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Abstract. High-beta tokamak equilibria with flow comparable to the poloidal Alfvén
velocity in the reduced magnetohydrodynamics (MHD) model with two-fluid and ion
finite Larmor radius (FLR) effects are investigated. The reduced form of Grad-
Shafranov equation for equilibrium with flow, two-fluid and FLR effects is analytically
solved for simple profiles. The dependence of the Shafranov shift for the magnetic axis
and the equilibrium limits on the poloidal beta and the poloidal Alfvén Mach number
are modified by the two-fluid and FLR effects. In the presence of the diamagnetic drift
due to the two-fluid effect, the equilibrium depends on the sign of the E × B drift
velocity. The FLR effect suppresses the large modification due to the two-fluid effect.
By constructing magnetic flux coordinates and a local equilibrium model from the
analytic solution, the effects of the non-circular property of the magnetic flux surfaces
in the poloidal cross-section on the components of the curvature vector is examined
in detail. The analytic solution is also used for the benchmark of the numerical code.
The numerical solutions with non-uniform pressure, density and temperature profiles
show similar behavior to analytic solution.
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1. Introduction

Macroscopic equilibrium and stability of plasmas are described by magnetohydrodynam-

ics (MHD). The MHD model is extended to include small scale effects such as two-fluid

and finite Larmor radius (FLR) effects [1, 2, 3]. The equations for such extended MHD

models are derived from the kinetic equation by taking fluid moments. The two-fluid

effects are the Hall current and electron pressure in Ohm’s law. The FLR effects are

the gyroviscosity and perpendicular heat fluxes in the fluid moment equations. These

effects introduce the scale lengths of the skin depth and the Larmor radius of ions.

An example of MHD stability theory to extend is for the Rayleigh-Taylor (RT)

instability (or interchange g-mode) in slab geometry [3, 4, 5, 6, 7]. For the short

wavelength modes of the RT instability, small scale effects cannot be neglected. In

the case of constant temperature, the two-fluid and the FLR effects are separately

stabilizing [4]. On the other hand, in the case of non-constant temperature, comparison

between four models, MHD, two-fluid MHD, MHD with FLR and two-fluid MHD with

FLR, shows complicated beta dependence of the combination of the two-fluid and FLR

effects [7]. The diamagnetic effects on the stability of toroidal plasmas are studied based

on simplified models such as drift models [8, 9] and reduced two-fluid MHD [10, 11].

The small scale effects on equilibrium become important in improved confinement

modes of magnetically confined plasmas. Equilibrium flows play important roles

such as the suppression of instability and turbulence transport for the formation of

the sharp boundary of a well confined region where the scale length becomes small.

The diamagnetic term due to two-fluid effects contributes to plasma flow in the high

confinement mode (H-mode) plasmas [12]. Equilibrium with flow in the extended MHD

models is necessary for the studies of both equilibrium itself and stability.

The reduced MHD equilibrium equations for high-beta tokamaks with flow

comparable to the poloidal Alfvén velocity, two-fluid, and FLR effects were derived

[13]. The equation for the lowest order of the magnetic flux function forms the Grad-

Shafranov (GS) type equation including terms of poloidal E×B and diamagnetic drifts.

In the lowest order, other quantities such as pressure and electrostatic potential are free

functions of the magnetic flux. The two-fluid effects introduce the diamagnetic drift to

the poloidal flow. The convection due to the diamagnetic drift is canceled by the FLR

effect. This is called the gyroviscous cancellation [1, 8, 14]. This GS type equation is a

simplified equation of the generalized GS equation for MHD equilibrium with flow [15]

and two-fluid equilibrium [16, 17], with an extension to include both the two-fluid and

FLR effects perturbatively.

In this paper, we solve analytically and numerically the reduced MHD equilibrium

equations for high-beta tokamaks with flow comparable to the poloidal Alfvén velocity,

two-fluid, and FLR effects. We compare the four models as the study of the RT

instability [7] mentioned above. The analytic solution is easily obtained as an extension

of the static MHD case [18, 19, 20] and the case of MHD with flow [21] when the

density is constant. This is different from the case of flow comparable to the poloidal
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sound velocity, which is slower than the poloidal Alfvén velocity, where the reduced

equilibrium equations have those effects in the next order [22, 23, 24, 25, 26, 27]. Since

the GS equation in that order couples with other equations such as pressure equation,

those equations with two-fluid and FLR effects are studied numerically [22, 24]. On the

other hand, by using the analytic solution, the effects of flow, two-fluid and FLR on the

magnetic structure can be examined in detail. From the radial profile of the magnetic

flux function, the Shafranov shift for the magnetic axis and the equilibrium limits due to

the effects of high-beta and flow are obtained. By constructing magnetic flux coordinates

from the analytic solution such those for the static MHD equilibrium [27, 28], the

components of the magnetic curvature are analytically obtained. These are expected to

be applied to the analysis of the kink, interchange and ballooning instabilities. Analytic

representations of flux coordinates and the components of the magnetic curvature

enables detailed parameter study of non-circular property of the poloidal cross-sections

of the magnetic flux surfaces due to high-beta, flow and diamagnetic effects. We

construct a local equilibrium model [38, 39, 40, 41, 42, 43] from the expansion of the

analytic solution in the vicinity of the magnetic axis that includes these effects as shaping

factors such as the elongation, triangularity and Shafranov shift of the magnetic flux

surfaces. The flux surface average of the normal curvature is analytically obtained from

the local equilibrium model. The analytic solution can also be used for the benchmark

of the numerical code. The numerical code can obtain equilibrium solutions with more

complicated profiles.

This paper is organized as follows. In section 2, we introduce the equations for

equilibria with flow comparable to the poloidal Alfvén velocity, two-fluid and FLR

effects. In section 3, assumptions for analytic and numerical solutions are shown.

In section 4, we obtain an analytic solution, magnetic flux coordinates and a local

equilibrium model. The parameter dependence of the magnetic structure is examined

by comparing between different MHD models. In section 5, numerical solutions are

obtained with the finite element method. A summary is given in section 6.

