right
handed orthogonal system at each point, andv85v i8b1v'8
with v i85v8•b.

From the lowest order@5O(d21)# of Eq. ~2! @or of Eq.
~1!#, we obtain

E01
1

c
V03B50 ~7!

and

] f a0

]j
50. ~8!

Thus the lowest-order distribution functionf a0 is indepen-
dent of the gyrophasej. We also assume that the tempor
variation of the ensemble-averaged quantities is so slow
the transport ordering]/]t5O(d2) is applicable for them.
Then, the ensemble-averaged inductive fieldE(A)

[2c]A/]t is of O(d2) while theO(d0) andO(d) electric
fields are electrostatic:E052¹F0, E152¹F1. The
lowest-order electrostatic potential is written asF21 in the
paper by Hinton and Wong,32 although it is denoted byF0 in
the present work, since we regard the electric chargee ~in-
stead ofF) as the parameter ofO(d21).

From the next order@5O(d0)# of Eq. ~2!, we have

S v•¹1
ea

ma
E1•

]

]vD f a02Va

] f a1

]j
5Ca~ f a0!. ~9!

Taking a gyrophase average•̄[r•dj/2p of Eq. ~9!, we have

L0f a0[F ~V01v i8b!•¹1S dw

dt D
0

]

]w
1S dm

dt D
0

]

]mG f a0

5Ca~ f a0!, ~10!
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where the time derivatives(dw/dt)0 and(dm/dt)0 along the
lowest-order guiding center orbit are given by

S dw

dt D
0

52maV0•¹V0•bv i81eaE1•bv i8

2ma~v i8!2b•¹V0•b2
1

2
ma~v'8 !2

3~¹•V02b•¹V0•b!,

S dm

dt D
0

52mV0•¹ ln B2m~¹•V02b•¹V0•b!, ~11!

respectively. Taking a gyrophase average of theO(d) part of
Eq. ~2! gives the linearized drift kinetic equation, which
solved to derive the neoclassical transport fluxes for rota
plasmas.32–34

The rest of this work is organized as follows. In Sec.
the new nonlinear electromagnetic gyrokinetic equation
derived for plasmas with general magnetic geometries
large flows. The reduced forms of the gyrokinetic equat
are given for the cylindrical and slab configurations in S
III and for the axisymmetric toroidal configuration in Se
IV. Definitions of the anomalous transport fluxes and t
anomalous entropy production rate are given for the to
dally rotating plasma in Sec. IV. Also found are comple
balance equations for particles, energy, and toroidal mom
tum which include the classical, neoclassical, and anoma
transport processes. In Sec. V, conclusions are given. In
pendix A, the charge neutrality condition and the Ampe`re’s
law are given as the constraints on the self-consistent e
tromagnetic fluctuations, from which the intrinsic ambipola
ity for the anomalous particle fluxes is shown. Appendix B
presented for discussing the derivation of the flow sh
terms in our gyrokinetic equation. Appendix C shows t
Onsager symmetry of the quasilinear anomalous trans
matrix, which connects the anomalous fluxes to the con
gate thermodynamic forces.

II. NONLINEAR ELECTROMAGNETIC GYROKINETIC
EQUATION FOR GENERAL GEOMETRY

In the present work, we assume that any fluctuating fi
F̂ is written as a superposition of components in the WK
~or eikonal! form

F̂~ t,x,w,m,j!5(
k'

F̂~ t,x,w,m,j;k'!exp@ iSk'
~x,t !#,

~12!

where the eikonalSk'
(x,t) represents the rapid variation i

the directions perpendicular to the magnetic field lines. T
wavenumber vector is given byk'5¹Sk'

. The eikonal
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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Sk'
(x,t) also contains the rapid Doppler shift frequency d

to the large flow, which is given by2]Sk'
/]t5k'•V0.

Then, we should note that, for the ballooning representa
for the system with large sheared flows,29 the wavenumber
vector depends on the time as seen from]k' /]t
5¹(]Sk'

/]t)52¹(k'•V0). The gyrokinetic ordering em-

ployed here for the turbulent fluctuations is written in term
of d as

f̂ a

f a
;

eaf̂

Ta
;

eavTa
uÂu

cTa
;

ki

k'

;
~v2k'•V0!

Va
;d, ~13!

where (v2k'•V0) denotes the characteristic frequency o
served in the moving frame. The characteristic parallel a
perpendicular wavenumbers are given byki;L21 and k'

;ra
21 , respectively.
The lowest-order part of Eq.~4! in d is written for the

fluctuations in the WKB form of Eq.~12! as

S ik'•v82Va

]

]j D f̂ a1~k'!

[2Vae2 ik'•ra
]

]j
@eik'•ra f̂ a1~k'!#

5 iea~k'•v'8 !F S f̂~k'!2
1

c
V0•Â~k'! D

3S ]

]w
1

]

B]m D 2
v i8

c
Âi~k'!

]

B]mG f a0 , ~14!

wherera[(b3v8)/Varepresents the gyroradius. Integratin
Eq. ~14! in j, we have

f̂ a1~k'!5eaF S f̂~k'!2
1

c
V0•Â~k'! D S ]

]w
1

]

B]m D
2

v i8

c
Âi~k'!

]

B]mG f a01ĝa~k'!e2 ik'•ra, ~15!

whereĝa(k') is independent ofj.
From theO(d) part of Eq.~4!, we have the equation fo

the second-order fluctuating functionf̂ a2 as
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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2Vae2 ik'•ra
]

]j
@eik'•ra f̂ a2~k'!#52S ]

]t
1v•¹1

ea

ma
E1•

]

]vD f̂ a1~k'!2
ea

ma
S Ê1~k'!1

1

c
v3B̂1~k'! D

•

] f a1

]v
2

ea

ma
S Ê2~k'!1

1

c
v3B̂2~k'! D • ] f a0

]v
2

ea

ma
(

k'8 1k'9 5k'

3S Ê1~k'8 !1
1

c
v3B̂1~k'8 ! D • ] f̂ a1~k'9 !

]v
1Ca

L@ f̂ a1~k'!#, ~16!

whereÊ1(k')52 ik'f̂(k'), B̂1(k')5 ik'3Â(k'), Ê2(k')52¹f̂(k')2c21]Â(k')/]t, andB̂2(k')5¹3Â(k'). HereCa
L

denotes the linearized collision operator@see Eq.~4.24! in Ref. 17 for its definition#. The solvability condition of Eq.~16! is
written as

R dj

2p
eik'•ra@RHS of Eq.~16!#50 ~17!

which leads to the gyrokinetic equation.
From Eq. ~17! with Eqs. ~9!, ~10!, ~15! and ~16!, we obtain the nonlinear electromagnetic gyrokinetic equation a

lengthy calculation as

S ]

]t
1L01 ik'•vdaD ĥa~k'!2 R dj

2p
eik'•raCa

L@ f̂ a~k'!#

5eaĉa~k'!
i ~b3k'!

maVa
•F2¹1$maV0•¹V01mav i8@b•~¹V0!1~¹V0!•b#1ea¹F1%

]

]wG f a0

2F H ]

]t
1L02v i8b•¹J ~eaĉa~k'!!G] f a0

]w
2

]~eaĉa~k'!!

