On the Minimum Circulating Power of Steady State Tokamaks

K. Itoh, S.-I. Itoh, A. Fukuyama and M. Yagi

(Received - June 7, 1995)

NIFS-365

July 1995

RESEARCH REPORT
NIFS Series

This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. This document is intended for information only and for future publication in a journal after some rearrangements of its contents.

Inquiries about copyright and reproduction should be addressed to the Research Information Center, National Institute for Fusion Science, Nagoya 464-01, Japan.
On the Minimum Circulating Power of Steady State Tokamaks

K. Itoh*, S.-I. Itoh†, A. Fukuyama**, M. Yagi†

* National Institute for Fusion Science, Nagoya 464-01, Japan
† Research Institute for Applied Mechanics, Kyushu University 87, Kasuga 816, Japan
** Faculty of Engineering, Okayama University, Okayama 700, Japan

Abstract

Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied.

Keywords: Plasma Rotation, Viscosity, Circulating Power, Steady State Plasma, Current Drive, Rotation Drive, MHD Instability, Improved Confinement, Ignition
1. Introduction

Recently, the study on the improved confinement of tokamak plasmas has revealed the importance of the profiles of the density, current and rotation. The stability against ideal magnetohydrodynamic (MHD) instability requires a careful choice of the current profile and the pressure profile. The simultaneous fulfillment of the improved confinement and stability is necessary not only for the realization of the ignited plasma but also for the enhancement of the efficiency. The improvement in the confinement or in the MHD stability depends on the control of plasma profiles. The experimental variety in the plasma profile made flourishing of the various improved confinement modes [1].

This sensitivity to the profile casts a problem in the future perspectives for the stationary plasmas. First, in the stationary plasmas, the profiles will be less dependent on the initial condition of the plasma formation. The variety in the profiles, without external efforts to control, will be reduced. In other words, the optimization of confinement or the stability through the profile control will require the circulating power to control the profile in the steady state. Second, the stationary plasma will be subject to the stronger influence of the surrounding materials. For instance, the 'resistive wall' mode is an important issue under the circumstances of the wall with the finite L/R time [2]. Also important will be the wall material, for which we shall have less freedom in the future burning experiments. Because the wall material has considerable impact for the improvement factor of the confinement [3], the limitation in the choice will have to be compensated by the external control of the plasma profiles. The efficiency of the rotation drive is as important as the current drive efficiency for the steady state advanced tokamaks.

In this article, we study the efficiency of the rotation drive in tokamaks. The required power in order to stabilize the MHD mode is discussed. The direct drive by the external torque is found to be not efficient enough. The role of the spontaneous
rotation is stressed. Rotation drive by the \(\alpha \)-particles in the ignited plasma is investigated. The purification of the plasma by the rotation is also discussed.

2. Profile Control and Rotation Drive

Table 1 shows the profile control in the density, velocity, current, pressure and impurity. The first column shows the necessities of the profile control. The second column indicates the damping (dissipation) mechanisms, which cause the decay of the profile of each component. The third column lists the processes that appears as a spontaneous mechanism to realize the peaking (or the change, at least) of the profiles. The fourth column is for the external method for the control. In the last column, the events which lead to the transient/dynamic change of profiles are listed. We study in this article a stationary state, although these transient events could have important impact on the profile control efficiency.

This table illustrates the importance of the combination of the current profile and rotation profile. One example is seen in the evaluation of the minimum circulating power of the plasma with a high-fraction of the Bootstrap current [4]. The ratio of the Bootstrap current, \(I_{BS} \), to the total plasma current, \(I_p \), is evaluated as

\[
\frac{I_{BS}}{I_p} = 0.7 \sqrt{\frac{a}{R}} \beta_p
\]

