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Abstract. In this paper, a new criterion for the internal transport barrier formation is proposed

by defining a unique scalar parameter, the profile gain factor. The profile gain factor shows degree

of the confinement improvement with respect to an arbitrary reference temperature profile scaling

in the L-mode. As the reference L-mode profile for the Large Helical Device (LHD), the edge ion

temperature profile data is extrapolated to the core by the L-mode profile function, which uses

the thermal diffusion coefficient being proportional to the local ion temperature. The profile gain

factor is defined as the ratio of the ion stored energy experimentally measured to that evaluated

from the reference L-mode profile. The proposed method is applied to the LHD experimental

data, and its capability for quantification of the ITB strength is demonstrated.
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1. Introduction

It is widely known that the more heating power is applied the worse the plasma

confinement becomes in magnetically confined plasmas. This is the so-called power

degradation problem. Because of this issue, a large heating facility is expected to

be necessary for realizing the self-ignition condition in thermonuclear fusion reactors,

which can be one of the crucial difficulties for building commercial plants. A possible

breakthrough was the discovery of confinement improved scenarios [1, 2, 3], including the

H-mode discharges and the internal transport barrier (ITB) discharges. These discharges

typically have an eased power degradation, which contributes to make plasmas having a

good performance. To utilize such scenarios in actual fusion plants, it is mandatory to

understand the background physics for establishing schemes to control discharges with

improved confinement mode.

The first step to investigate the improved confinement mode is to give a proper

definition for these modes. A successful example can be seen in the case of the H-mode

[3]. The H-mode discharges are typically characterized by a sudden drop in the Hα

(Dα) emission from the scrape off layer or divertor regions showing suppressed turbulent

particle flux. Steep gradients emerge in the temperature and density profiles, which are

called the pedestal structure. Because of its relatively clear hard transition feature,

the criterion of the H-mode transition is definitely given and several key underlying

physics are clarified, such as essential role of the radial electric field structure, turbulent

transport reduction, and density dependent threshold power that also has isotope ion
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mass dependence.

In contrast, regarding the ITB, in particular the ITB in the ion temperature profile,

no generally accepted definition exists. The literal definition of the ITB is that the

confinement is improved inside the plasma. This definition is too vague to utilize for the

quantification of the ITB. In addition, there are a wide variety of the ITBs that have

different degrees of confinement improvement [2], ranging from ‘box-type’ strong ITBs

in the reversed shear configuration to moderate ITBs in stellarators/heliotrons, which

makes unification of criterions difficult to achieve. In cases of the strong ITB, localized

reduction of transport can easily be identified merely by plotting the temperature

gradient or the diffusion coefficient [4, 5, 6]. A widely used criterion in tokamaks is

whether the major radius divided by the temperature gradient length, R/LT , exceeds

the critical value [1, 7, 8, 9]. This idea originates from the tokamak L-mode profile that

has stiffness [10, 11]; R/LT above the critical value manifests the situation where the

plasma overcomes the restriction of the profile stiffness. In stellarators/heliotrons the

temperature profile is not stiff in many cases [12, 13]. Therefore, the validity of R/LT

for the ITB criterion in stellarators/heliotrons is questionable.

Another criterion of the ITB is given by observing the temperature T dependence

of the thermal diffusion coefficient χ. The parameter α is defined as α = −dχ/dT , and

the case α < 0 is regarded to be the ITB [14, 15, 16]. In contrast, the L-mode plasmas

have α > 0, which is consistent with the incrementally scaled temperature dependence

of the energy confinement time in the Bohm scaling or the gyro-Bohm scaling. When
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α > 0, the more the temperature increases the worse the confinement becomes, bringing

the typical profile shape that has flatter gradient in the core region and steeper gradient

at the edge region. This constraint is violated when the ITB is formed. Besides the

direct quantification of the α parameter [14, 15, 16], the temperature gradient ratio

between the core region and the edge region was employed as an ITB criterion [17].

Although these criterions are based on the essential physics of the ITB, it is necessary

to make detailed discussions on the profiles of χ or −∇T for each time step, which is

often laborious. Therefore, these criterions are not always applicable in particular for a

large database with a wide range parameter scan experiment. Moreover, the direct use

of the temperature gradient can be an error source in the case that the measurement

noise in the temperature profile is not negligibly small.