]w
v i8b•¹ f a02eax̂a~k'!

3S ¹•V02b•¹V0•b1
V0•¹B

B D S ]

]w
1

]

B]m D f a02eaĉa~k'!L0

] f a0

]w
2J0~ga!

ea

c
v i8Âi~k'!

]

]w
L0f a0

1J1~ga!ea

v'8

c

B̂i~k'!

k'
S ]

]w
1

]

B]m DL0f a01
c

B (
k'8 1k'9 5k'

@b•~k'8 3k'9 !#ĉa~k'8 !ĥa~k'9 !, ~18!
whereĥa(k') is independent ofj and is related tof̂ a(k') by

f̂ a~k'!5eaS f̂~k'!2
1

c
V0•Â~k'! D

3
] f a0

]w
1eaF S f̂~k'!2

1

c
V0•Â~k'!

2
1

c
v i8Âi~k'! D2e2 ik'•raĉa~k'!G

3
] f a0

B]m
1ĥa~k'!e2 ik'•ra. ~19!

In Eqs.~18! and ~19!, ĉa(k') is defined by
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
ĉa~k'!5eik'•raF f̂~k'!2
1

c
~V01v8!•Â~k'!G

5J0~ga!S f̂~k'!2
V0

c
•Â~k'!2

v i8

c
Âi~k'! D

1J1~ga!
v'8

c

B̂i~k'!

k'

,

x̂a~k'!5eik'•ra~ ik'•ra!F f̂~k'!2
1

c
~V01v8!•Â~k'!G

52gaJ1~ga!S f̂~k'!2
V0

c
•Â~k'!2

v i8

c
Âi~k'! D

1@gaJ0~ga!2J1~ga!#
v'8

c

B̂i~k'!

k'

, ~20!
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whereÂi(k')[b•Â(k') andB̂i(k')[ ib•k'3Â(k'). Here
J0 and J1 are the zeroth and first-order Bessel functions
ga[k'v'8 /Va . In Eq. ~18!, the first-order guiding cente
drift velocity vda is defined by

vda[
d

dt S v83b

Va
D

5
cm

eaB
~¹3B!•bb1

c

eaB
b3@m¹B1ma~v i8!2b•¹b

1ea¹F11maV0•¹V01mav i8b•¹V0

1mav i8V0•¹b#. ~21!

Representation of the gyrokinetic equation in the r
x-space is useful. Following Eq.~12!, multiplying Eq. ~19!
by exp@iSk'

(x,t)# and summing up with respect tok' , we
have

f̂ a~x!5eaS f̂~x!2
1

c
V0•Â~x! D ] f a0

]w

1eaF H f̂~x!2
1

c
~V01v i8b!•Â~x!J 2ĉa~X!G

3
] f a0

B]m
1ĥa~X!, ~22!
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
f

l

whereX[x2ra denotes the position of the guiding cente
In deriving Eq.~22!, we have used

Sk'
~x,t !.Sk'

~X,t !1 ik'•ra ,

ĥa~X!5(
k'

ĥa~k'!exp@ iSk'
~X!#,

ĉa~X!5(
k'

ĉa~k'!exp@ iSk'
~X!#

5 K f̂~X1ra!2
1

c
~V01v8!•Â~X1ra!L

X

, ~23!

where^•&X represents the gyrophase average withX fixed.
Multiplying the gyrokinetic equation~18! in thek'-space by
exp@iSk'

(X)# and summing up with respect tok' gives the
gyrokinetic equation for the nonadiabatic fluctuating dist
bution functionĥa(X,w,m) as
F ]

]t
1L01S vda2

c

B
¹ĉa~X!3bD •¹ G ĥa~X!2^Ca

L@ f̂ a~X1ra!#&X

5
c

B
¹ĉa~X!3b•F¹2$maV0•¹V01mav i8@b•~¹V0!1~¹V0!•b#1ea¹F1%

]

]wG f a02eaF S ]

]t
1L02v i8b•¹ D ĉa~X!G

3
] f a0

]w
2ea

]ĉa~X!

]w
v i8b•¹ f a02eax̂a~X!S ¹•V02b•¹V0•b1

V0•¹B

B D S ]

]w
1

]

B]m D f a0

2eaĉa~X!L0

] f a0

]w
2

ea

c
v i8^Âi~X1ra!&X

]

]w
L0f a02

ea

c
^v'8 •Â~X1ra!&XS ]

]w
1

]

B]m DL0f a0 , ~24!
where the spatial gradient is taken with respect toX as ¹
5]/]X and we have used

^Âi~X1ra!&X5(
k'

J0~ga!Âi~k'!exp@ iSk'
~X!#,

^v'8 •Â~X1ra!&X52(
k'

J1~ga!v'8
B̂i~k'!

k'

3exp@ iSk'
~X!#,
x̂a~X!5(
k'

x̂a~k'!exp@ iSk'
~X!#

5 K ra•¹F f̂~X1ra!

2
1

c
~V01v8!•Â~X1ra!G L

X

. ~25!

We should note in Eq.~24! that differences of equilibrium
quantities’ values at the particle’s positionx from those at
the guiding center’s positionX are neglected asO(d)
smaller@B(x).B(X), V0(x).V0(X), and f a0(x). f a0(X)#
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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although that is not the case for the fluctuating quantitiesf̂,
Â, and ĥa because of small perpendicular wavelengths
O(ra). In Appendix A, the charge neutrality condition an
the Ampère’s law are given as the constraints on the se
consistent electromagnetic fluctuations.

III. CYLINDRICAL AND SLAB CONFIGURATIONS

Let us consider a cylindrical configuration in which th
magnetic field and the mean flow velocity are given by

B5Bu~r !û1Bz~r !ẑ,

V05Vu~r !û1Vz~r !ẑ, ~26!

respectively, where the cylindrical coordinates (r ,u,z) are
used and the unit vectors in ther , u, and z directions are
denoted byr̂ , û, and ẑ, respectively. Surfaces defined byr
5const are regarded as magnetic flux surfaces. In Eq.~26!,
Bu(r ), Bz(r ), Vu(r ), and Vz(r ) are flux surface functions
independent ofu and z. The lowest-order electric field
is given from Eqs.~7! and ~26! as E052@dF0(r )/dr# r̂
52c21@Vu(r )Bz(r )2Vz(r )Bu(r )# r̂ . The first-order electro-
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
f

-

static potential is also assumed to be a surface function
F15F1(r ). From Eq.~26!, we easily find that

V0•¹B5¹•V05b•¹V0•b5V0•¹V0•b50 ~27!

from which with Eqs.~10! and ~11! we have

S dw

dt D
0

5S dm

dt D
0

50, L05~V01v i8b!•¹. ~28!