where \(a \) and \(R \) are minor and major radii, respectively, and \(\beta_p \) is the plasma pressure normalized to the poloidal magnetic field pressure. The rest of the Bootstrap current, \(I_p - I_{BS} \), must be driven by a non-inductive method. This result indicates that the circulating power to sustain the total current becomes very small, when \(\beta_p \) reaches the value \(1.4 \sqrt{R/a} \). (At this condition \(\beta_p = 1.4 \sqrt{R/a} \), the necessary power for the non-inductive current drive is the one for the seed current at the axis [5]. This power could be annihilated if one counts for the role of the current-diffusion [6]. However, the question of the small seed current is out of the scope in this article.) The circulating
power could not always be lowered to this value. This is because that the internal inductance \(l_i \) in such a plasma is low. The MHD beta limit is usually known to increase with \(l_i \), i.e., \(\beta_{\text{limit}} \propto l_i \) [7]. The energy confinement time is in proportion to \(l_i \) for the L-mode plasma [8]. Owing to these reasons, the internal inductance could be bounded above a certain lower limit, which in turn determines the allowable contribution of the Bootstrap current to the total plasma current. Figure 1 schematically illustrates this situation. Above the beta value of the minimum current drive power, the anti-current drive in the midway (say, \(r = a/2 \)) and the current drive in the center are required, in order to keep the internal inductance constant against the influence of the Bootstrap current. The MHD stability could be improved by the rotation. By the help of the rotation, the minimum current drive power could be lowered. The rotation drive efficiency is the key.

3. Rotation Drive Efficiency

The rotation drive efficiency \(\eta_{\text{rot}} \) is defined as

\[
\eta_{\text{rot}} = \frac{\langle v \rangle}{P_{\text{rot}}}
\]

where \(\langle v \rangle \) is the average velocity of the plasma rotation and \(P_{\text{rot}} \) is the necessary power from the external supply. Both the poloidal and toroidal rotations are available, hence the efficiency could be defined for both rotations. The local efficiency could also be defined, but a simplified argument is developed here. The efficiency is determined by three issues:

\[
\frac{v}{P_{\text{rot}}} \propto \frac{\text{velocity}}{\text{(dissipation)} - \text{(spontaneous drive)}}
\]

The [velocity] in the numerator is required by various reasons; the MHD stability, the improved confinement, the thermal stability or the purification of the plasma. The
[dissipation] in the denominator is due to the viscosity or the drag by neutrals. The
[spontaneous drive] in the denominator comes from the off-diagonal elements in the
transport matrix. Theoretical studies have been developed [9] and experimental study
has also investigated the spontaneous plasma rotation [10]. The neoclassical as well as
the anomalous transport plays a role, and the alpha particles also work for it.

In the core plasma, the bulk viscosity for the poloidal rotation is usually
stronger than the shear viscosity for the toroidal rotation. We therefore study the case
of the toroidal rotation.

The necessary momentum injection, M, to sustain the plasma rotation is
evaluated as

$$M = \frac{\mu_\perp}{a^2} m_i n_i (v_\phi - v_\phi^*) V_p$$

(3)

where μ_\perp is the shear viscosity with the estimation $|\mu_\perp \nabla_\perp^2| = \mu_\perp a^{-2}$, m_i is the ion
mass, n_i is the ion density, v_ϕ is the toroidal velocity, and V_p is the plasma volume.
The off-set v_ϕ^* is the spontaneous plasma rotation in the absence of the external torque,
which will be discussed in later.

If the necessary torque is supplied by the beam injection, the momentum supply
M and the beam power P_b has the relation $M \leq 2P_b/v_b$, where the equality holds for the
parallel injection (v_b being the velocity of the beam). The lower bound for the required
power is given as

$$P_b = \frac{\mu_\perp}{a^2} \frac{V_b}{V_{th}} n_i T_i V_p \frac{(v_\phi - v_\phi^*)}{V_{th}}$$

(4)

Substituting Eq.(4) into Eq.(2), the upper bound for the rotation drive efficiency is
written as

$$\eta_{rot} = \frac{a^2}{\mu_\perp} \frac{2}{n_i m_i V_p} \frac{1}{V_b} \frac{v_\phi}{v_\phi - v_\phi^*}$$

(5)
The rotation drive efficiency is inversely proportional to \(v_b \), if \(v_{th}/v_b \) is fixed. This result indicates the importance of the spontaneous drive for the rotation control. When the momentum is injected not by the beams (e.g., by use of rf waves), a proper equation for the ratio of \(M \) to the power should be used.

In the following, we discuss the efficiency and the necessary power for various cases.