2. Reduced two-fluid equilibria with flow comparable to the poloidal

Alfvén velocity

In this section, we briefly introduce the reduced MHD equilibrium equations for high-

beta tokamaks with flow comparable to the poloidal Alfvén velocity, two-fluid and FLR

effects. The details of the derivation is shown in [13]. The extended MHD equations

with two-fluid and ion FLR effects are

∇ · (nv) = 0, (1)

∇× E = 0, (2)

minv · ∇v = j×B−∇ (pi + pe)− λi∇ · Πgv
i , (3)

E + v ×B =
λH

ne
(j×B−∇pe) , (4)
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µ0j = ∇×B, (5)

v · ∇pi + γpi∇ · v + λi

(
2

5
γ∇ · qi

)
= 0, (6)

(v − λHj/ne) · ∇pe + γpe∇ · (v − λHj/ne)

+ λi

(
2

5
γ∇ · qe

)
= 0, (7)

where mi is the ion mass, n is the density, v is the ion flow velocity, E and B are the

electric and magnetic fields, j is the current density, pi and pe are the ion and electron

pressures, Πgv
i is the ion gyroviscous tensor, qi and qe are the ion and electron heat

fluxes, respectively, and γ = 5/3. The diagonal components of the pressure tensors are

assumed to be isotropic. The explicit forms of Πgv
i , qi and qe used in the derivation

are shown below. We have introduced the artificial indices λH and λi that label the

two-fluid and FLR terms respectively: (λH , λi) = (0, 0) for the MHD, (1, 0) for the

two-fluid MHD (TF model), (0, 1) for the MHD with FLR (FLR model) and (1, 1) for

the two-fluid MHD with FLR (FLR+TF model). The electron mass me is neglected

because me ¿ mi. The electron gyroviscosity is also neglected since ρe ¿ ρi.

We consider the toroidal axisymmetric equilibria, where, in cylindrical coordinates

(R,ϕ, Z), the magnetic field B, the current density j and the electric field E can be

written as

B = ∇ψ(R,Z)×∇ϕ + I(R,Z)∇ϕ, (8)

µ0j = ∇I ×∇ϕ−∆∗ψ∇ϕ, (9)

E = −∇Φ(R,Z), (10)

where ψ is the poloidal magnetic flux and ∆∗ ≡ R2∇ · (R−2∇).

The reduced MHD equilibrium equation is obtained with the asymptotic expansion.

The asymptotic expansion is defined in terms of the inverse aspect ratio ε ≡ a/R0 ¿ 1

where a and R0 are the characteristic scale lengths of the minor and major radii

respectively. The following high-beta tokamak orderings for reduced MHD [29] are

applied,

Bp ∼ εB, (11)

pi ∼ pe ∼ ε
(
B2/µ0

)
, (12)

|∇| ∼ 1/a, (13)

where B ≡ √
B2

p + B2
ϕ, Bp ≡ |∇ψ|/R is the poloidal magnetic field and Bϕ ≡ I/R is

the toroidal magnetic field. We consider the case of flow comparable to the poloidal

Alfvén velocity, v ≡ |v| ∼ VAp ≡ Bp/(µ0min)1/2,

minv2 ∼ ‖Πgv
i ‖ ∼ εp ∼ ε2B2/µ0, (14)

and we assume

v ∼ |j|
ne

∼ |∇p|
neB

, (15)
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|qi,e| ∼ vpi,e. (16)

The two-fluid and FLR effects have the scale lengths of the ion skin depth di and ion

Larmor radius ρi, respectively,

di =

√
mi

µ0e2n
, (17)

ρi = di

√
pi

B2/µ0

. (18)

To be consistent with the slow dynamics (drift) ordering [2, 8] for the reduced MHD

models with flow comparable to the poloidal Alfvén velocity, the orderings for the scale

lengths di/a ∼ 1 and ρi/a ∼
√

ε are required. This is the standard ordering for reduced

two-fluid MHD [10, 11]. The variables are expanded in orders of ε as

ψ = ψ1 + ψ2 + . . . ,

I = B0R0 + I1 + I2 + . . . ,

pi = pi1 + pi2 + . . . ,

pe = pe1 + pe2 + . . . ,

n = n0 + . . . ,

Φ = Φ1 + . . . ,

R = R0 + x,

where ψj ∼ εjaR0B0, p{i,e}j ∼ εjB2
0/µ0 (j = 1, 2 . . .) and B0 and R0 are constant. The

leading order of the force balance equation (3) yields

pi1 + pe1 +
B0

µ0R0

I1 = const. (19)

The ion flow velocity v is separated as

v ≡ vE + λHvdi + v‖R0∇ϕ, (20)

vE ' −B−1
0 ∇Φ1 × (R0∇ϕ) , (21)

vdi ' − 1

eB0n0

∇pi1 × (R0∇ϕ) , (22)

where vE and vdi are the E×B and ion diamagnetic drift velocities, respectively, and v||
is the parallel flow velocity, all of which are comparable to the poloidal Alfvén velocity.

The ion gyroviscous force and heat fluxes in [2, 31] are needed only their leading orders,

∇ · Πgv
i ' −minvdi · ∇v −∇ (χv + χq) , (23)

χv ≡ mipi

2eB2
B · (∇× v), (24)

χq ≡ mi

5eB2
B · (∇× qi⊥). (25)

qi ' qi⊥ ' 5

2

1

eB2
B×

[
pi∇

(pi

n

)]
, (26)
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qe ' qe⊥ ' −5

2

1

eB2
B×

[
pe∇

(pe

n

)]
, (27)

where qi⊥ and qe⊥ are the ion and electron diamagnetic perpendicular heat fluxes

respectively. Substituting (20) and (23), (3) becomes

min[vE + (λH − λi)vdi + v‖R0∇ϕ] · ∇v

' j×B−∇ (pi + pe) + λi∇ (χv + χq) . (28)

The left hand side of (28) shows that the convection due to the diamagnetic drift vanishes

for the FLR+TF model, (λH , λi) = (1, 1). This is the FLR effect on the convective terms

that appear from the gyroviscous tensor Πgv
i , known as the gyroviscous cancellation

[1, 8, 14]. The gyroviscous cancellation in (28) is of the type of [14]. It is shown that

the following quantities are the functions of ψ1, n0(ψ1), Φ0(ψ1), pi1(ψ1), pe1(ψ1), v‖(ψ1)

and I1(ψ1). The following relation for the second order quantities are obtained from the

poloidal component of the force balance equation (28) as

pi2 + pe2 +
B0

µ0R0

I2

+
min0

B2
0

[
Φ′

1 +
(λH − λi)p

′
i1

en0

](
Φ′

1 +
λHp′i1
en0

) |∇ψ1|2
2

− λi(χv + χq) ≡ g∗(ψ1), (29)

where the prime denotes the derivative with respect to ψ1. The reduced Grad-Shafranov