Assuming the lowest-order distribution function to be hom
geneous in theu and z directions, we obtain from Eq.~10!
with Eqs.~26!–~28!

V0•¹ f a05b•¹ f a05Ca~ f a0!50. ~29!

which requiresf a0 to be the Maxwellian distribution func
tion f a05na(ma/2pTa)3/2 exp(2w/Ta) with the densityna

5na(r ) and the temperatureTa5Ta(r ). Thus we have
] f a0 /]m50.

Using Eqs.~26!–~29!, the gyrokinetic equation~18! is
simplified for the cylindrical configuration as
F ]

]t
1~V01v i8b!•¹1 ik'•vdaG ĥa~k'!2 R dj

2p
eik'•raCa

L@ f̂ a~k'!#

52eaĉa~k'!
i ~b3k'!

maVa
•S ¹1

ea

Ta
¹F11

ma

Ta
V0•¹V01

mav i8

Ta
$b•~¹V0!1~¹V0!•b% D f a0

1
ea

Ta
F S ]

]t
1V0•¹ D ĉa~k'!G f a01

c

B (
k'8 1k'9 5k'

@b•~k'8 3k'9 !#ĉa~k'8 !ĥa~k'9 !, ~30!

whereĥa(k') is related tof̂ a(k') by

f̂ a~k'!52
ea

Ta
S f̂~k'!2

1

c
V0•Â~k'! D f a01ĥa~k'!e2 ik'•ra. ~31!

The gyrokinetic equation for theX-space is obtained from Eq.~30! by applying the same procedure as in deriving Eq.~24! @or
directly from Eq.~24! with using Eqs.~26!–~29!#

F ]

]t
1S V01v i8b1vda2

c

B
¹ĉa~X!3bD •¹G ĥa~X!2^Ca

L@ f̂ a~X1ra!#&X

5
c

B
¹ĉa~X!3b•F¹1

ea

Ta
¹F11

ma

Ta
V0•¹V01

mav i8

Ta
$b•~¹V0!1~¹V0!•b%G f a0

1
ea

Ta
F S ]

]t
1V0•¹ D ĉa~X!G f a0 , ~32!

whereĥa(X) is related tof̂ a(x5X1ra) by
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f̂ a~x!52
ea

Ta
S f̂~x!2

1

c
V0•Â~x! D f a01ĥa~X!. ~33!

In a similar way as in the case of the cylindrical config
ration, we can consider a slab configuration in which
magnetic field and the mean flow velocity are given by

B5By~x!ŷ1Bz~x!ẑ, V05Vy~x!ŷ1Vz~x!ẑ, ~34!

respectively, where the Cartesian coordinates (x,y,z) are
used and the unit vectors in thex, y, and z directions are

denoted byx̂, ŷ, and ẑ, respectively. Planes defined byx
5const are regarded as magnetic flux surfaces. In Eq.~34!,
By(x), Bz(x),Vy(x), and Vz(x) are flux surface functions
independent ofy and z. The lowest-order electric field is

given from Eqs. ~7! and ~34! as E052@dF0(x)/dx# x̂

52c21@Vy(x)Bz(x)2Vz(x)By(x)# x̂. The first-order elec-
trostatic potential is also assumed to be a surface functio
F15F1(x). Then, for the slab configuration, Eqs.~27!–~29!
are still valid andf a0 is the Maxwellian distribution function
f a05na(ma/2pTa)3/2 exp(2w/Ta) with the density na

5na(x) and the temperatureTa5Ta(x). Thus we find that
the gyrokinetic equation for the slab configuration is a
given by Eq.~30! @or Eq. ~32!# with Eq. ~31! @or Eq. ~33!#
and V0•¹V05b•¹V050. In Eq. ~30!, the flow shear term
with (¹V0)•b survives in the slab limit, in whichdVy(x)/dx
anddVz(x)/dx are contained.

We see from Appendix B that, in Eq.~30! @or in Eq.

~32!#, the term with (]/]t1V0•¹)ĉa also contains the flow
sheard(r 21Vu)/dr anddVz /dr for the cylindrical case and
dVy /dx anddVz /dx for the slab case@see Eqs.~B1!–~B4!#.
These flow shear terms were missed by Artun and Ta6

when they derived the linearized gyrokinetic equation
scribing electrostatic fluctuations in the slab system w
sheared equilibrium flows@see Eq.~30! in Ref. 6 and Appen-
dix B#. Compared to their gyrokinetic equation, our gyrok
netic equation~30! @or ~32!# is not only nonlinear and elec
tromagnetic, but also contains even in the linear electrost
limit these new flow shear terms, which are deeply related
the anomalous viscosity~or Reynolds stress!.

It is instructive to derive the Hasegawa-Mima equatio35

from the gyrokinetic equation~30! and see how the flow
shear effects enter it. Following the same procedure a
Frieman and Chen,5 we consider a collisionless plasma co

sisting of adiabatic electrons (n̂e /ne.ef̂/Te) with Te

5const and a single species of ions with chargeei[Zie and
low temperatureTi!Te (k'r i,1), and assume that the io

nonadiabatic distribution function has the formĥi(X)

. f i0n̂i
(nad)(X)/ni . Then, from the electrostatic version of th

gyrokinetic equation~30! @or ~32!# for ions with the charge

neutrality condition n̂e5Zin̂i , we obtain the generalize
Hasegawa-Mima equation in the fluid limit as
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
e
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F ]

]t0
1V0•¹1 ik'•

c

ZieB
b3~ZieB¹F11miV0•¹V0!G

3F ~11k'
2 rs

2!
ef̂~k'!

Te
G1 ik'•

cTe

eB

3F2b3¹ ln ne1B¹3S b

B
D Gef̂~k'!

Te

5
1

2
csrs

3 (
k'8 1k'9 5k'

@b•~k'8 3k'9 !#@~k'9 !2

2~k'8 !2#
ef̂a~k'8 !

Te

ef̂a~k'9 !