3.1 Improved Confinement and High-n MHD Instability

High-n ballooning mode is a candidate to determine the beta limit in tokamaks (n: toroidal mode number). For such a mode, the local shear of the rotation velocity is effective for stabilization. It is shown that the beta limit against this mode is considerably improved if the condition

\[
\frac{s_v}{s} \geq \frac{1}{3} \tag{6}
\]

is satisfied (see, e.g., [11]). In this expression, \(s_v = (R/r/v_{th})d/dr(E, q/rB), \) \(r: \) minor radius, \(v_{th}: \) thermal velocity of main ions, \(E: \) radial electric field, \(B: \) main magnetic field, \(q: \) safety factor and \(s \) is the shear parameter, \(rq / q \). This condition Eq.(6) could be rewritten in terms of the parameter \(\omega_E = E^r \tau_{Ap}/sB \) \((\tau_{Ap}: qR/v_A, \) \(v_A: \) Alfvén velocity) as

\[
\omega_E \geq \frac{1}{3} \tag{7}
\]

The parameter \(\omega_E \) is introduced to investigate the reduction of the thermal conductivity due to the inhomogeneous radial electric field as [12]

\[
\chi_H = \frac{\chi_L}{1 + h(\alpha, s) \omega_E^2} \tag{8}
\]
where $\alpha = -q^2 R B$, and the suffix H and L denote the H-mode and L-mode, respectively. The explicit form of $h(\alpha,s)$ was given in [12], and is not reproduced here. The dependence was found $h \propto 1/\alpha$ in the small α-limit and $h \propto \alpha$ in the large α-limit. For the typical parameters, $\alpha = 0.3$, $s = 0.5$ and $q = 3$, $h \approx 24$ holds. In other words, χ_H is reduced by the factor 3 in comparison with χ_L if $\omega_E = 0.3$. We find that the linear ideal MHD stability condition (high-n mode) is relaxed if the improved confinement due to the radial electric field inhomogeneity is realized. This indicates that no additional circulation power for this MHD stability is necessary if the improved confinement is realized by the spontaneous mechanisms.

3.2 External Drive of Rotation and Resistive Wall Mode

The necessary power is not the same if one considers the suppression of the resistive wall mode at high beta value. This mode is the global mode. The local inhomogeneity of the velocity is not enough, but the plasma column must rotate with a high velocity such as a few hundredths of v_A. We study the case where the rotation is directly sustained by the external momentum injection. The necessary power and the efficiency for this direct method are calculated from Eqs. (4) and (5). The efficiency is illustrated by comparing the power P_b to the heating power P_{heat}.

$$P_{\text{heat}} = 3nTV_p\tau_E^{-1}, \quad (9)$$

where we choose the condition $T_e = T_i = T$ and $n_i = n_e = n$ for the simplicity. The energy confinement time is expressed in terms of the thermal conductivity χ as $\tau_E = a^2/\chi$. The normalization of v_b to v_A is made, $v_\phi/v_{th} = \sqrt{6/\beta (v_b/v_A)}$. Using these relations, we have the ratio P_b/P_{heat} in the absence of the spontaneous rotation as

$$\frac{P_b}{P_{\text{heat}}} = \frac{\sqrt{6}}{3} \frac{\mu_p}{\chi} \sqrt{\frac{E_b}{T}\frac{v_\phi}{v_A}}. \quad (10)$$
where E_b is the beam energy, and we assume $m_b = m_i$. We see that, the higher the beam energy becomes, the larger the circulating power is.

For a typical parameters of ignited plasmas, $T = 10\text{keV}$, $\beta = 0.1$, $E_b = 1\text{MeV}$, the requirement of the rotation velocity of $v_\phi/v_A = 0.04$ [13] implies the circulating power of the order

$$\frac{P_b}{P_{\text{heat}}} \approx \frac{\mu_\perp}{\chi}$$

(11)

The right hand side of this equation is the inverse of the Prandtl number, and is in the range of $1/3$ to $1/2$ for the anomalous transport [14]. This ratio varies only weakly both in the L-mode and H-mode.

$$\frac{P_b}{P_{\text{heat}}} \approx \frac{1}{3} \sim \frac{1}{2}$$

(12)

This level of the circulating power is not tolerable for the steady state tokamaks.