(GS) equation with flow, two-fluid and ion FLR effects is obtained from the radial

component of the force balance equation (28) as

[1− F (ψ1)]

(
∂2

∂R2
+

∂2

∂Z2

)
ψ1 − |∇ψ1|2

2
F ′(ψ1)

= −µ0R
2
0

(
2x

R0

p′1 + g′∗

)
−

(
I2
1

2

)′
, (30)

where p1 ≡ pi1 + pe1,

F (ψ1) ≡
(

VE

VAp

+ λH
Vdi

VAp

)[
VE

VAp

+ (λH − λi)
Vdi

VAp

]
, (31)

VE

VAp

≡ −√µ0min0
R0Φ

′
1

B0

, (32)

Vdi

VAp

≡ −√µ0min0
R0p

′
i1

en0B0

. (33)

Equation (31) represents the contribution of the convective term. Equations (32) and

(33) are the poloidal Alfvén Mach numbers of the poloidal flow velocities of the E ×B

and ion diamagnetic drifts, respectively. The parallel flow v‖ does not appear in (30) by

the ordering. The parallel heat flux is also ordered out. The gyroviscous cancellation,

λH − λi = 0, occurs in (31) for the FLR+TF model, (λH , λi) = (1, 1). The FLR+TF

model is consistent with the reduced two-fluid MHD system with time evolution in

[11]. It is noted that the present model does not reproduce the resolution of the Alfvén

singularity, F = 1, by the Hall current as in non-reduced two-fluid models [30]. Thus,

equation (30) is valid when |1− F | ∼ O(1).
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3. Assumptions for analytic and numerical solutions

To solve the reduced GS equation (30) analytically and numerically, we adopt quasi-

toroidal coordinates (r, θ, φ) where R = R0 + r cos θ and Z = r sin θ. We then apply the

following normalization,

r/a ≡ r̄, ψ1/ψc ≡ ψ̄1, ψ2/ψc ≡ εψ̄2,

ψc/B0R0a ≡ εBpc, x/a ≡ x̄, Z/a ≡ z̄.

The quantities with the subscript “c” are the non-dimensional constant characteristic

quantities. The fixed boundary conditions for ψ̄1 at circular boundary is assumed,

ψ̄1(r̄ = 1, θ) = 0. (34)

Here, we assume the profiles of the ion and electron pressures as,

p{i,e}1 = ε
(
B2

0/µ0

)
p{i,e}1cψ̄

α
1 . (35)

We assume the profile of n0 as,

n0 = n0cψ̄
κ
1 . (36)

The poloidal Alfvén Mach number of the poloidal velocity of the E × B drift, (32), is

assumed to be constant,

VE/VAp = VEc. (37)

The poloidal Alfvén Mach number of the poloidal velocity of the diamagnetic drift, (33),

is given by

Vdi/VAp = αVdcpi1cψ̄
α−1−κ/2
1 , (38)

where

Vdc ≡ − 1

Bpca

√
mi

µ0e2n0c

. (39)

In an analogy to the MHD [21], we assume

g∗ +
I2
1

2µ0R2
0

= ε2
(
B2

0/µ0

)
(1− F )gcψ̄1. (40)

The convective term F , (31), is given by

F =
(
VEc + λHαVdcpi1cψ̄

α−1−κ/2
1

)

×
[
VEc + (λH − λi)αVdcpi1cψ̄

α−1−κ/2
1

]
. (41)

We examine the cases where F = const., i.e., both of the poloidal Alfvén Mach numbers

of the E ×B and diamagnetic poloidal flow velocities are constant,

α− 1− κ/2 = 0. (42)

The GS equation (30) is rewritten as
[
1

r̄

∂

∂r̄

(
r̄

∂

∂r̄

)
+

1

r̄2

∂2

∂θ2

]
ψ̄1 = − gc

B2
pc

− 2αp1cψ̄
α−1
1 r̄ cos θ

(1− F )B2
pc

, (43)
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F = (VEc + λHαVdcpi1c) [VEc + (λH − λi)αVdcpi1c] , (44)

where p1c ≡ pi1c + pe1c. We consider the case where the poloidal Alfvén Mach number

of the poloidal flow velocity of the diamagnetic drift is relatively small, Vdc = −0.2,

gc = 2.5, Bpc = 1.0 and pi1c = pe1c = p1c/2.

4. Parameter dependence of analytic solution

4.1. Analytic solution

An analytic solution for (43) can be found when the pressure profile is linear and the

density is constant, α = 1 and κ = 0. In this case, (43) and (44) becomes
[
1

r̄

∂

∂r̄

(
r̄

∂

∂r̄

)
+

1

r̄2

∂2

∂θ2

]
ψ̄1 = − gc

B2
pc

− 2p1cr̄ cos θ

(1− F )B2
pc

, (45)

F = (VEc + λHVdcpi1c) [VEc + (λH − λi)Vdcpi1c] . (46)

Equation (45) is solved with the boundary condition (34) by

ψ̄1=
1− r̄2

4B2
pc

(
gc +

p1cr̄ cos θ

1− F

)
. (47)

For the MHD, the analytic solution (47) coincides with that of [21]. For the static

MHD equilibrium [18, 19], F = 0, the magnetic axis is shifted outwards in a torus due

to the Shafranov shift and the poloidal cross-section of magnetic flux surfaces become

non-circular due to high-beta. The Alfvén singularity, F = 1, occurs when

VEc =
1

2

[
−(2λH − λi)Vdcpi1c ±

√
(λiVdcpi1c)

2 + 4

]
. (48)

We examine the parameter dependence of the effects of flow, two-fluid and FLR on the

magnetic structure of the analytic solution in the rest of this section.