In this paper, we propose a new criterion of the ITB confinement improvement

by defining a unique scalar parameter, the profile gain factor. The profile gain factor

quantifies degree of the confinement improvement with respect to an arbitrary reference

temperature profile scaling in the L-mode. As a case study, we analyze the ion

temperature profile in Large Helical Device (LHD). The L-mode ion temperature profiles

in LHD are characterized by the dome-shaped profile, where the confinement degrades

as the ion temperature increases towards the core [17]. The function form of the L-

mode profile, the so-called the L-mode profile function, is derived for the dome-shaped

ion temperature profile. Whether the ITB is formed or not is discussed based on the

fact that the confinement scaling of the ITB is similar to that of the L-mode in the edge
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region [1]. Edge ion temperature profile data is fitted by the L-mode profile function,

and is extrapolated to the core keeping the same scaling manner, which is called the

reference L-mode profile. When the core confinement is attributed to the ITB, the

measured ion temperature profile deviates from the reference L-mode profile, while both

become similar in the L-mode phase. The profile gain factor is defined as the ratio of

the ion stored energy experimentally measured to that evaluated from the reference

L-mode profile. The proposed method is applied to the measured data in LHD, and its

capability for quantification of the ITB strength is demonstrated.

This paper is organized as follows. In section 2, the L-mode profile function and

the profile gain factor are derived. Note that the discussion given in sections 2 is valid

for both ions and electrons, therefore we do not specify the target species. Application

of the profile gain factor for the ion temperature profiles in the LHD experimental data

is presented in section 3. The contents given in this paper are summarized in section

4. Detailed numerical schemes for solving the nonlinear thermal transport equation are

given with a simple numerical test in Appendix.

2. Derivation of the L-mode profile function and the profile gain factor

The L-mode profile function is derived from the steady-state thermal transport equation

for any particle species,

0 = − 1

V ′
∂

∂r
(V ′q) + P, (1)

where q is the radial heat flux, n is the density, V ′ = ∂V/∂r is the partial derivative
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of the volume enclosed by the flux surface with respect to the flux surface coordinate

r, and P is the heating power density that includes the energy exchange with other

species. The profile gain factor can be defined when q of the typical L-mode plasma

can be modeled as a function of the temperature T , its radial derivative ∂T/∂r, and

some constant parameters, and when Eq. (1) can be numerically solved with the model

of q under given experimental parameters, n, V ′, and P . In the case of the LHD,

it is empirically known that both the ion and electron temperature profiles in the L-

mode become the dome-shaped profile, which can be modeled by the pure diffusion

equation with the diffusion coefficient incrementally scaling with the local temperature.

Therefore, the radial heat flux can be given as

q = −nχ
∂T

∂r
, (2)

where χ is the thermal diffusion coefficient. The nonlinear dependence of χ on T is

represented as

χ = kT α, (3)

where α is a parameter that shows how strong the diffusion coefficient depends on the

temperature and k is the proportionality factor. Note that the temperature dependences

on the global energy confinement time in the Bohm scaling and the gyro-Bohm scaling

correspond to α = 1 and 1.5, respectively. The global energy confinement time scaling in

LHD derived from a wide range parameter scan approximately follows the gyro-Bohm

scaling [18]. The temperature profile in the L-mode is not always characterized by

Eqs. (2) and (3) in other devices. For example, it is widely known that the L-mode
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temperature profile in tokamaks shows the profile stiffness [10, 11], in which the dome-

shaped profile does not appear. In such a case, it is necessary to derive the model of

q and the scaling property of the transport coefficients for calculating the profile gain

factor. The thermal transport equation now becomes

kT α

∂2T

∂r2
+

1

L

∂T

∂r
+

α

T

(
∂T

∂r

)2
+ P

n
= 0. (4)

The specific scale length L is defined as

1

L
=

1

Ln

+
1

LV ′
, (5)

where

1

Ln

=
1

n

∂n

∂r
(6)

and

1

LV ′
=

1

V ′
∂V ′

∂r
(7)

are the inverse scale lengths of the density profile and the the partial derivative of

the torus volume profile, respectively. When the flux surface coordinate is defined as

r =
√
V/2π2R0, where R0 is a characteristic major radius, L−1

V ′ = r−1 holds. The

nonlinear partial differential equation is solved numerically for given parameters k and

α. The solution is obtained iteratively by use of the Levenberg-Marquardt method. See

Appendix for details.