3.3 Spontaneous Drive

The analysis in section 3.2 indicates the importance of the spontaneous rotation drive in the confined plasmas. In the framework of the self-sustained turbulence, the off-diagonal element of the transport matrix is also evaluated with the diagonal elements. By employing the reduced set of equations, the radial flux of the momentum $P_{\perp r}$ is expressed as [9]

$$\frac{P_{\perp r}}{m_i n_i v_A} = M_{11} \nabla \left(\frac{1}{v_A} \frac{\nabla \phi}{B} \right) - M_{12} \nabla \left(\frac{q R}{a} B \right)$$

(13)

where M_{ij} is the (i, j) element of the transport matrix, and M_{11} is related to the shear viscosity μ_\perp. The second term in the right hand side is the off-diagonal transport: in this case, the drive of the rotation by the pressure gradient.
In a stationary state (i.e., there is no external momentum source), the potential difference, \(\Delta \phi = \phi(a) - \phi(0) \), (and the \(E \times B \) velocity as well) is given as

\[
\frac{1}{V_A} \frac{\Delta \phi}{a B} \approx \frac{M_{12}}{M_{11}} \beta
\]

(14)

where the estimation \(V \approx 1/a \) is used. This equation is rewritten as

\[
\frac{e \Delta \phi}{T} = \frac{M_{12}}{M_{11}} \frac{6 a \omega_p}{c} \sqrt{\frac{m_e}{m_i}}
\]

(15)

The off-diagonal element is estimated by use of the theory of the self-sustained turbulence as [15]

\[
\frac{M_{12}}{M_{11}} = \frac{F^2(\alpha,s)}{4q} \sqrt{\frac{m_i}{m_e}} \frac{c}{a \omega_p}
\]

(16)

and

\[
\chi = F(\alpha,s)q^2 R \beta^{1/2} \frac{c^2}{\omega_p^2} \frac{V_A}{R}
\]

(17)

The coefficient \(F \) is near 2.5 except for the very low shear case \((s < 0.3)\) [9]. We have the potential difference due to the off-diagonal transport as

\[
\frac{e \Delta \phi}{T} \approx \frac{3 F^2}{2 q}
\]

(18)

which is around 2 for the usual tokamak discharges. The potential difference is spontaneously established, the magnitude of which is about twice of the ion temperature. The toroidal rotation velocity for this potential difference is estimated as

\[
\nu_{\phi} = \frac{qR}{a} \frac{\rho_i}{a} \nu_{th}
\]

(19)
where \(\rho_i \) is the ion gyro radius. The offset of the toroidal rotation at the balanced-injection has been confirmed by experiments [16]. It is shown from Eq.(19) that the normalized spontaneous rotation \(v_\phi^*/v_{th} \) is larger for the low current case, if other parameters are unchanged.

3.4 Rotation Drive by Alpha Particles

In the ignited plasmas, energetic alpha particles are generated. This free energy source could be used for the rotation drive. Ohkawa has discussed, if majority of alpha particles are lost by direct orbit loss (i.e., the plasma current \(I_p \) is below 3MA), considerable radial potential could be piled up, which can improve the energy confinement time [17]. The rotation drive by alpha has some contribution even in the case that alpha particles are confined in plasmas.

The generated alpha particles has larger poloidal gyro radius, so that the asymmetry with respect to the toroidal direction appears. The particles which move in the direction of the plasma current are subject to the inward shift, while those in the counter direction move outward. Since the source profile of alpha particles, \(S_\alpha(r) \), is localized in the center, \(\nabla S_\alpha = -S_\alpha/\ell_\alpha \) (\(\rho_\alpha \): banana width of \(\alpha \)-particles, and \(\ell_\alpha \): typical localization width) the momentum source in the co-direction occurs by the alpha-particle heating as

\[
M = v_\alpha m_\alpha \sqrt{\varepsilon} \frac{\rho_\alpha}{\ell_\alpha} S_\alpha
\]

(20)

If this source is balanced with the viscous damping, we have the velocity in the absence of the external source as

\[
v_\phi^* = \frac{a^2}{\mu_1} \frac{2\varepsilon}{m_i n_i v_\alpha V_p} \frac{\rho_\alpha}{\ell_\alpha} P_\alpha
\]

(21)
In obtaining Eq.(21), we use the relation of the \(\alpha \)-heating power \(P_\alpha = (m_\alpha v_\alpha^2/2)S_\alpha V_p \).