Te
, ~35!

where cs[(ZiTe /mi)
1/2and rs[cs /V i . Equation ~35! is

valid for the both slab and cylindrical configurations, a
reduces to the Hasegawa-Mima equation derived by Friem
and Chen5 in the limit of V0→0. The energy balance equa
tion is obtained from Eq.~35! as

S ]

]t0
1V0•¹ D(

k'

S 1

2
nimi^uv̂E~k'!u2&ens

1
1

2

nee
2

Te
^uf̂(k')u2&ensD

52(
k'

nimi^v̂E* ~k'!v̂E~k'!&ens:~¹V0!, ~36!

where v̂E(k')[2 i (c/B)f̂(k')k'3b is the Ê3B drift ve-
locity due to the electrostatic fluctuations. Equations~35! and
~36! are rewritten in thex-space as

F ]

]t0
1H V01

c

ZieB
b3~ZieB¹F11miV0•¹V0!J •¹G

3F ~12rs
2¹'

2 !S ef̂~x!

Te
D G1

cTe

eB
F2b3¹ ln ne1B¹

3S b

B
D G•¹'S ef̂~x!

Te
D

5csrs
3b3¹S ef̂~x!

Te
D •¹¹'

2 S ef̂~x!

Te
D ~37!

and

S ]

]t
1V0•¹ D S 1

2
nimi^uv̂E~x!u2&ens1

1

2

nee
2

Te
^uf̂~x!u2&ensD

52nimi^v̂E~x!v̂E~x!&ens:~¹V0! ~38!

respectively, where ¹'[¹2bb•¹ and v̂E(x)

[2(c/B)¹f̂(x)3b. The right-hand side of Eq.~36! @or
~38!# represents the energy transfer from the backgro
sheared flow to the fluctuations through the Reynolds st
multiplied by the flow shear.

The reaction of the divergence of the Reynolds stress
the flow profileV0 is given by
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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]

]t
~nimiV0!52¹•~nimi^v̂Ev̂E&ens!1•••. ~39!

Thus the change in the kinetic energy in the flow profile

]

]tE 1

2
nimiV0

2 d3x5E nimi^v̂Ev̂E&ens:¹V0 d3x1•••

~40!

is equal and opposite to the change in the total energy in
turbulent fluctuations in the absence of sources and diss
tions. The direction of the energy flow between the sh
flow and the turbulent fluctuations depends on the phase
lations, or equivalently, the tilting of the vortices.36 When the
turbulence is driven by the ion temperature gradient,
shear flow is typically generated. Now we consider h
these processes appear in the axisymmetric torus where
zeroth order flow must be toroidal.

IV. AXISYMMETRIC TOROIDAL CONFIGURATION

In this section, we consider an axisymmetric system,
which the magnetic field is given by

B5I ~C!¹z1¹z3¹C, ~41!

wherez is the toroidal angle,C represents the poloidal flux
andI (C)5RBT denotes the covariant toroidal component
the magnetic field. Hinton and Wong32 showed that, in the
axisymmetric systems, the poloidal flow decays in a f
transit or collision times and that the lowest-order flow v
locity V0 is in the toroidal direction and is derived fromE0

1V03B/c50 as

V05V0ẑ, V05RVz52Rc
]F0~C!

]C
, ~42!

where the lowest-order electrostatic potentialF0(C) is a
flux-surface function andE052¹F052(]F0 /]C)¹C.
We should note that the toroidal angular velocityVz

52c]F0 /]C is directly given by the radial electric field
and is also a flux-surface quantity. Then, we easily find t
V0•¹B5¹•V05b•¹V0•b50 and V0•¹b5b•¹V0. Here
it is convenient to use independent phase space varia
(x,«,m,j) instead of (x,w,m,j) where the new energy vari
able« is defined by

«5 1
2 ma~v8!21Ja , Ja[eaF̃12 1

2 maV0
2 . ~43!

In Eq. ~43!, F̃1[F12^F1&@5O(d)# is the poloidal-angle-
dependent part of the electrostatic potential and2 1

2maV0
2

represents the potential for the centrifugal force due to
toroidal rotation. The magnetic flux surface average is
noted by^•&. It is shown that« andm are conserved along
the lowest-order guiding center orbit:(d«/dt)05(dm/dt)0

50. Thus we haveL05(V01v ib)•¹ with the independen
variables (x,«,m,j).

The lowest-order distribution functionf a0 is written in
the Maxwellian form
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f a05naS ma

2pTa
D 3/2

expS 2
ma~v8!2

2Ta
D

5NaS ma

2pTa
D 3/2

expS 2
«

Ta
D ~44!

which satisfiesL0f a05Ca( f a0)50. Here the temperature
Ta5Ta(C) and Na5Na(C) are flux-surface functions, al
though generally the densityna depends on the poloida
angleu throughJa and is given byna5Na exp(2Ja /Ta).
The charge neutrality(aeana50 imposes the constraints o
F̃1 andNa .

A. Gyrokinetic equation

Using Eqs.~41!–~44! with the independent phase-spa
variables (x,«,m,j), we find that, for the axisymmetric con
figuration, the gyrokinetic equation~18! simplifies to

F ]

]t
1~V01v i8b!•¹1 ik'•vdaG ĥa~k'!2

c

B (
k'8 1k'9 5k'

@b•~k'8

3k'9 !#ĉa~k'8 !ĥa~k'9 !2 R dj

2p
eik'•raCa

L @ f̂ a~k'!#

52eaĉa~k'!
i ~b3k'!

maVa
•F¹1H ea

Ta

]^F1&
]C

1
ma

Ta
S R2Vz

1
I

B
v i8D ]Vz

]C J ¹C G f a01
ea

Ta
F S ]

]t
1V0•¹ D ĉa~k'!G f a0

5 f a0@ŵa1~k'!Xa1
A 1ŵa2~k'!Xa2

A 1ŵaV~k'!XaV
A

1ŵaT~k'!XaT
A #, ~45!

which is written by theX-space representation as

F ]

]t
1S V01v i8b1vda2

c

B
¹ĉa~X!3bD •¹ G ĥa~X!

2^Ca
L@ f̂ a~X1ra!#&X

5
c

B
¹ĉa~X!3b•F¹1H ea

Ta

]^F1&
]C

1
ma

Ta
S R2Vz

1
I

B
v i8D ]Vz

]C J ¹C G f a01
ea

Ta
F S ]

]t
1V0•¹ D ĉa~X!G f a0

5 f a0@ŵa1~X!Xa1
A 1ŵa2~X!Xa2

A 1ŵaV~X!XaV
A

1ŵaT~X!XaT
A #. ~46!

The nonadiabatic part of the fluctuation distribution functi
ĥa(k') in Eq. ~45! @ ĥa(X) in Eq. ~46!# is related tof̂ a1(k')
@ f̂ a1(x)# by Eq. ~31! @Eq. ~33!#.