The Shafranov shift for the magnetic axis, (x̄, z̄) = (∆̄s, 0), from the geometric

center, (x̄, z̄) = (0, 0), is obtained from

dψ̄1(x̄, z̄ = 0)

dx̄

∣∣∣∣
x̄=∆̄s

= 0, (49)

which yields

∆̄s =
−1 +

√
1 + 3[ν/(1− F )]2

3ν/(1− F )
, (50)

where ν ≡ p1c/gc, and ν/ε represents the poloidal beta for F = 0 [19]. Figure 1 (a)

shows the dependence of ∆̄s on the poloidal Alfvén Mach number of the E×B poloidal

flow velocity VEc for different models for ν = 0.8. Figure 1 (b) shows the behavior of ∆̄s

for the region around VEc = 0. For the MHD, the Shafranov shift ∆̄s is symmetric with

respect to the sign of VEc. The Shafranov shift ∆̄s for the MHD increases with |VEc| for

sub-Alfvénic poloidal flow, |VEc| < 1, and become negative for super-Alfvénic poloidal

flow, |VEc| > 1, across the Alfvén singularity at |VEc| = 1 [21]. For the other three
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models, ∆̄s is asymmetric with respect to the sign of VEc due to the diamagnetic flow.

The Alfvén singularity appears when VEc satisfies (48). The TF model shows large shift

from the MHD. Since the poloidal flow in the TF model is the sum of the E×B and the

ion diamagnetic drifts, the curve of the TF model is shifted from that of the MHD by

−Vdcpi1c in the horizontal direction. The effect of flow is enhanced (suppressed) when

the signs of the E × B and the ion diamagnetic drifts are the same (opposite). For

the FLR+TF model, the large shift due to the two-fluid effect is suppressed due to the

gyroviscous cancellation except for the region around VEc = 0. For the FLR model, the

asymmetry is opposite to that of the FLR+TF model. Figure 1 (b) shows that the FLR

and FLR+TF models do not indicate the simple horizontal shift from the MHD and

that the MHD, FLR and FLR+TF models coincide with each other at VEc = 0.

Figure 2 shows the radial profiles of ψ̄1 in the midplane, z̄ = 0, for different models

for super-Alfvénic poloidal E × B flow |VEc| = 1.5, for ν = 0.8. For all of the four

models, the magnetic axis, the peak of ψ̄1, is located in x̄ < 0 as shown in figure 1. For

the TF model, the radial profile is significantly modified from that for the MHD and

the separatrix, the minimum of ψ̄1, appears in the plasma region for VEc = 1.5. Since

the pressure p1 becomes negative at the separatrix, this equilibrium is not realistic. The

condition that the separatrix does not enter into the plasma region gives the equilibrium

beta limit [19, 21], which is obtained from

∂ψ̄1

∂r̄

∣∣∣∣
r̄=1

= − gc

2B2
pc

(
1 +

ν

1− F
cos θ

)
< 0, (51)

for −π ≤ θ ≤ π. When F = 0, the beta limit ν < 1 for static MHD equilibrium

[19] is reproduced. When F < 1 that corresponds to the sub-Alfvénic poloidal flow,

the equilibrium beta limit is ν < 1 − F which yields the following limits of the E × B

poloidal flow for a fixed ν,

VEc1− < VEc < VEc1+, (52)

VEc1± =
1

2

[
−(2λH − λi)Vdcpi1c ±

√
(λiVdcpi1c)

2 + 4 (1− ν)

]
. (53)

Analogously, when F > 1 that corresponds to the super-Alfvénic poloidal flow, the

equilibrium beta limit is ν < F − 1 which yields the following limits of the E × B

poloidal flow for a fixed ν,

VEc < VEc2− or VEc > VEc2+, (54)

VEc2± =
1

2

[
−(2λH − λi)Vdcpi1c ±

√
(λiVdcpi1c)

2 + 4 (1 + ν)

]
. (55)

Figure 3 shows the limits of the E×B poloidal flow, (52) and (54), on the contour

map of the Shafranov shift ∆̄s in the VEc − ν plane. The dependence of ∆̄s on VEc at

ν = 0.8 is equivalent to figure 1. The forbidden regions are VEc2− ≤ VEc ≤ VEc1− and

VEc1+ ≤ VEc ≤ VEc2+, which are located around the Alfvén singularity. The vertical

direction shows the beta limit for a fixed VEc. Figure 3 (a) shows the result for the MHD.
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It is symmetric with respect to the sign of VEc. The beta limit ν < 1 for static MHD

equilibrium corresponds to the vertical line at VEc = 0. The dependence of ∆̄s on |VEc|
with a forbidden region at some ν (< 1) corresponds to figure 3 of [21]. The amplitude

of the Shafranov shift increases and the forbidden regions become large with an increase

of the poloidal beta; ν/ε. As the |VEc| increases, the limit of ν decreases for sub-Alfvénic

poloidal flow, |VEc| < 1, and increases for super-Alfvénic poloidal flow, |VEc| > 1. For

|VEc|2 ≥ 2, ν ≥ 1 is allowed. Figure 3 (b) shows the result for the TF model. The VEc

dependencies of the Shafranov shift are shifted by −Vdcpi1c for a fixed ν. Since pi1c is

proportional to ν from the definition, the shift is also proportional to ν. The parameters

for figure 2, (VEc, ν) = (1.5, 0.8), is in the forbidden region VEc1+ ≤ VEc ≤ VEc2+ only for

the TF model. Figures 3 (c) and (d) show the results for the FLR and FLR+TF models.

Compared to the TF model, the results of FLR and FLR+TF models show moderate

shifts except for the region around VEc = 0. The shifts of the FLR and FLR+TF models

from the MHD are opposite to each other. There are two points in VEc where F becomes

zero, VEc = 0, Vdcpi1c for the FLR model and VEc = 0,−Vdcpi1c for the FLR+TF model.

Between these two points, there is a region where ν ≥ 1 occurs within the limit, in

addition to those regions for super-Alfvénic poloidal flow.