In the stationary state of ignited plasmas, the energy balance requires the condition \(P_\alpha a^2 \chi^{-1} = 3n_i T_i V_p \). Substituting the expression for \(P_\alpha \), we have

\[
\frac{V_{\phi^*}}{v_{\text{th}}} = \frac{3 \chi \sqrt{\epsilon}}{\mu_\perp \ell_\alpha} \frac{v_{\text{th}}}{v_\alpha}
\]

(22)

The normalized ratio \(v_{\phi^*}/v_{\text{th}} \), or \(v_{\phi^*}/v_A \), does not depend on the mass number of the fuel ions if other parameters are the same. The ratio \(\rho_\alpha/a \) is about \((3 \text{MA})/I_p \). If one employs a simplified expression as \(\ell_\alpha = a \) and values of \(T = 10 \text{keV}, \epsilon = 0.3 \), the spontaneous rotation due to this \(\alpha \)-particle drive is estimated as

\[
\frac{V_{\phi^*}}{v_{\text{th}}} \approx \frac{\chi}{3 \mu_\perp} \left(\frac{1 \text{MA}}{I_p} \right) \quad \text{or} \quad \frac{V_{\phi^*}}{v_A} \approx \sqrt{\frac{B}{6}} \frac{\chi}{3 \mu_\perp} \left(\frac{1 \text{MA}}{I_p} \right)
\]

(23)

It is shown that, if the confinement time is improved so that \(I_p = 10 \text{ MA} \) holds, then the spontaneous velocity is in the range of \(v_{\phi^*}/v_A \approx 10^{-2} \) is expected.

From Eq.(23), we see that the spontaneous drive in the burning plasma increases if the plasma current is reduced. The reduction in the plasma current is realized by the enhanced confinement. The improved confinement is also effective in enhancing the rotation drive efficiency for which the \(\alpha \)-particle drive is utilized.

3.5 Impurity Cleaning by Rotation Drive

We finally discuss the plasma purification by use of the rotation drive. It has been discussed that the centrifugal force of the rotation could be useful to repel the impurities from the plasma. For instance, the radial velocity of impurities, \(v_{i,r} \), has been obtained as [17]

\[
v_{i,r} = \frac{m_i Z_i v_{ii}}{eB} \left[f_{\text{trap}} \frac{E_r}{B} + \frac{m_i}{eB} \left(\frac{E_r}{B} \right)^2 \left(1 + f_{\text{trap}} \frac{A_1}{Z_i A_i} - 1 \right) \right]
\]

(24)
where the suffix \(i \) indicates the impurity, \(Z \) is the charge number, \(A \) is the mass number, \(v_{\text{th}} \) is the ion-ion collision frequency, \(f_{\text{trap}} \) is the ratio of the trapped particles (\(f_{\text{trap}} \approx \sqrt{E} \) holds in the absence of strong radial electric field). The first term in the right hand side is the inward pinch and the second term shows the centrifugal force. From the balance of two terms, we see that the purification is possible (i.e., \(v_{\text{th}} > 0 \)) if

\[
\frac{1}{v_{\text{th}}} \left| \frac{E_x}{B} \right| > \frac{f}{\rho_i} \frac{f_{\text{trap}}}{(1 + f_{\text{trap}})Z_iA_i - 1}
\]

(25)

This condition could be realized only if the condition \(Z_i/A_i \ll 1 \) and \(f_{\text{trap}} \ll 1 \). In this case, the necessary potential difference is estimated as

\[
\left| \frac{e\Delta \phi}{T} \right| > \frac{a^2 f_{\text{trap}}Z_iA_i}{\rho_i^2 A_i}
\]

(26)

The spontaneous formation of the potential difference and the rotation is evaluated in section 3.3 and 3.4. They are much smaller than the required velocity. The result shows that the large circulating power is required for the plasma purification via rotation drive. The plasma purification seems to be more difficult in comparison with the improved MHD stabilization and confinement.