Now the temperature profile that satisfies Eq. (4) is regarded to be a function of k

and α, namely,

T (r) = T (r|k, α). (8)
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In addition, as will be shown below, the ion temperature profile in the typical L-mode

phase can be well fitted with α = 1 in the case of the present LHD data. Accordingly,

Eq. (8) with α = 1, i.e.,

T (r) = T (r|k) (9)

is called the L-mode profile function. Whether the ITB is formed or not is discussed

based on the fact that the confinement scaling of the ITB is similar to that of the

L-mode in the edge region [1]. The parameter k of TL(r|k) is obtained from the

measured temperature profile in the edge region by the nonlinear fitting, and the entire

temperature profile is recreated by extrapolating TL(r|k) to the core. This recreated

profile is called the reference L-mode profile T ref
L (r), and corresponds to the temperature

profile that is expected to appear when the confinement is determined by the L-mode

scaling. Another Levenberg-Marquardt least square fitting is used for obtaining k with

numerically evaluated Jacobian matrix. The radial range for the nonlinear fitting is

called the fitting range, in which the ITB profile has the same scaling manner with

the typical L-mode profile. How much the measured temperature profile exceeds the

reference L-mode profile is used as the criterion of the ITB confinement improvement.

To quantify this discrepancy, the profile gain factor is defined as

Gα =

∫ a
0 nT (r)V ′dr∫ a

0 nT ref
L (r)V ′dr

, (10)

where a is the plasma minor radius and the subscript α denotes the α parameter

employed for the L-mode profile function. The numerator corresponds to the kinetic

plasma energy stored in the species of interest, and the denominator is that with respect
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to the obtained reference L-mode profile. The profile gain factor measures degree of the

confinement improvement with respect to the reference L-mode profile inside the fitting

range. By use of the profile gain factor, the confinement property in the core region can

be investigated separately from that in the edge region, e.g., the edge pedestal structure.

3. Application for experimental data

3.1. Experimental setup

The method proposed above is applied to the analysis of the ion temperature profile

dynamics in LHD. The target plasmas are produced by the five high intensity neutral

beams (NBs) above 20 MW in total. The confinement field is Bt = 2.85 T in the counter

clockwise direction observed from the top side of the torus. The magnetic axis in the

vacuum configuration is Rax = 3.6 m. The ion temperature profile Ti is measured by

the charge exchange recombination spectroscopy for the carbon impurity emission [19].

The electron temperature profile Te and the electron density profile ne are given by the

Thomson scattering system [20]. Spatial resolutions of these two profile measurement

systems are high enough to discuss the profile gain factor. The energy exchange between

ions and electrons, Pie, is proportional to the difference between the ion temperature

and the electron temperature. The heat deposition of the NB PNB is evaluated by the

beam simulation code FIT3D [21]. The radial derivative of the plasma volume V ′ is

given from the equilibrium calculation code. In LHD, the effective minor radius reff

is conventionally used as the flux surface coordinate, i.e., the radial coordinate. The
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plasma edge is defined by the averaged minor radius in which 99 % of the plasma kinetic

energy is confined, to be a99 ∼ 0.63 m. In this paper data from two different discharges,

i.e., the stationary L-mode discharge and the ion-ITB transition discharge, are analyzed

for demonstrating the usefulness of the profile gain factor in ion-ITB formation study.

3.2. Analysis of the stationary L-mode discharge

At first, the profile gain factor is evaluated for the case of the L-mode discharge.