4.2. Magnetic flux coordinates

The magnetic flux coordinates (ξ, Θ) in the poloidal cross-section are obtained from the

analytic solution of ψ1, (47), by the relations, the same as those for the static MHD

equilibrium [28, 27],
(
1− ξ2cos2Θ

)
ψ̄11

(
∆̄s

)
= ψ̄11 (x̄) , (56)

(−ξ2sin2Θ
)
ψ̄11

(
∆̄s

)
= ψ̄12 (x̄, z̄) , (57)

where ψ̄1 has been rewritten with the Shafranov shift ∆̄s, (50), as

ψ̄1 (x̄, z̄) = ψ̄11 (x̄) + ψ̄12 (x̄, z̄) , (58)

ψ̄11 (x̄) =
gc

4B2
p

1− 3∆̄2
s + 2∆̄sx̄

1− 3∆̄2
s

(
1− x̄2

)
, (59)

ψ̄12 (x̄, z̄) = − gc

4B2
p

1− 3∆̄2
s + 2∆̄sx̄

1− 3∆̄2
s

z̄2. (60)

Equations (56) and (57) are analytically solved for (x̄, z̄) as

x̄ = ∆̄s+
1 + 3∆̄2

s

6∆̄s

{−1

+2 cos

{
2

3
arccos

[
3
√

3∆̄s

(
1− ∆̄2

s

)
(
1 + 3∆̄2

s

)3/2
ξcosΘ

]}}
, (61)

z̄ =
1− ∆̄2

s√
1− 3∆̄2

s + 2∆̄sx̄
ξsinΘ. (62)
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The magnetic flux coordinates (ξ,Θ) constitute a non-orthogonal coordinate system

in the poloidal cross-section. Figures 4 and 5 show the magnetic flux coordinates

for equilibria with sub- and super-Alfvénic poloidal E × B flow |VEc| = 0.25 and

1.5 respectively, for the MHD and FLR+TF models for ν = 0.8. The magnetic flux

coordinates for the static MHD equilibrium (VEc = 0) is also shown in figure 4 for

comparison. It is noted that, in figures 4 - 14, only the FLR+TF model is compared

with the MHD model since the magnetic flux coordinates cannot be obtained for the

TF model for VEc = 1.5 and the FLR model is equivalent to the opposite sign of VEc of

the FLR+TF model. The ξ coordinate represents the magnetic flux surfaces and ranges

from ξ = 0 at the magnetic axis, (x̄, z̄) = (∆̄s, 0) to ξ = 1 at the boundary, r̄ = 1.

The Θ coordinate represents the poloidal angle where Θ = 0 for the outer midplane,

Θ = ±π/2 at x̄ = ∆̄s, Θ = ±π for the inner midplane, −π < Θ < 0 for the lower

half and 0 < Θ < π for the upper half. For the MHD, the Shafranov shift is slightly

enhanced due to sub-Alfvénic poloidal flow (figure 4) while the magnetic axis is located

in negative x̄ for super-Alfvénic poloidal flow (figure 5). The magnetic flux coordinates

are modified due to flow along with the change of the magnetic structure. By including

both two-fluid and FLR effects, the magnetic flux coordinates are modified due to the

diamagnetic flow and become asymmetric with respect to the sign of VEc (figures 4 and

5).

The magnetic curvature vector is defined as

κ = b · (∇b) , (63)

where

b = B/B. (64)

By exploiting the magnetic flux coordinates (ξ,Θ), the components of the magnetic

curvature are obtained. The definitions of the components are based on [32]. The

poloidal curvature of magnetic flux surfaces is obtained as

κp = −t · (∇t) · n, (65)

where

n ≡ ∇ξ

|∇ξ| , t ≡ eϕ × n, eϕ ≡ ∇ϕ

|∇ϕ| . (66)

The toroidal curvature of the magnetic flux surfaces is given by

κϕ = −eϕ · (∇eϕ) · n. (67)

The normal curvature is given by

κn = n · κ, (68)

which is rewritten with κp and κϕ as

κn = −
(

Bp

B

)2

κp −
(

Bϕ

B

)2

κϕ. (69)
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In the leading order, the normal curvature κn is dominated by the negative of the

toroidal curvature,

κn ' −κϕ. (70)

In the reduced MHD, only the leading order of the normal curvature is taken into

account. The geodesic curvature is

κg = π · κ, (71)

where

π = b× n. (72)

The leading order terms of κn and κg arise due to toroidicity. In Appendix A, explicit

forms of the components of the magnetic curvature normalized with a−1, κ̄p, κ̄ϕ, κ̄n and

κ̄g, to be analytically obtained with (61) and (62) for ϑ = Θ are shown.

Figures 6 and 7 show the poloidal profiles of (a) the poloidal curvature κ̄p, (b) the

normal curvature κ̄n, (c) the geodesic curvature κ̄g and (d) 2D poloidal Jacobian D̄,

defined in (A.8), at ξ = 0.9 for the MHD and FLR+TF models with sub- and super-

Alfvénic poloidal E×B flow |VEc| = 0.25 and 1.5, respectively, for ν = 0.8. The results

for the static MHD equilibrium are also shown in figure 6 for comparison.

In figure 6 (a), the poloidal curvature for the static MHD equilibrium departs from

a constant value 1/ξ due to the high-beta effect. The poloidal curvature depends on

the poloidal angle Θ when the poloidal cross-section of the magnetic flux surface is non-

circular [33]. The poloidal curvature for the static MHD equilibrium also indicates the

feature of the D shape that the maxima are located inside of the torus, π/2 < |Θ| ≤ π,

and the minimum in the inner midplane, |Θ| = π, is smaller than that in the outer

midplane, Θ = 0. The poloidal curvature for the sub-Alfvénic poloidal E × B flow for

the MHD model indicates that the flow enhances the oscillation amplitude of that of

the static MHD. On the other hand, in figure 7 (a), the poloidal curvature for the

super-Alfvénic poloidal flow indicates the feature of the reversed D shape that the

maxima are located outside of the torus, 0 ≤ |Θ| < π/2, and the minimum in the

inner midplane, |Θ| = π, is larger than that in the outer midplane, Θ = 0. While

the poloidal curvature is symmetric with respect to the sign of VEc for the MHD, it is

asymmetric for the FLR+TF model. The effect of non-circularity of the poloidal cross-

section of the magnetic flux surfaces on the kink mode was studied in [34, 35, 36, 37].

These results can be applied to the study of the kink instability. In section 4.3, we

approximately derive the elongation and triangularity to analyse the non-circularity of

the poloidal cross-section of the magnetic surfaces in more detail.

In figure 6 (b), the normal curvature for the static MHD equilibrium departs from

the −ε cos Θ curve and the peak width around the outer midplane, Θ = 0, becomes

broader as the poloidal beta increases. The region for κ̄n < 0 corresponds to the

bad-curvature region that drives interchange and ballooning modes. For the normal

curvature for the sub-Alfvénic poloidal E × B flow, the modification due to the high-

beta effect is slightly enhanced. In figure 7 (b), for the normal curvature for the super-

Alfvénic poloidal E × B flow, the peak width around the outer midplane, Θ = 0,
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becomes narrower than that of the −ε cos Θ curve. In both of the figures 6 (b) and 7

(b), for the FLR+TF model, the effects of two-fluid and FLR are small but the normal

curvature is asymmetric with respect to the sign of VEc. The flux surface average of

the normal curvature, defined in (A.9), is needed for the analysis of the interchange

and ballooning instabilities. In this coordinate system, the flux surface average of the

normal curvature is obtained by numerical integration with the 2D poloidal Jacobian,

figures 6 (d) and 7 (d) that deviate from (2π)−1 due to the high beta effect. In section

4.3, we approximately derive the flux surface average of the normal curvature by using

the local equilibrium model.