In the right-hand side of Eqs.~45! and ~46!, we have
defined the thermodynamic forces (Xa1

A ,Xa2
A ,XaV

A ,XaT
A ) as
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Xa1
A [2

] ln~NaTa!

]C
2

ea

Ta

]^F1&
]C

, Xa2
A [2

] ln Ta

]C
,

XaV
A [2

1

Ta

]Vz

]C
5

c

Ta

]2F0

]C2
, XaT

A [
1

Ta
, ~47!

and the fluctuating functions (ŵa1 ,ŵa2 ,ŵaV ,ŵaT) as

ŵa1~k'![ ick'•~Rẑ!ĉa~k'!,

ŵa2~k'![ ick'•~Rẑ!ĉa~k'!S «

Ta
2

5

2D ,

ŵaV~k'![macS R2Vz1
I

B
v i8D ik'•~Rẑ!ĉa~k'!

1ea

1

k'
2 ~k'k'!:~Rẑ!~¹C!x̂a~k'! ,

ŵaT~k'![eaJ0~ga!S ]

]t
1V0•¹ D S f̂~k'!2

V0

c
•Â~k'!
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v i8

c
Âi~k'! D 1eaJ1~ga!

v'8

c

3S ]

]t
1V0•¹ D S B̂i~k'!

k'
D , ~48!

which are written by theX-space representation as

ŵa1~X![(
k'

ŵa1~k'!exp@ iSk'
~X!#

52
c

B
¹ĉa~X!3b•¹C,

ŵa2~X![(
k'

ŵa2~k'!exp@ iSk'
~X!#

52
c

B
¹ĉa~X!3b•¹CS «

Ta
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5

2D ,

ŵaV~X![(
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ŵaV~k'!exp@ iSk'
~X!#

~49!

5 K 2
c

B
¹S f̂~x!2

1

c
~V01v8!•Â~x! D

3b•¹Cma~V01v8!•~Rẑ!L
X

,

ŵaT~X![(
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ŵaT~k'!exp@ iSk'
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5eaK S ]
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]xD
3S f̂~x!2
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~V01v8!•Â~x! D L
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.
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In deriving Eqs.~48! and ~49!, we have used Eqs.~B1! and
~B5! in Appendix B andk'•(Rẑ)52B21(k'3b)•¹C.

The gyrokinetic equation~45! @or ~46!# is slightly differ-
ent from that derived by Artun and Tang7 for the toroidally
rotating plasma. Their equation~51! @or ~56!# contains a dif-
ferent magnetic fluctuation term from ours and they do
seem to treat correctly the ballooning representation for
rotating system in which the temporal dependence of
radial wavenumber should be considered.29 Interestingly, by
the ballooning representation, we see that our gyrokin
equation~45! @or ~46!# coincides with Brizard’s result12 ob-
tained by the Hamiltonian method for the collisionless ca
@see Eq.~C8! in Ref. 12#. The use of the correct balloonin
representation is crucial for obtaining the formulas in Appe
dix B and the expression forŵaV which is deeply related to
the definition of the anomalous momentum transport~or vis-
cosity! as shown later.

B. Entropy production by anomalous transport

In the same way as in Refs. 23 and 24, the contribut
from the turbulent fluctuations to the entropy balance is r
resented by

^Ṡa
A&[2 K E d3v~ ln f̄ a11!~Da2L f̃ a

A!L
52

1

V8

]

]C
~V8JSa

A !1^sa
A&, ~50!

where the surface-averaged radial anomalous entropy flu
given by

JSa
A 5S Sa

na
2

Ja

Ta
DGa

A1
qa

A

Ta
~51!

and the surface-averaged anomalous entropy production
is written in the thermodynamic form as

^sa
A&5Ga

AXa1
A 1

1

Ta
qa

AXa2
A 1Pa

AXaV
A 1Qa

AXaT . ~52!

The anomalous fluxes (Ga
A ,qa

A/Ta ,Pa
A ,Qa

A) conjugate to the
forces (Xa1

A ,Xa2
A ,XaV

A ,XaT
A ) are given by the correlations be

tweenĥa and (ŵa1 ,ŵa2 ,ŵaV ,ŵaT) as

Ga
A[K K E d3v(

k'

ĥa* ~k'!ŵa1~k'!L L
5K K E d3v ĥa~X!ŵa1~X!L L ,

qa
A

Ta
[K K E d3v(

k'

ĥa* ~k'!ŵa2~k'!L L
5K K E d3v ĥa~X!ŵa2~X!L L ,

~53!

Pa
A[K K E d3v(

k'

ĥa* ~k'!ŵaV~k'!L L
5K K E d3v ĥa~X!ŵaV~X!L L ,
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Qa
A[K K E d3v(

k'

ĥa* ~k'!ŵaT~k'!L L
5K K E d3vĥa~X!ŵaT~X!L L ,

where^^•&& denotes a double average over the magnetic
face and the ensemble.

From the gyrokinetic equation~45!, we obtain the bal-
ance equation for the fluctuation amplitude as

]

]t K K E d3v
1

2 f a0
(
k'

Uĥa~k'!U2L L 2K K E d3v
1

f a0

3(
k'

ĥa* ~k'!eik'•raCa
L@ ĥa~k'!e2 ik'•ra#L L

5
]

]t K K E d3v
1

2 f a0
ĥa~X!2L L

2 K K E d3v
1

f a0
ĥa~X!Ca

L@ ĥa~X!#L L 5^sa
A&. ~54!

Thus in the stationary turbulent states, the anomalous
tropy production driven by the turbulent transport equals
collisional dissipation of the fluctuating distribution functio
which results in the positive definiteness of the total anom
lous entropy production:(aTa^sa

A&52(aTa^^*d3v(1/ f a0)
3ĥa(X)Ca

L@ ĥa(X)#&&>0. The symmetry for the quasilinea
anomalous transport matrix relating the anomalous flu
(Ga

A ,qa
A/Ta ,Pa

A ,Qa
A) to the conjugate forces (Xa1

A ,Xa2
A ,

XaV
A ,XaT

A ) is described in Appendix C.