4. Summary and Discussion

In this article, we discuss the impact of the steady state operation on the improved confinement and advanced tokamak scenarios. The improvement in the MHD stability and confinement, which have been explored by use of the variety in the profile, will require an additional circulating power in the steady state plasmas. Focusing on the role of plasma rotation for the improvement, the concept of the rotation
drive efficiency is introduced. The efficiency associated with the direct momentum injection by the beam as well as the spontaneous drive of rotation is investigated.

Several cases are studied. (1) The MHD stability against the high-mode number modes will be improved if the condition for the improved confinement is satisfied. (2) The MHD stability against the global mode, such as the resistive wall mode, puts a severer condition for the profile control. The necessary power for the direct drive is calculated, and is found to be large and intolerable. (3) The rotation velocity, which appears without external momentum source, is estimated. This level is of substantial importance for the advanced concepts in steady state tokamaks. The ignition will give an additional possibility to increase the spontaneous rotation. (4) The purification by the plasma rotation will need large circulating power, and the innovation study is required.

From this study, it is shown that the circulating power for the steady state operation of tokamak reactor will be determined by the efficiency for the current-drive and that for the rotation drive. The simultaneous fulfillment of the high beta value, the good MHD stability and the improved confinement is required. The minimum circulating power is determined by the self-consistency for these conditions. The quantitative analysis for the current drive power has been done extensively. The study in this article is limited to the zero-dimensional estimate for the circulating power, but provides a basis for the quantitative study in the future.

Acknowledgements

Authors would like to thank late Prof. H. Maeda of JAERI for his elucidating discussion. They also acknowledge discussion on the experiments with Dr. K. Ida, Dr. Y. Miura, members of JFT-2M Group, JIPP T-IIU and CHS Group, D III-D Group, JET Team, ASDEX-U Group and W7-AS Team. This work is partly supported by the Grant-in-Aid for Scientific Research of MoE Japan and by collaboration programme of the Advanced Fusion Research Center of Kyushu University.
References

 Controlled Nuclear Fusion Research (Seville, IAEA) paper D-1-I-1,

 1990 (IAEA, Vienna) Vol.1 277.

 110.

 1990 (IAEA, Vienna) Vol.1 p.177.

 Controlled Nuclear Fusion Research (Seville, IAEA) paper D-1-I-3-1.

 Controlled Nuclear Fusion Research (Seville, IAEA) paper D-1-I-4.

Figure Caption

Fig. 1 Schematic illustration of the necessary value of the current drive as a function of β_p.
<table>
<thead>
<tr>
<th>Density</th>
<th>Motivation</th>
<th>Damping Process</th>
<th>Spontaneous Drive</th>
<th>External Drive</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Improved Conf.) Central Burn</td>
<td>D (anom)</td>
<td>V (anom)</td>
<td>Pellet/Beam Fuelling</td>
<td>Sawtooth</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>Improved Conf. MHD Stability</td>
<td>μ_{shear} (anom) μ_{bulk} (NC)</td>
<td>Off-diagonal Transport α-burning</td>
<td>Momentum Injection</td>
<td>Sawtooth MTE ELMs</td>
</tr>
<tr>
<td>Current</td>
<td>As above (Thermal Stab.)</td>
<td>η_{\parallel} (NC)</td>
<td>BS Current</td>
<td>Current Drive</td>
<td>Sawtooth</td>
</tr>
<tr>
<td>Pressure</td>
<td>As above Central Burn (Thermal Stab.)</td>
<td>χ (anom)</td>
<td>Off-diagonal Transport (?)</td>
<td>Heating α-burning</td>
<td>Sawtooth ELMs</td>
</tr>
<tr>
<td>Impurity</td>
<td>D (NC & a)</td>
<td>NC pinch</td>
<td>Rotation</td>
<td>ELMs</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Profile Control
Recent Issues of NIFS Series

NIFS-316 M. Tanaka,
Macro-EM Particle Simulation Method and A Study of Collisionless Magnetic Reconnection; Nov. 1994

NIFS-317 A. Fujisawa, H. Iguchi, M. Sasao and Y. Hamada,
Second Order Focusing Property of 210° Cylindrical Energy Analyzer; Nov. 1994