In figure 6 (c), the geodesic curvature for the static MHD equilibrium deviates from

ε sin Θ curve and the maximum and the minimum are shifted from |Θ| = π/2 to inside

of the torus, |Θ| > π/2, due to the high-beta effect. For the geodesic curvature κ̄g

for the sub-Alfvénic poloidal E × B flow, the modification due to the high-beta effect

is slightly enhanced. In figure 7 (c), for the geodesic curvature for the super-Alfvénic

poloidal E × B flow, the maximum and minimum are shifted to outside of the torus,

|Θ| < π/2, in contrast to those of the static MHD equilibrium. In both of the figures 6

(c) and 7 (c), for the FLR+TF model, the effects of two-fluid and FLR are small but the

normal curvature is asymmetric with respect to the sign of VEc. The geodesic curvature

is essential for poloidal mode coupling, and hence it is important for ballooning modes.

4.3. Local equilibrium model

From the analytic representation for the flux coordinates, (61) and (62), the elongation

and the triangularity that characterize the shape of the poloidal cross section of the

magnetic flux surfaces can be analytically derived in the vicinity of the magnetic axis,

ξ ¿ 1. Equation (61) is expanded up to the second order in ξ as

x̄ ' ∆̄s +
1− ∆̄2

s√
1 + 3∆̄2

s

ξ cos Θ− ∆̄s

(
1− ∆̄2

s

)2

(
1 + 3∆̄2

s

)2 (ξ cos Θ)2. (73)

Substituting (73) into (62) and expanding up to the second order in ξ, we obtain

z̄ '
√

1− ∆̄2
s

(
1− ∆̄s√

1 + 3∆̄2
s

ξ cos Θ

)
ξ sin Θ. (74)

From (73) and (74), taking the terms up to the first order in ξ, the elongation κ0 is

obtained from
(
x̄− ∆̄s

)2
+

z̄2

κ2
0

' r̄2
cξ

2, (75)

as

κ2
0 = 1 +

4∆̄2
s

1− ∆̄2
s

= 1 +
2[ν/(1− F )]2

1 + [ν/(1− F )]2 +
√

1 + 3[ν/(1− F )]2
, (76)
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where

r̄c ≡ 1− ∆̄2
s√

1 + 3∆̄2
s

. (77)

For the static MHD equilibrium, the elongation κ0 coincides with that in [20] and

indicates that the magnetic flux surfaces are elongated, κ0 > 1, due to the high beta

effect. Figure 8 (a) shows the dependence of κ0 on the the poloidal Alfvén Mach number

of the E × B poloidal flow velocity VEc for different models for ν = 0.8. The magnetic

surfaces are elongated in the whole region of VEc with the peak of κ0 =
√

3 when F = 1.

The triangularity δ [38] is obtained by taking terms of (73) and (74) up to the second

order in ξ from the definition

δ(ξ) ≡ ∆̄sξ(ξ)− x̄ (ξ, Θ = Θz max)

r̄cξ
, (78)

where the Shafranov shift for the magnetic flux surface at ξ,

∆̄sξ (ξ) ≡ 1

2
[x (ξ, Θ = 0) + x (ξ, Θ = ±π)]

' ∆̄s

[
1−

(
1− ∆̄2

s

1 + 3∆̄2
s

ξ

)2
]

, (79)

and Θz max is obtained from

∂z̄

∂Θ

∣∣∣∣
Θ=Θz max

= 0. (80)

Substituting (74) into (80), we obtain

cos Θz max ' − ∆̄sξ(
1 + 3∆̄2

s

)1/2
. (81)

Thus, from (81), we obtain

x̄ (ξ, Θ = Θz max) ' ∆̄s

(
1− 1− ∆̄2

s

1 + 3∆̄2
s

ξ2

)
. (82)

Substituting (77), (79) and (82) into (78), we obtain δ as

δ(ξ) ' 4∆̄3
sξ(

1 + 3∆̄2
s

)3/2
. (83)

Equation (83) shows that the triangularity δ is proportional to the flux coordinate ξ.

The positive (negative) δ represents the D (reversed D) shape. For the static MHD

equilibrium, the triangularity becomes positive due to the high-beta effect since ∆̄s > 0

for finite poloidal beta. Figure 8 (b) shows that the dependence of the triangularity δ

on VEc is similar to that of figure 1 and indicates the enhancement of the D shape for

the sub-Alfvénic poloidal flow and the reversed D shape for the super-Alfvénic poloidal

flow as the poloidal curvature in (a) of figures 6 and 7.

A local equilibrium model [38, 39, 40, 41, 42, 43] is constructed from the shaping

factors ∆̄sξ, r̄c, κ0 and δ, derived above, as

x̄ (ξ, θ) = ∆̄sξ (ξ) + r̄cξ
[
cos θ − δ (ξ) sin2θ

]
, (84)
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z̄ (ξ, θ) = κ0r̄cξ sin θ. (85)

This is an approximation of the analytic solution (47) up to the second order in ξ. By

the relation,

θ ' Θ + cos Θz max sin Θ, (86)

(73) and (74) are reproduced from (84) and (85). Figures 9 and 10 show the magnetic

flux coordinates for the local equilibrium model corresponding to figures 4 and 5,

respectively. The ξ coordinates for figures 9 and 10 agree well with those for 4 and

5 for small ξ. Regarding the poloidal coordinates, θ = ±π/2 corresponds to Θ = Θz max,

which can be shown from (86) as well as from (85), while Θ = ±π/2 corresponds to

x̄ = ∆̄s. From (84) and (85), by using the relations in Appendix for ϑ = θ, the normal

curvature κ̄n and D is obtained as

κ̄n ' − ε

κ0

(
1 +

∆̄′
sξ

r̄c

cos θ

)−1 {(
∆̄′

sξ

r̄c

+ cos θ − 2δsin2θ

)

× [
1 +

(
κ2

0 − 1
)
cos2θ + 4δsin2θ cos θ (1 + δ cos θ)