C. Balance equations for particles, energy,
and toroidal momentum

Taking the velocity moment and the magnetic surfa
average of Eq.~2!, we obtain the particle density equation

]^na&
]t

1
1

V8

]

]C
~V8Ga!5 K E d3v IaL ; ~55!

the energy balance equation:

3

2

]

]t
^pa&1

1

V8

]

]C FV8S qa1
5

2
TaGaD G

52Pa

]Vz

]C
2eaGa

]^F1&
]C

1^naeaua1•E~A!&

2eaK F̃1

]na

]t L 1
1

2
~Vz!2

]

]t
^manaR2&

1 K E d3v «~Ca1Da1Ia!L ; ~56!

the toroidal momentum balance equation:
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r-
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s

e

]

]tK S (
a

manaD S 11
vPA

2

c2 D R2VzL 1
1

V8

]

]CS V8(
a

PaD
5(

a
K E d3v mavz~Da1Ia!L , ~57!

wherevPA[BP /(4p(anama)1/2 is the poloidal Alfvén ve-
locity, vz[Rẑ•v5R2Vz1(I /B)v i81Rẑ•v'8 is the covariant
toroidal component of the particle velocity in the laborato
frame, V852prduAg (u: a poloidal angle! is the specific
volume, andAg[(¹C•¹u3¹z)2151/Bu is the Jacobian.
In the energy balance equation~56!, pa[naTa is the pres-
sure,E(A)[2c21]A/]t is the inductive electric field, and
ua1 is the first-order flow velocity@see Eq.~16! in Ref. 24#.
Taken in the order of appearance, the right-hand side of
~56! describes the viscous heating, the work done by
radial electric field during the transportGa , the work done
by the inductive electric field on the surface flowsua1, the
cooling from a secular rise in the local density, the heat
by the secular rise in the moment of inertia, the collision
and turbulent energy transfers in the plasma frame and
auxiliary injected power.

In the right-hand side of Eqs.~55!–~57!, the terms with
Ia are written to represent the case where the right-hand
of Eq. ~2! contains external sources such as neutral be
injection. Since we assume thatIa5O(d2), the gyrokinetic
equation~45!, which is ofO(d), is not affected byIa .

In Eqs. ~55!–~57!, the surface-averaged radial partic
flux Ga , heat fluxqa , and toroidal momentum fluxPa are
written as

Ga[ K E d3v f av•¹C L
5Ga

cl1Ga
ncl1Ga

H1Ga
~E!1Ga

anom,

qa[TaK E d3v f aS «

Ta
2

5

2D v•¹C L
~58!

5qa
cl1qa

ncl1qa
H1qa

~E!1qa
anom,

Pa[ K E d3v f amavzv•¹C L
5Pa

cl1Pa
ncl1Pa

H1Pa
~E!1Pa

anom.

Here the superscripts ‘‘cl’’ and ‘‘ncl’’ represent the classic
and neoclassical fluxes, respectively. The fluxes with the
perscripts H and (E) are the gyroviscosity-driven an
inductive-electric-field-driven parts, respectively@see Eqs.
~20!, ~22!–~24!, ~A6!, and~A7! in Ref. 24 for definitions of
these fluxes#. The anomalous fluxes (Ga

anom,qa
anom/Ta ,Pa

anom)
are rewritten in terms of the gyrophase-dependent part of
fluctuation-particle interaction operatorD̃a as
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Ga
anom52

mac

ea
K E d3v D̃av'8 •~Rẑ!L ,

1

Ta
qa

anom52
mac

ea
K E d3v D̃aS «

Ta
2

5

2D v'8 •~Rẑ!L ,

Pa
anom52

ma
2c

ea
K E d3v D̃a

1

2
~v z̃

2!L , ~59!

where v'8 •(Rẑ)52B21(v83b)•¹C and 1
2(v z̃

2

[ 1
2@vz

22(vz
2)# 5 @R2Vz1(I /B)v i8#v'8 •(Rẑ) 1 1

2( ṽ'8 v'8 :
(Rẑ)(Rẑ).

Comparing the anomalous fluxes defined by Eqs.~53!
with those defined by Eqs.~59!, we find that

Ga
A[Ga

anom,

qa
A[qa

anom1eaK K E d3v f̂ aS f̂2
1

c
V0•ÂD v•¹C L L ,

~60!

Pa
A[Pa

anom1
ea

c K K E d3v f̂ aÂ•~Rẑ!v•¹C L L .

We see from Eq.~60! that the anomalous heat fluxqa
A and

the anomalous toroidal momentum fluxPa
A include the fluc-

tuating potential energy transportea^^*d3v f̂ a(f̂2c21V0

•Â)v•¹C&& and the toroidal momentum transport due to t
fluctuating vector potential (ea /c)^^*d3v f̂ aÂ•(Rẑ)v
•¹C&&, respectively.

In the right-hand sides of Eqs.~56! and~57!, we find the
anomalous termŝ*d3v «Da& and (a^*d3v mavzDa&. The
anomalous heat production term̂*d3v «Da& in Eq. ~56! is
rewritten as

K E d3v «DaL 5Qa
A2

1

V8

]

]C
@V8~qa

A2qa
anom!#

1~Pa
A2Pa

anom!S 2
]Vz

]C D ~61!

which shows that, in the energy balance equation~56! with
~58!, qa

A andPA replaceqa
anomandPa

anomand thatQa
A appear

as the anomalous heat transfer term. Thus the definition
the anomalous transport fluxes given by Eq.~53! are reason-
able not only from the viewpoint of the thermodynamic e
pression for the entropy production in Eq.~52! but also from
that of the energy balance equation. The anomalous toro
momentum production term(a^*d3v mavzDa& in Eq. ~57!
is given by

(
a

K E d3v mavzDaL
5(

a
eaK K ~Rẑ!•E d3v f̂ aS Ê1

1

c
v3B̂D L L . ~62!

Using Eq.~60! and the Maxwell equations for the fluctuatin
electromagnetic fields, Eq.~62! is rewritten as
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(
a

K E d3v mavzDaL
5

1

4pV8

]

]C
~V8^^ÊzÊ

C1B̂zB̂
C&&!

52
1

V8

]

]C FV8H 1

4p(
k'

^^~k'k'!:~Rẑ !~¹C!

3uA~k'!u2&&1(
a

~Pa
A2Pa

anom!J G , ~63!

where the ordering f̂;V0•Â/c is used and terms
of O(V0

2/c2) are neglected. We see from Eqs.~63!
that the anomalous momentum production fromDa is
due to the Maxwell stress of the fluctuating electromagne
fields. When Eq.~63! is substituted into the momentum ba
ance equation ~57!, the Maxwell stress gives2~4
pV8)21 (]/]C) @V8 $(k'

^^(k'k'):(Rẑ)(¹C)uA(k')u2&&#

and replacesPa
anom to Pa

A .
Using the charge neutrality condition and the Ampe`re’s

law for the self-consistent fluctuations~see Appendix A!, we
have the ambipolarity of the anomalous particle flux
(aeaGa

A50 and the cancellation of the total anomalous h
transfer(aQa

A50, which shows that the self-consistent flu
tuations cause no net heating of the total particles but re
in the anomalous heat exchange between different specie
particles.