NIFS-318 T. Sato and Complexity Simulation Group,
Complexity in Plasma - A Grand View of Self-Organization; Nov. 1994

NIFS-319 Y. Todo, T. Sato, K. Watanabe, T.H. Watanabe and R. Horiuchi,
MHD-Vlasov Simulation of the Toroidal Alfvén Eigenmode; Nov. 1994

NIFS-320 A. Kageyama, T. Sato and The Complexity Simulation Group,
Computer Simulation of a Magnetohydrodynamic Dynamo II; Nov. 1994

NIFS-321 A. Bhattacharjee, T. Hayashi, C.C. Hegna, N. Nakajima and T. Sato,
Theory of Pressure-induced Islands and Self-healing in Three-dimensional Toroidal Magnetohydrodynamic Equilibria; Nov. 1994

NIFS-322 A. Iiyoshi, K. Yamazaki and the LHD Group,
Recent Studies of the Large Helical Device; Nov. 1994

NIFS-323 A. Iiyoshi and K. Yamazaki,
The Next Large Helical Devices; Nov. 1994

NIFS-324 V.D. Pustovitov
Quasisymmetry Equations for Conventional Stellarators; Nov. 1994

NIFS-325 A. Taniike, M. Sasao, Y. Hamada, J. Fujita, M. Wada,

NIFS-326 I. Viniar and S. Sudo,
New Pellet Production and Acceleration Technologies for High Speed Pellet Injection System "HIPEL" in Large Helical Device; Dec. 1994

Fast Potential Change in Sawteeth in JIPP T-IIIU Tokamak Plasmas; Dec. 1994
NIFS-328 V.D. Pustovitov,
Effect of Satellite Helical Harmonics on the Stellarator Configuration;
Dec. 1994

NIFS-329 K. Itoh, S.-I. Itoh and A. Fukuyama,
A Model of Sawtooth Based on the Transport Catastrophe;
Dec. 1994

NIFS-330 K. Nagasaki, A. Ejiri,
Launching Conditions for Electron Cyclotron Heating in a Sheared Magnetic Field;
Jan. 1995

NIFS-331 T.H. Watanabe, Y. Todo, R. Horiuchi, K. Watanabe, T. Sato,
An Advanced Electrostatic Particle Simulation Algorithm for Implicit Time Integration;
Jan. 1995

NIFS-332 N. Bekki and T. Karakisawa,
Bifurcations from Periodic Solution in a Simplified Model of Two-dimensional Magnetoconvection;
Jan. 1995

NIFS-333 K. Itoh, S.-I. Itoh, M. Yagi, A. Fukuyama,
Theory of Anomalous Transport in Reverse Field Pinch;
Jan. 1995

NIFS-334 K. Nagasaki, A. Isayama and A. Ejiri
Application of Grating Polarizer to 106.4GHz ECH System on Heliotron-E;
Jan. 1995

NIFS-335 H. Takamaru, T. Sato, R. Horiuchi, K. Watanabe and Complexity Simulation Group,
A Self-Consistent Open Boundary Model for Particle Simulation in Plasmas;
Feb. 1995

NIFS-336 B.B. Kadomtsev,
Quantum Telegraph: is it possible?;
Feb. 1995

NIFS-337 B.B. Kadomtsev,
Ball Lightning as Self-Organization Phenomenon;
Feb. 1995

High-Energy Acceleration of an Intense Negative Ion Beam;
Feb. 1995

NIFS-339 K. Toi, T. Morisaki, S. Sakakibara, S. Ohdachi, T. Minami, S. Morita,
H. Yamada, K. Tanaka, K. Ida, S. Okamura, A. Ejiri, H. Iguchi,
K. Nishimura, K. Matsuoka, A. Ando, J. Xu, I. Yamada, K. Narihara,
R. Akiyama, H. Idei, S. Kubo, T. Ozaki, C. Takahashi, K. Tsumori,
H-Mode Study in CHS;
Feb. 1995

NIFS-340 T. Okada and H. Tazawa,
Filamentation Instability in a Light Ion Beam-plasma System with
External Magnetic Field; Feb. 1995