Empirically, the ITB is formed in the low density regime with sufficiently high NB

power input. Therefore, the high density discharge with the line averaged electron

density of ∼ 3 × 1019 m−3 is chosen as the typical L-mode discharge. The present

data is from the discharge # 141189 at the time frame of t = 3.95 s. The radial

profiles of the plasma parameters are shown in Figs. 1 (a)-(c). The instant diffusion

coefficient is defined as χi = qi/ne|∇Ti|, where the ion heat flux qi is given by the power

balance analysis, i.e., qi = V ′−1
∫ r
0 (PNB + Pie)V

′dr. The radial derivative for ∇Ti is

taken after performing the second order Bessel function smoothing to reduce noise. The

diffusion coefficient χi is plotted as a function of Ti for various radii in Fig. 1 (d) to

experimentally obtain the α parameter. The points in reff ≤ 0.1 m and reff ≥ 0.55 m

are not shown because noise is large and the gradient is not properly evaluated. All

the plotted points are approximately aligned on a linear line, showing that Eq. (3) with

α = 1 represents the ion temperature dependence of the diffusion coefficient. The ion

temperature profile experimentally measured in the fitting range of 0.45 ≤ reff ≤ 0.55 m
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is fitted by Ti,L(r|k) to obtain the parameter k. The L-mode profile function Ti,L(r|k)

with the obtained k parameter is extrapolated to the core, which is called the reference

L-mode profile T ref
i,L (r). The red curve in Fig. 1 (a) corresponds to T ref

i,L (r). It is shown

that the measured ion temperature profile is well reproduced by T ref
i,L (r). The profile

gain factor is evaluated to be G1.0 = 0.987, which is approximately unity as expected.

3.3. Analysis of the ion-ITB transition discharge

The profile gain factor is applied to the discharge # 136281 that involves dynamic

formation of the ion-ITB. The time evolutions of the injected NB power and the line

averaged density are shown in Fig. 2 (a). Before the ion-ITB transition starts, the

plasma is sustained by three tangentially injected NBs (# 1-3) and one perpendicularly

injected NB (# 5). Another perpendicular NB (# 4) is injected at t = 4.6 s, which seems

to trigger the ITB transition. At the same time, the ion temperature measurement

starts because the NB # 4 is the probe beam of the charge exchange recombination

spectroscopy. This beam is modulated with 10 Hz and 80 % duty ratio for the

background emission subtraction. In order to enhance the carbon impurity emission

by the charge exchange recombination reaction from the core, a carbon pellet is injected

before the NB # 4 starts, which is also considered to reduce the ion thermal transport.

Figures 2 (b)-(d) show the spatiotemporal evolutions of the ion temperature, the ion

temperature gradient, and the thermal diffusion coefficient, respectively. The central ion

temperature continuously increases until t ∼ 4.75 s. A strong gradient region emerges
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at t ∼ 4.65 s and reff ∼ 0.3 m, which drifts towards the core region. The thermal

diffusivity is minimized at the radius where the gradient is strong, which corresponds

to the ion-ITB formation. The ion-ITB gradually degrades after one of the tangentially

injected NBs breaks down at t ∼ 4.8 s, and finally the improved confinement region

disappears. After t = 5.1 s, the power of the NB # 4 is halved, which results in a larger

noise in the ion temperature measurement.

The reference L-mode profile T ref
i,L (r) is obtained by fitting the edge ion temperature

profile with the L-mode profile function Ti,L(r|k) and by extrapolating it to the core.

The spatiotemporal evolution of T ref
i,L (r) is shown in Fig. 2 (e). Although the core

ion temperature drastically changes when the ITB is formed, the change in T ref
i,L (r) is

moderate. Both the measured ion temperature profiles and the reference L-mode profiles

at t = 4.61, 4.73, and 5.15 s are shown in Figs. 3 (a)-(c), respectively. These three

time slices correspond to the initial measurement frame, the frame at which the central

ion temperature is the maximum, and the frame after the ion-ITB has disappeared,

respectively. In time slices Figs. 3 (a) and (c), the reference L-mode profiles are

slightly lower than the measured ion temperature profiles, showing that the confinement

improvement in those time frames are not significant. When the central ion temperature

becomes the maximum, the deviation of the measured ion temperature profile from

the reference L-mode profile is maximized, due to both increase of the measured ion

temperature profile and decrease of the reference L-mode profile. The latter effect

corresponds to the ‘see-saw’ effect, as discussed in [22]. The difference between the
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measured ion temperature profile and the reference L-mode profile is quantified as the