V. CONCLUSIONS

In this work, we have presented the nonlinear elect
magnetic gyrokinetic equation for plasmas with general m
netic geometries and large flow velocities on the order of
ion thermal speed. In the derivation, we have used the re
sive formulation to give the relation of the perturbed dist
bution function to the equilibrium distribution and the ele
tromagnetic fluctuations, since it is useful to reta
collisional effects and synthetically formulate the turbule
and collisional ~classical and neoclassical! transport pro-
cesses. The reduced forms of the gyrokinetic equation for
slab, cylindrical, and toroidal configurations were obtain
from the general one@see Eqs.~18!, ~24!, ~30!, ~32!, ~45!,
and ~46!#.

We specified the source terms in the gyrokinetic eq
tion, which is related to the anomalous momentum transp
@see Eqs.~B3!–~B5! andŵaV in Eqs.~48! and~49!#. We also
derived the generalized Hasegawa-Mima equation~35! @or
~37!# which correctly describes the energy transfer betwe
the background sheared flow and the turbulent ene
through the Reynolds stress tensor contracted into the
shear tensor@see Eqs.~36! and ~38!#.

Based on the gyrokinetic equation for the toroidally r
tating system, we have defined the conjugate pairs of
anomalous transport fluxes in Eq.~53! and the thermody-
namic forces in Eq.~47!, the inner product of which gives
the anomalous entropy production rate in Eq.~52!. The On-
sager symmetry of the quasilinear matrix relating the anom
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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lous fluxes to the conjugate forces is shown. Also given
complete balance equations for particles, energy and toro
momentum including the classical, neoclassical, and ano
lous transport fluxes@see Eqs.~55!–~57!#.

ACKNOWLEDGMENTS

The first author~H.S.! thanks Professor M. Okamoto fo
his encouragement of this work.

This work is supported in part by the Grant-in-Aid fro
the Japanese Ministry of Education, Science and Cult
and in part by the U.S. Department of Energy Grant D
FG05-80ET-53088.

APPENDIX A: SELF-CONSISTENT
ELECTROMAGNETIC FIELDS AND AMBIPOLARITY
CONDITION

Here we show the self-consistent constraints on the
bulent fields, which are given by the charge neutrality co
dition

lD
22S f̂~k'!2

V0

c
•Â~k'! D

54p(
a

eaE d3v J0~ga!ĥa~k'! ~A1!

and, the parallel and perpendicular components of the A
père’s law

k'
2 Âi~k'!5

4p

c (
a

eaE d3v J0~ga!ĥa~k'!v i8 , ~A2!

2k'B̂i~k'!5
4p

c (
a

eaE d3v J1~ga!ĥa~k'!v'8 , ~A3!

where Eq. ~31! and the Debye length lD

[(4p(anaea
2/Ta)21/2 are used. The use of the Ampe`re’s

law is justified, since the displacement current is neglec
due to the gyrokinetic ordering. Equations~A1!–~A3! are
rewritten in thex-space as

lD
22S f̂~x!2

V0

c
•Â~x! D54p(

a
eaE d3v ĥa~x2ra!,

~A4!

2¹'
2 Âi~x!5

4p

c (
a

eaE d3v ĥa~x2ra!v i8 , ~A5!

¹B̂i~x!3b5
4p

c (
a

eaE d3v ĥa~x2ra!v'8 . ~A6!

Substituting Eqs.~A1!–~A3! into the definition of the
anomalous fluxes in Eq.~53!, we find that the anomalou
particle fluxes are intrinsically ambipolar

(
a

eaGa
A50. ~A7!

From Eqs.~20!, ~48!, ~53!, and ~A1!–~A3! with the quasi-
steady state ordering]^•&ens/]t5O(d2), it is shown that the
species summation of the anomalous heatingQa

A vanishes
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(
a

Qa
A50. ~A8!

The self-consistent fluctuations cause no net heating of
total particles since the source of the anomalous heatin
the energy of the fluctuating electromagnetic fields, wh
cannot be a stationary energy supplier unless the fluctuat
are externally driven.

APPENDIX B: ON THE SOURCE TERMS IN THE
GYROKINETIC EQUATION RELATING TO
THE ANOMALOUS MOMENTUM TRANSPORT

In the right-hand side of the gyrokinetic equation~30!
@or ~32!#, we easily find the shear flow term which is propo
tional tov i8$b•(¹V0)1(¹V0)•b%. We also see that the term
with (]/]t1V0•¹)ĉa contains other contributions from th
flow shear by noticing the following formula:

eaS ]

]t
1V0~X!•

]

]XD ĉa~X!5eaK S ]

]t
1V0~x!•

]

]xD S f̂~x!

2
1

c
~V01v8!•Â~x! D L

X

1P̂a ,

~B1!

where the first group of terms in the right-hand side rep
sents the increase of the fluctuation potential energy andP̂a

is given by

P̂a5eaK ~V0•¹ra2ra•¹V0!•¹

3S f̂~x!2
1

c
~V01v8!•Â~x! D L

X

. ~B2!

In deriving Eqs.~B1! and~B2!, we have used the balloonin
representation~12! for the system with the large flow.

For the slab and cylindrical cases considered in Sec.
P̂a is rewritten as

P̂a52
]Vy

]x K mav'8 • ŷS 2
c

BD¹S f̂~x!2
1

c
~V01v8!•Â~x! D

3b• x̂L
X

2
]Vz

]x K mav'8 • ẑS 2
c

BD¹S f̂~x!

2
1

c
~V01v8!•Â~x! D3b• x̂L

X

~B3!

and

P̂a52
]~r 21Vu!

]r K mav'8 •~r û!S 2
c

BD¹S f̂~x!2
1

c
~V0

1v8!•Â~x! D3b• r̂ L
X

2
]Vz

]r K mav'8 • ẑ

S 2
c

BD¹S f̂~x!2
1

c
~V01v8!•Â~x! D3b• r̂ L

X

,

~B4!
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respectively. ThusP̂a is given by the product of the flow
shear and the perpendicular momentum transport due to
fluctuations.

Equation ~B1! is still valid for the axisymmetric case
considered in Sec. IV if we note that the spatial gradi
]/]X should be taken with the energy variable« fixed ~not
with the kinetic energyw fixed as in the slab and cylindrica
cases!. Then, the first group of terms in the right-hand side
Eq. ~B1! is written asŵaT(X) in Eq. ~49! andP̂a is given by
the product of the toroidal flow shear and the anomal
transport of the toroidal component of the perpendicular m
mentum as

P̂a52
]Vz

]C K mav'8 •~Rẑ!S 2
c

BD¹S f̂~x!