]1/2

+ sin2θ (1 + 2δ cos θ)

×
{

(
κ2

0 − 1
)
cos θ − (1 + 2δ cos θ)

[
∆̄′

sξ

r̄c

+ 2δ
(
2cos2θ − 1

)
]}

×[
1 +

(
κ2

0 − 1
)
cos2θ + 4δsin2θ cos θ (1 + δ cos θ)

]−1/2
}

, (87)

D = κ0r̄
2
cξ

(
1 +

∆̄′
sξ

r̄c

cos θ

)
, (88)

where

∆̄′
sξ (ξ)

r̄c

= −2∆̄s

(
1− ∆̄2

s

)
(
1 + 3∆̄2

s

)3/2
ξ, (89)

and the prime denotes the derivative with respect to ξ. From (83), we have used the

relation

(ξδ)′ = 2δ. (90)

When |δ| ¿ 1 as shown in Fig. 8 (b), the normal curvature (87) is expanded with

respect to δ up to the first order as

κ̄n ' − ε

κ0

√
1 + (κ2

0 − 1) cos2θ

{
∆̄′

sξ

r̄c

+ cos θ

+ 2δsin2θ

[
−1 +

cos θ

1 + (κ2
0 − 1) cos2θ

(
∆̄′

sξ

r̄c

+ cos θ

)]

+
sin2θ

1 + (κ2
0 − 1) cos2θ

{
(
κ2

0 − 1
)
cos θ − ∆̄′

sξ

r̄c
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+ 2δ

{(
κ2

0 − 1
)
cos2θ

[
1− sin2θ

1 + (κ2
0 − 1) cos2θ

]

−2cos2θ + 1− 2∆̄′
sξ

r̄c

cos θ

(
1 +

sin2θ

1 + (κ2
0 − 1) cos2θ

)}}}

×
(

1 +
∆̄′

sξ

r̄c

cos θ

)−1

. (91)

Figures 11 and 12 show the poloidal profiles of (a) the normal curvature κ̄n and (b)

2D poloidal Jacobian D̄, obtained from (91) and (88), corresponding to (b) and (d) of

figures 6 and 7, respectively. Since the definitions of Θ and θ are different, figures 6

(b) and 11 (a), and figures 7 (b) and 12 (a) are qualitatively different. However, these

differences will be compensated with the 2D poloidal Jacobian when the flux surface is

calculated.

Substituting (91) and (88) into (A.9) for ϑ = θ, the flux surface average of the

normal curvature is obtained as

〈κ̄n〉 (ξ) ' − 2ε

π

1

κ2
0 − 1

{
∆̄′

sξ(ξ)

r̄c

[
κ2

0E

(
κ2

0 − 1

κ2
0

)
−K

(
κ2

0 − 1

κ2
0

)]

+
2δ(ξ)

κ2
0 − 1

[
2κ2

0E

(
κ2

0 − 1

κ2
0

)
− (

κ2
0 + 1

)
K

(
κ2

0 − 1

κ2
0

)]}
, (92)

where K and E are the complete elliptic integrals of the first and second kinds,

respectively,

K (m) =

∫ π/2

0

√
1−msin2θ

−1

dθ, (93)

E (m) =

∫ π/2

0

√
1−msin2θdθ. (94)

Equation (92) shows that the non-circularity of the poloidal cross-section of the magnetic

flux surface, κ0 and δ, as well as the Shafranov shift for the flux surfaces, ∆̄sξ, contributes

to the flux surface average of the normal curvature. Figures 13 and 14 show the radial

profiles of the flux surface average of the normal curvature 〈κ̄n〉 for the MHD and

FLR+TF models, respectively. The lines for the local equilibrium model, (92), show

good agreement with the curves for the numerical integration in (ξ, Θ) with (61) and

(62) for small ξ. In figure 13, 〈κ̄n〉 for the static MHD equilibrium, VEc = 0, is positive,

which means good curvature on average. This result agrees with the fact that positive

κ2
0−1 and δ have stabilizing influence [40] since, as shown in figure 8, both of κ2

0−1 and δ

are positive for the static equilibrium. For sub-Alfvénic poloidal E×B flow |VEc| = 0.25,

〈κ̄n〉 is slightly enhanced. For super-Alfvénic poloidal E × B flow |VEc| = 1.5, 〈κ̄n〉 is

negative, which means bad curvature on average. Figure 14 shows the modification

due to the diamagnetic effect for the FLR+TF model. The flux surface average of the

normal curvature also depends on the sign of VEc.
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Equation (92) is further simplified in the limit κ2
0 → 1, which is justified for

|VEc| À 1 as in Fig. 8 (a), as

〈κ̄n〉 (ξ) ' ε

4

[
−2∆̄′

sξ(ξ)

r̄c

+ δ(ξ)

]

=
ε∆̄sξ(

1 + 3∆̄2
s

)3/2
. (95)

For stability analysis, the reduced two-fluid MHD equations with FLR [11] should

be exploited and linearized with perturbations around the equilibria. In addition to

the modification of the magnetic curvature, other additional terms due to sheared flow

modify the stability. This will be studied in future.

5. Numerical solutions

In this section, we present numerical solutions of (43). We developed a code with the

finite element method [44, 45, 46]. We assume up-down symmetry for the poloidal cross-

section. We divide the plasma region into 4-node rectangular isoparametric elements

with equal lengths in r̄ from the geometric center, r̄ = 0, and θ in the quasi-toroidal

coordinates. The elements around the center, consequently, become triangular. The

area integration in each element is obtained from the 2× 2 Gaussian quadrature. Since

the GS equation is nonlinear in general, it is solved iteratively. We adopt analytic

solution for MHD static equilibrium as an initial guess of ψ̄1. The initial guess of ψ̄1 is

substituted into the right-hand side of (43) to find the new ψ̄1 that is used as a guess in

the next step. The norm of the error vector is calculated from the differences between

both sides of (43) at each grid point except for the points at the boundary, The iteration

continues until the norm of the error vector becomes less than 10−8.