profile gain factor, Eq. (10), which is shown in Fig. 2 (f). The achieved central ion

temperature Ti0 and the central ion temperature of the reference L-mode profile T ref
i0,L

are also plotted in the same figure. It is shown that Ti0 varies drastically while T ref
i0,L

remains almost unchanged. This difference is reflected in the change of the profile

gain factor. At t = 4.73 s, G1.0 ∼ 1.5 is obtained, clearly showing the strong ion-ITB

formation. As the profile gain factor is the integrated quantity, it is robust against

the noise. The value of the profile gain factor is stable even in t > 5.1 s in which the

noise level in the ion temperature measurement increases, while the obtained diffusion

coefficient becomes less smooth in space.

In the time instance at which the profile gain factor is the maximum, the

conventional criterion of the ITB formation is performed for comparison. Figure 3 (d)

shows the diffusion coefficient plotted as a function of the ion temperature for various

radii at t = 4.73 s. In a large part of the radius, reff ≥ 0.25 m, the diffusion coefficient

is decrementally scaled by the ion temperature, i.e., α < 0. In these radii, the more

the ion temperature evolves the better the thermal confinement becomes, violating the

L-mode scaling of the diffusion coefficient. The red curve in Fig. 3 (d) corresponds to

the T−1
i dependence, showing a good agreement with the experimental data. It should

be noted that this analysis is only applicable when Ti is measured with good quality,

because the noise in evaluating |∇Ti| is directly reflected to χi.

One of the other criterions of the ITB, the relative gradient between the core and
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the edge, |∇Ti,core|/|∇Ti,edge| [17], is also evaluated and is compared with the profile gain

factor. Since the ITB position changes in time, the core gradient is evaluated at three

different radii, reff = 0.2, 0.3, and 0.4 m, and the corresponding relative gradients are

evaluated with respect to the edge gradient at reff = 0.5 m. The time evolutions of the

relative ion temperature gradients are shown in Fig. 2 (g). The ITB is formed at the

edge first and then propagates inward. Therefore, the change in the relative gradient at

the core side is delayed compared to that at the edge side. The magnitude of changes

depend on the radius too, and in this case the relative gradient at reff = 0.2 m evolves

most drastically. It is shown that properties of the relative gradient strongly depend

on space because it is a local parameter. Meanwhile the profile gain factor, which is an

integrated scalar parameter, shows the overall characteristics of the ITB confinement

improvement. The latter is beneficial for a wide range parameter scan study.

It is valuable to compare the ITB in LHD with that in tokamaks. In the JET

device, the ion temperature profile is attributed to show an ITB when the dimensionless

parameter

ρ∗Ti
= ρs/LTi

. (11)

exceeds a critical value, i.e., ρ∗Ti
> ρ∗ITB = 0.014 [9], where ρs is the drift wave scale

length and LTi
= −T−1

i ∇Ti is the gradient length of the ion temperature profile. The

drift wave scale length is given as ρs = B−1
t

√
Temi/e, where mi is the ion mass and e is

the electron charge. This dimensionless parameter ρ∗Ti
is interpreted as an indicator of

how strong the turbulence is stabilized by the E × B shear flows associated with large
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pressure gradients and plasma rotation. In the case of LHD, ρ∗Ti
is slightly below 0.014

at maximum, showing that the ITB in LHD is as strong as the marginal ITB in JET.

This difference of the ITB strength might originate from different saturation mechanism

of the ion temperature profile in the L-mode. By use of the profile gain factor, the

reference L-mode profile can be arbitrary set according to the L-mode scaling manner

in different devices, which facilitates quantitative comparison between ITBs in tokamaks

and stellarators/heliotrons. General differences in the ITB behaviors in tokamaks and

stellarators/heliotrons are summarized in a review [2].

4. Summary

In this paper, a new criterion for the internal transport barrier formation was proposed

by defining a unique scalar parameter, the profile gain factor. The profile gain factor

showed degree of the confinement improvement with respect to an arbitrary reference

temperature profile scaling in the L-mode. As the reference L-mode profile for LHD, the

edge ion temperature profile data was extrapolated to the core by the L-mode profile

function, which uses the thermal diffusion coefficient being proportional to the local

ion temperature. The profile gain factor was defined as the ratio of the ion stored

energy experimentally measured to that evaluated from the reference L-mode profile.