2
1

c
~V01v8!•Â~x! D3b•¹C L

X

~B5!

which is used to obtain the expression forŵaV in Eq. ~49!.
If we use the same fluid approximation as made to de

the generalized Hasegawa-Mima equation~35! @or ~37!#, the
velocity-space integral of the nonadiabatic ion distributi
function ĥi1 multiplied by P̂i gives

E d3v^ĥi~X!P̂i~X!&ens.2nimi^v̂E~X!v̂E~X!&ens:~¹V0!,

~B6!

where ¹'[¹2bb•¹ and v̂E(X)[2(c/B)¹f̂(X)3b.
Equation~B6! represents the energy transfer from the ba
ground sheared flow to the fluctuations through the Reyno
stress multiplied by the flow shear, which coincides with t
right-hand side of Eq.~38!#. ThusP̂a is deeply related to the
anomalous momentum transport~or viscosity!, which re-
duces to the Reynolds stress in the fluid limit.

Artun and Tang derived the linearized gyrokinetic equ
tion describing electrostatic fluctuations in the slab syst
with sheared equilibrium flows.6 However, their gyrokinetic
equation misses the contribution fromPa in Eq. ~B3!, which
is included in our gyrokinetic equation~32! and is written as

1

Ta
Paf a0 . ~B7!

Now, we will see that these terms can be derived from
last term in Eq.~27! of their paper~Ref. 6!, which is written
in our notation as

1

Va

ma

Ta
@ x̂•~¹V0!•~b3 x̂!#@~b3 x̂!•v'8 #~b3 x̂! f a0 , ~B8!

whereV0 is given by Eq.~34!. It seems that Artun and Tan
did not retain this term’s contribution to their resulting gyr
kinetic equation@see Eq.~30! in Ref. 6#. Following the pro-
cedure in Eqs.~24!–~28! of Ref. 6 and retaining the term in
Eq. ~B8!, we find that the following additional term shoul
appear in the right-hand side of the gyrokinetic equation
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e

ea

ma
^¹f̂~x5X1ra!•@Eq. ~B8!#&X

5
mac

BTa
@ x̂•~¹V0!•~b3 x̂!#^@~b3 x̂!•v'8 #

3~b3 x̂!•¹f̂~x!&X f a0 ~B9!

which is found to be the same as Eq.~B7! by using Eq.~B3!

for the electrostatic slab case and (b3 x̂)(b3 x̂)5I2bb
2 x̂x̂.

Artun and Tang also derived the nonlinear electrom
netic gyrokinetic equation for the toroidally rotating axisym
metric system.7 In fact, (]/]t1V0•¹)ĉa appears in their
gyrokinetic equation~56! in Ref. 7. However, the term in the
form of Eq. ~B7! is still missed in their gyrokinetic equatio
because they did not use the ballooning formalism tak
account of the temporal dependence of the radial waven
ber. Actually, our gyrokinetic equation~45! for the toroidally
rotating system is found to coincide with Brizard’s resul12

by the correct ballooning representation. Here, we will s
again that the term in Eq.~B7! can be derived also from thei
procedure in Ref. 7. To show this briefly, we only expla
how to derive the electrostatic part of Eq.~B7!. Artun and
Tang seem to have missed the contributions of the th
group of terms in the right-hand of Eq.~B1! in Ref. 7, which
are written in our notation as

2
1

4Va
~b3¹V0•v'8 2v'8 •¹V03b

1v'8 3b•¹V01¹V0•v'8 3b!

5
1

Va

]Vz

]C
v'8 •~Rẑ!S 1

4
Ib1¹C3bD , ~B10!

where Eqs.~41! and ~42! are used. Then, we find from Eqs
~44! and~50! in Ref. 7 that the terms in Eq.~B10! lead to the
following additional term in the right-hand side of the gyr
kinetic equation

2
ea

Ta
f a0^¹'f̂~x5X1ra!•@Eq. ~B10!#&X

5
mac

BTa

]Vz

]C
^v'8 •~Rẑ!¹f̂~x!3b•¹C&X f a0 ~B11!

which is found to be the same as the electrostatic part of
~B7! by recalling Eq.~B5!.

APPENDIX C: ONSAGER SYMMETRY OF
QUASILINEAR ANOMALOUS TRANSPORT
EQUATIONS

Here we assume that the spectra of the electrostatic fl
tuationsf̂(k') are givena priori and that the nonlinear term
in the gyrokinetic equation~45! @or ~46!# is negligible. Then,
using the definitions in Eq.~53! with the solution of the
linearized gyrokinetic equation, we obtain the quasiline
anomalous transport equations
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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F Ga
A

qa
A/Ta

Pa
A

Qa
A

G5(
b F ~LA!11

ab ~LA!12
ab ~LA!1V

ab ~LA!1T
ab

~LA!21
ab ~LA!22

ab ~LA!2V
ab ~LA!2T

ab

~LA!V1
ab ~LA!V2

ab ~LA!VV
ab ~LA!VT

ab

~LA!T1
ab ~LA!T2

ab ~LA!TV
ab ~LA!TT

ab

G
3F Xa1

A

Xa2
A

XaV
A

XaT
A

G . ~C1!

Here the anomalous transport coefficients (LA) rs
ab (r ,s

51,2,V,T) are functionals of the fluctuation spectra, a
they also contain the equilibrium fieldsB andV0 as param-
eters

~LA!rs
ab5~LA!rs

ab@B,V0 ,$f̂,Aî,Bî%#. ~C2!

In the same way as in Refs. 23 and 24, we can show tha
quasilinear anomalous transport coefficients satisfy the
lowing Onsager symmetry:

Ta~LA!mn
ab @B,V0 ,$f̂~ t !,Aî~ t !,Bî~ t !%#

5Tb~LA!nm
ba @2B,2V0 ,$f̂~2t !,Aî~2t !,

Bî~2t !%] ~m,n51,2!,

Ta~LA!MN
ab @B,V0 ,$f̂~ t !,Aî~ t !,Bî~ t !%#

5Tb~LA!NM
ba @2B,2V0 ,$f̂~2t !,Aî~2t !,

Bî~2t !%] ~M ,N5V,T!,

Ta~LA!mM
ab @B,V0 ,$f̂~ t !,Aî~ t !,Bî~ t !%#

52Tb~LA!Mm
ba @2B,2V0 ,$f̂~2t !,Aî~2t !,

Bî~2t !}] ~m51,2;M5V,T!, ~C3!

where $f̂(2t),Aî(2t),Bî(2t)% represents the fluctuatio
spectra obtained by the time reversal of the original spe

$f̂(t),Aî(t),Bî(t)%.
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