NIFS-341 T. Watanbe, G. Gnudi,
A New Algorithm for Differential-Algebraic Equations Based on HIDM;
Feb. 13, 1995

NIFS-342 Y. Nejoh,
New Stationary Solutions of the Nonlinear Drift Wave Equation;
Feb. 1995

NIFS-343 A. Ejiri, S. Sakakibara and K. Kawahata,
Signal Based Mixing Analysis for the Magnetohydrodynamic Mode
Reconstruction from Homodyne Microwave Reflectometry; Mar.. 1995

NIFS-344 B.B. Kadamtev, K. Itoh, S.-I. Itoh
Fast Change in Core Transport after L-H Transition; Mar. 1995

NIFS-345 W.X. Wang, M. Okamoto, N. Nakajima and S. Murakami,
An Accurate Nonlinear Monte Carlo Collision Operator; Mar. 1995

NIFS-346 S. Sasaki, S. Takamura, S. Masuzaki, S. Watanabe, T. Kato, K. Kadota,
Helium I Line Intensity Ratios in a Plasma for the Diagnostics of Fusion
Edge Plasmas; Mar. 1995

NIFS-347 M. Osakabe,
Measurement of Neutron Energy on D-T Fusion Plasma Experiments;
Apr. 1995

NIFS-348 M. Sita Janaki, M.R. Gupta and Brahmananda Dasgupta,
Adiabatic Electron Acceleration in a Cnoidal Wave; Apr. 1995

NIFS-349 J. Xu, K. Ida and J. Fujita,
A Note for Pitch Angle Measurement of Magnetic Field in a Toroidal
Plasma Using Motional Stark Effect; Apr. 1995

NIFS-350 J. Uramoto,
Characteristics for Metal Plate Penetration of a Low Energy Negative
Muonlike or Pionlike Particle Beam; Apr. 1995

NIFS-351 J. Uramoto,
An Estimation of Life Time for A Low Energy Negative Pionlike Particle
Beam: Apr. 1995

NIFS-352 A. Tanilike,
Energy Loss Mechanism of a Gold Ion Beam on a Tandem Acceleration
System: May 1995

NIFS-353 A. Nishizawa, Y. Hamada, Y. Kawasaki and H. Iguchi,
Increase of Lifetime of Thallium Zeolite Ion Source for Single-Ended
Accelerator: May 1995

NIFS-354 S. Murakami, N. Nakajima, S. Okamura and M. Okamoto,
Orbital Aspects of Reachable β Value in NBI Heated Heliotron/Torsatrons; May 1995

NIFS-355 H. Sugama and W. Horton,
Neoclassical and Anomalous Transport in Axisymmetric Toroidal Plasmas with Electrostatic Turbulence; May 1995

NIFS-356 N. Ohyabu
A New Boundary Control Scheme for Simultaneous Achievement of H-mode and Radiative Cooling (SHC Boundary); May 1995

Large Potential Change Induced by Pellet Injection in JIPP T-IIU Tokamak Plasmas; May 1995

NIFS-358 M. Ida and T. Yabe,
Implicit CIP (Cubic-Interpolated Propagation) Method in One Dimension; May 1995

NIFS-359 A. Kageyama, T. Sato and The Complexity Simulation Group,
Computer Has Solved A Historical Puzzle: Generation of Earth's Dipole Field; June 1995

NIFS-360 K. Itoh, S.-I. Itoh, M. Yagi and A. Fukuyama,
Dynamic Structure in Self-Sustained Turbulence; June 1995

NIFS-361 K. Kamada, H. Kinoshita and H. Takahashi,
Anomalous Heat Evolution of Deuteron Implanted Al on Electron Bombardment; June 1995

NIFS-362 V.D. Pustovitov,
Suppression of Pfirsch-schlüter Current by Vertical Magnetic Field in Stellarators; June 1995

NIFS-363 A. Ida, H. Sanuki and J. Todoroki
An Extended K-dV Equation for Nonlinear Magnetosonic Wave in a Multi-Ion Plasma; June 1995

NIFS-364 H. Sugama and W. Horton
Entropy Production and Onsager Symmetry in Neoclassical Transport Processes of Toroidal Plasmas; July 1995