We, first, solve (43) for α = 1 and κ = 0, (45), numerically and benchmark with its

analytic solution (47). In this case, the GS equation is linear and the solution is directly

obtained to satisfy the norm of the error vector less than 10−8 without iteration. We

define the numerical error from the analytic solution as

δ2
err =

N(N+1)∑
i=1

[ψ̄1i − ψ̄1(r̄i, θi)]
2

N(N+1)∑
i=1

ψ̄2
1i

, (96)

where ψ̄1i and ψ̄1(r̄i, θi) are, respectively, the numerical and analytic solutions at the

i-th grid point except for the points at the boundary. Figure 15 shows the dependence

of the error δerr on the number of grids N × N for the FLR+TF model for ν = 0.8

and VEc = −0.25. The error δerr decreases with an increase of the number of grids and

becomes ∼ 10−5 for 500× 500 grids.
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We, next, consider the more complicated case where α = 3/2 and κ = 1. Unlike

the above case, the density n̄0 is non-uniform n̄0 ∝ ψ̄1 as well as the pressure p̄1 ∝ ψ̄
3/2
1 .

Equations (43) and (44) become
[
1

r̄

∂

∂r̄

(
r̄

∂

∂r̄

)
+

1

r̄2

∂2

∂θ2

]
ψ̄1 = − gc

B2
p

− 3p1cψ̄
1/2
1 r̄ cos θ

(1− F )B2
p

, (97)

F =

(
VEc +

3

2
λHVdcpi1c

)[
VEc +

3

2
(λH − λi)Vdcpi1c

]
. (98)

Figure 16 shows the radial profiles of the numerical solutions in the midplane for super-

Alfvénic poloidal E × B flow |VEc| = 1.5 for ν = 0.8 with 500 × 500 grids. The

temperature T̄1 in figure 16 (c) is defined as T̄1 ≡ p1/n0 ∝ ψ̄
1/2
1 . The solutions have

been obtained by about 10 - 20 steps of the iteration. The results in figure 16 show the

similar behavior to those of the analytic solution in figure 2 as follows. The magnetic axis

is located in x̄ < 0. Due to the diamagnetic effect, the equilibrium is asymmetric with

respect to the sign of the E×B drift velocity. The results for the TF model for VEc = 1.5

is not shown in figure 16 since no solution has been found. For α = 3/2, if the equilibrium

is beyond the beta limit and ψ̄1 becomes negative, the pressure becomes imaginary and

no real solution can be found. For the FLR+TF and FLR models, solutions are found

for VEc = ±1.5. For VEc = −1.5, the FLR+TF model shows moderate difference from

the MHD compared to the TF model. For the FLR model, the asymmetry with respect

to the sign of the E ×B drift is opposite to that for the FLR+TF model.

6. Summary

We have solved the equations for high-beta tokamak equilibria with flow comparable

to the poloidal Alfvén velocity in the reduced MHD model with two-fluid and FLR

effects analytically and numerically. By using the analytic solution, we have examined

the modification of the magnetic structure in detail. From the radial profile of the

magnetic flux function, we have shown that the dependence of the Shafranov shift and

the equilibrium limits on the poloidal beta and the poloidal Alfvén Mach number are

modified by the two-fluid and FLR effects. By constructing magnetic flux coordinates

and a local equilibrium model from the analytic solution, we have shown the effects of

the non-circular property of the magnetic flux surfaces in the poloidal cross-section on

the components of the curvature vector. We have shown the benchmark result of the

numerical code with the analytic solution. We have also shown that the numerical

solutions with non-uniform pressure, density and temperature profiles show similar

behavior to the analytic solution. The modification of the magnetic structure may affect

instabilities. By using the equilibrium solutions obtained in this study, the stability

analysis based on the reduced MHD including the effects of flow, two-fluid and FLR on

both perturbation and equilibrium can be studied.
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Appendix A. Components of the magnetic curvature

The components of the magnetic curvature normalized with a−1 are written in flux

coordinates (ξ, ϑ) as

κ̄p = D−1

[
∂

∂ξ
(
√

g22)− ∂

∂ϑ

(
g12√
g22

)]
, (A.1)

κ̄ϕ '
ε
√

g22

D

(
∂x̄

∂ξ
− g12

g22

∂x̄

∂ϑ

)
, (A.2)

κ̄n ' −κ̄ϕ, (A.3)

κ̄g ' − ε√
g22

∂x̄

∂ϑ
, (A.4)

where

g12 =
∂x̄

∂ξ

∂x̄

∂ϑ
+

∂z̄

∂ξ

∂z̄

∂ϑ
, (A.5)

g22 =

(
∂x̄

∂ϑ

)2

+

(
∂z̄

∂ϑ

)2

, (A.6)

D =
∂x̄

∂ξ

∂z̄

∂ϑ
− ∂z̄

∂ξ

∂x̄

∂ϑ
. (A.7)

By substituting (61) and (62), the components of the magnetic curvature, (A.1) - (A.4),

are obtained analytically. The normalized 2D poloidal Jacobian is defined as

D̄ ≡ D/

∫ π

−π

Ddϑ. (A.8)

The flux surface average of the normal curvature is

〈κ̄n〉 (ξ) =

∫ π

−π

κ̄nDdϑ/

∫ π

−π

Ddϑ. (A.9)
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Figure 1. The Shafranov shift ∆̄s as a function of the poloidal Alfvén Mach number
of the poloidal E × B drift VEc for different models for ν = 0.8 and Vdc = −0.2. The
region around VEc = 0 in (a) is enlarged in (b).
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Figure 2. Radial profiles of ψ̄1 in the midplane for the different models for ν = 0.8,
|VEc| = 1.5 and Vdc = −0.2.
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Figure 3. The limits of E×B flow, (52) and (54), on the contour map of the Shafranov
shift ∆̄s in the VEc − ν plane for the (a) MHD, (b) TF, (c) FLR and (d) FLR+TF
models for Vdc = −0.2.
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Figure 4. Magnetic flux coordinates (ξ,Θ) for |VEc| = 0.25, ν = 0.8 and Vdc = −0.2.
Solid lines are for the MHD with |VEc| = 0.25. Dotted lines (red) are for the TF+FLR
model with VEc = −0.25. Dash-dotted lines (blue) are for the TF+FLR model with
VEc = 0.25. Dashed lines (gray) are for the static MHD for comparison.
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Solid lines are for the MHD with |VEc| = 1.5. Dotted lines (red) are for the TF+FLR
model with VEc = −1.5. Dashed-dotted lines (blue) are for the TF+FLR model with
VEc = 1.5.
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Figure 16. Numerical results of profiles in the midplane for different models for
|VEc| = 1.5, ν = 0.8 and Vdc = −0.2.