The proposed method was applied to the LHD experimental data, and its capability for

quantification of the ITB strength was demonstrated.

The proposed method in this paper can be applied for a large database with a
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wide range parameter scan experiment. In particular, the ITB onset power threshold

study [5, 7] is expected to be feasible for relatively weak ITBs in stellarators/heliotrons

to understand underlying physics and to obtain better controllability. Future applied

studies are anticipated.
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Appendix

In this section, the computational scheme for solving the nonlinear diffusion equation is

explained.

4.1. Finite differentiation

Here, the temperature profile T (r) for any particle spicies is denoted as the combination

of the temperature vector

T = (T1, T2, · · · , Tn) (12)
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and the flux surface coordinate vector

r = (∆, 2∆, · · · , n∆), (13)

that has a regular separation of ∆. The thermal transport equation Eq. (4) is discretized

with the central finite differences, i.e.,

∂Tj

∂r
=

Tj+1 − Tj−1

2∆
(14)

and

∂2Tj

∂r2
=

Tj+1 − 2Tj + Tj−1

∆2
(15)

for j-th component. The discretized version of Eq. (4) becomes the nonlinear

simultaneous algebraic equation with n variables denoted as fj(T) = 0, where the

subscript j represents the number of the equation. The l.h.s. of Eq. (4) is given as

fj(T) = kT α
j (lpTj+1 + lmTj−1)− 2kTα+1

j +
αkT α−1

j

4
(Tj+1 − Tj−1)

2 +
∆2Pj

nj

, (16)

where

lp = 1 +
∆

2L
(17)

and

lm = 1− ∆

2L
. (18)

By solving fj(T) = 0, the temperature profile T can be obtained.

4.2. Solving nonlinear simultaneous algebraic equation

Equation fj(T) = 0 is solved iteratively since it is a nonlinear equation. First, an initial

profile T has to be found, which is not too far from the final solution. The initial profile
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is renewed for aiming to make f(T) be closer to zero. Therefore, the new profile T+ δT

is given so as to satisfy

f(T+ δT) = 0. (19)

This equation is approximated by use of the Taylor expansion as

J(T)δT = −f(T), (20)

where J(T) is the Jacobian matrix, from which δT can be obtained. The initial profile

is updated by T + δT, and the iteration continues until the profile converges. For the

actual application, the following modification is made,

[
J(T)TJ(T) + λI

]
δT = −J(T)Tf(T), (21)

where λ is the tunable damping factor, in order to enhance the stability. At the initial

stage of the iteration, the damping factor λ is set to be a larger value, by which the

algorithm is made closer to the gradient-descent method. At the later stage, the damping

factor is suppressed, which brings the method closer to the Newton algorithm. This

procedure is known as the Levenberg-Marquardt method.

The Jacobian matrix is obtained by taking the derivative of Eq. (16) as

∂fj
∂Tj

= αkT α−1
j (lpTj+1 + lmTj−1)−2 (α + 1) kTα

j +
α(α− 1)kT α−2

j

4
(Tj+1 − Tj−1)

2(22)

∂fj
∂Tj+1

= lpkT
α
j +

αkT α−1
j

2
(Tj+1 − Tj−1) (23)

∂fj
∂Tj−1

= lmkT
α
j −

αkT α−1
j

2
(Tj+1 − Tj−1) (24)

∂fj
∂Ti

= 0 when i ̸∈ {j − 1, j, j + 1} (25)
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To solve the nonlinear simultaneous algebraic equation, the boundary conditions

must be given at both sides. Here, simply T0 = T1 is given for the core side and

Tn+1 = Tedge is given for the edge side, where Tedge is obtained from the measured

profile at r = (n+ 1)∆. When j = 1, Eq. (22) becomes

∂f1
∂T1

= αkT α−1
1 (lpT2 + lmT1)− 2 (α + 1) kT α

1

+
α(α− 1)kTα−2

1

4
(T2 − T1)

2 + klmT
α
1 − αkT α−1

1

2
(T2 − T1) . (26)

The iteration procedure is terminated when the profile is converged. Whether the

profile is converged is judged by use of the history of the profile update. It is defined as

ϵi =

√∑
∆T2/

∑
T2, (27)

where ∆T is the difference between i-th profile and (i − 1)-th profile and the sum is

taken over radii which are subject to the analysis. When ϵi becomes below a certain

threshold value, the iteration process is stopped and the profile is regarded as the final

solution.

4.3. Initial profile

By substituting α = 0 to the equations, the nonlinearity disappears and the equations

can be uniquely solved without using iteration. Now the equations to be solved are

JTT = −∆2Pj

nj

. (28)

The Jacobian matrix becomes independent of T as

∂fj
∂Tj

= −2k, (29)
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∂fj
∂Tj+1

= lpk, (30)

∂fj
∂Tj−1

= lmk, (31)

and

∂fj
∂Ti

= 0 when i ̸∈ {j − 1, j, j + 1}. (32)

When j = 1, Eq. (29) becomes

∂f1
∂T1

= − (2− lm) k (33)

For other elements, T0 = T1 and Tn+1 = Tedge are substituted in the equations when

j = 1 and j = n, respectively. The solution is used as the initial value for the iteration.

4.4. Numerical test

Capability of the proposed method is examined numerically. We provide the test

parameters as k = 2 and α = 1, and attempt to solve the nonlinear thermal transport

equation. Radial profiles of the density and the heating power density are given as shown

in Fig. 4 (a). Here, according to the typical NB sustained discharge in LHD, we employ

the flat density profile and the centrally peaked heating power density profile. The

results of the calculation are also shown in Figure 4 (a), in which all the history of the

iteration is over plotted. The iteration converges at the seventh step. At the initial stage,

the thermal transport equation is pure diffusion equation with the constant diffusion

coefficient χ = k m2/s. Because the diffusion coefficient is constant, a centrally peaked

temperature profile is obtained owing to the centrally peaked heating profile. As the
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iteration stage progresses, the profile approached to the final profile without diverging.

In the final iteration stage, the temperature profile becomes the dome-like shape having

the minimum gradient at the core and the maximum gradient at the edge, i.e., the more

the temperature increases the worse the confinement becomes.

It is essential to examine how the diffusion coefficient depends on the temperature.

The diffusion coefficient, i.e., the heat flux normalized by the density and the

temperature gradient, is plotted as a function of the temperature in Fig. 4 (b). In

the case of the initial profile, the diffusion coefficient is constant with respect to the

temperature, except for the very core region and very edge region, in which the boundary

conditions affect the profile. Meanwhile, in the case of the final profile, the diffusion

coefficient is proportional to T 1, showing that the final profile satisfies Eq. (3) with the

given parameters k and α.
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Results
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Figure 1. Radial profiles of the typical L-mode discharge; (a) ion temperature, the electron

temperature, and the reference L-mode profile, (b) the electron density and the partial derivative

of the torus volume, and (c) the heating power density by the NBs and the electron-ion energy

exchange ratio. (d) Heat diffusion coefficient as a function of the ion temperature. The fitting

range is shown in (a).
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Figure 2. Time evolutions of (a) the heating scenario and the line averaged density, (b) the ion

temperature profile, (c) the ion temperature gradient profile, (d) the heat diffusion coefficient

profile, (e) the reference L-mode profile, (f) the central ion temperature, the extrapolated central

ion temperature, and the profile gain factor with α = 1, and (g) the relative ion temperature

gradient with respect to reff = 0.5 m. The fitting range is shown in (b) and (e).
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Figure 3. (a-c) Measured ion temperature profiles and the reference L-mode profiles at

t = 4.61 s, 4.73 s, and 5.15 s, respectively. (d) Heat diffusion coefficient as a function of the ion

temperature at t = 4.73 s. The fitting range is shown in (a)-(c).
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Figure 4. (a) Radial profiles of the density profile and the heating power density profile given

as test data and the history of the temperature profile derivation. The initial profile (α = 0)

and the final profile (α = 1) are shown by the green and light blue thick curves, respectively,

while the history between them is shown by the blue thin curves. (b) Diffusion coefficient as a

function of temperature when α = 0 and α = 1.


