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A method to calculate the flux-surface-averaged anisotropy (the second Legendre order) in the
slowing down velocity distribution of the fast ions generated by tangentially injected neutral beams
is shown. This component is required for (1) perpendicular and parallel currents in MHD
equilibrium calculations including the fast ions’ pressure, (2) the anisotropic heating analyses on
the thermalized target plasma species, and (3) the classical and the Pfirsch-Schliiter radial transport
of both the thermalized target plasma species and the fast ions themselves. For including the paral-
lel guiding center motion effect in non-symmetric toroidal configurations such as stellarators and
heliotrons, the adjoint equation and the eigenfunctions are applied. In contrast to the previously
investigated configuration dependence of the first Legendre order as the momentum input to the tar-
get plasma species, a quite different dependence of the second Legendre order on the magnetic field
strength modulation B(0, {) on the magnetic flux-surfaces is found. Even in a low energy range of
the slowing down velocity distribution, the deviation (reduction) of the anisotropy from a result

neglecting the orbit effect is proportional to 1 — (B) /Buax. Published by AIP Publishing.

https://doi.org/10.1063/1.5025212

I. INTRODUCTION

In both present experiment devices for fusion interest
and future burning core plasmas in reactors, the fast ions
play roles as sources of particle, momentum, and energy for
thermal particles. In particular, after the development of
charge exchange recombination spectroscopy,' determina-
tion of the velocity distribution of the thermalized ions (H,
D, T, He, C, etc.) including this momentum input has been
regarded as an important physics issue.” This kind of present
study also is a step toward the future study on the burning
core. By a recent development of the neoclassical theory for
general non-symmetric toroidal configurations that is
expandable for multi-ion-species plasmas,>™ we now can
consistently calculate various drift orbit effects in the
3-dimensional real space and collisional non-diagonal cou-
plings between various thermal particles. The inclusion of
the parallel momentum input due to the NB (neutral beam)-
produced fast ions in this framework was recently conducted
and its result successfully explained the experimentally
measured impurity flow velocity.®

The present study in this paper is motivated by follow-
ing different contributions of the NB-produced fast ions:

(1) Fastions’ particle flux nyuy = fvﬁd3v as a component of
the plasma current J = Za e ngau, in the MHD equilib-
rium is non-negligible not only for the surface-averaged
parallel current (B -J) determining the rotational trans-
form but also for the Pfirsch-Schliter (P-S) parallel
current determining the Shafranov shifts. Here, (-)
= §¢-/gd0dl/ $ §/gd0dl is the surface-averaging
operation for the poloidal angle 0, and the toroidal angle
{ in appropriately chosen flux-surface coordinates
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(5,0,() with the Jacobian /g = [(Vs x V0) - (VO]
This modification of the shifts by high-energy tangential
NB injections (NBIs) is already recognized in various
experiments.”® This is one reason for which we investi-
gate tangential NBIs first not only for their flow driving
effect but also for their effect on the MHD equilibrium.
The anisotropic-pressure MHD equilibrium is defined as
a state that includes particle species with the pressure
anisotropy being (91, — pja)((P1a — Pa)/B*) > 0. This
definition of the ‘‘anisotropic-pressure species” 1is
based on the magnetic field curvature effects b-VInB
and b- Vb =V, InB for the unit vector b = B/B that
are included in the parallel and the perpendicular force
balances.” In the tangential NBI operations, the P-S cur-
rent becomes larger than that in the isotropic-pressure
equilibrium with > p, = >, (2p14 + p|,)/3 while the
perpendicular current decreases. For constructing equilib-
rium'®'! and red stability'?™° theories regarding this sit-
uation and for executing such calculations, we should
know the pressure moments pj, pi¢ of the fast ions’
anisotropic  gyro-phase-averaged velocity distribution
fi(x,v,&) correctly. Hereafter, £ = v /v is the cosine of
the pitch-angle in the spherical velocity coordinates.

(2) An anisotropic heating for the thermalized target plasma
species is another effect of the anisotropic velocity distri-
bution f;(x,v,&). The usual isotropic heating power
source term J"szaf (fm,fr)d®v is an energy input in
usual energy balance analyses, and the previously inves-
tigated first Legendre order of the collision (B Jlll ECut
(fuam,f)d&) as an external momentum input term drives
the experimentally observable parallel flow moment
(B Lll &f,d&) that is determined by the balance of the
friction collision and the parallel viscosity force.

Published by AIP Publishing.
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Hereafter, f,m(s,v) in the Coulomb collision operators
Cab(farfo) or Cpa(fs,f) at the minor radial position s in
the flux-surface coordinates system is the Maxwellian
velocity distribution having the surface-averaged density
(ng) of the species a, and the average temperatures
(Te) = (p.)/{ne) of electrons or (Ty) = Y, (pa)/
> arer(Na) of ions. Analogously to this balance, the sec-
ond Legendre order of the a —f collision f Py(&)
Cout(fam, fr)dE [Po(E) =2 fz 3: Legendre polynom1al
of order [ = 2] will generate the surface-averaged pres-
sure anisotropy (14 — pPja){(P1a — Pa)/B*) > 0 of the
thermalized target species a by a balance with the anisot-
ropy relaxation collision. The Coulomb collision opera-
tor in the neoclassical transport theory is handled based
on its characteristic that the test particle portion
Cup(fa,fom) is a differential operator for the test particles’
velocity distribution f,(x, v) while the field particle por-
tion C,p(fam, fp) is an integral operator for the field par-
ticles’ f,(x,v). However, the difference between these
first and second Legendre orders is not so large.
Therefore, the next step issue after investigating the flow

driving effect of (B fl ECut(fam, fr)dE) is to investigate

f Pr(E)Cut(fum,f t)df since the latter also may generate
some experlmentally observable changes in the thermal-
ized particles’ velocity distributions. However, the ion
flow velocities driven by the beam in Ref. 6 were sub-
sonic velocities (i.e., small shifts of the Maxwellian
velocity  distributions)  (n,u, - B)/(n,B) < 10km/s
caused by the injection velocity of v, = 2.28Mm/s.
Furthermore, it is well-known that the beam driven elec-
tron flow (so-called shielding current component in the
beam driven current) is an order of uj ~ Z%nquf/
(Zeffne).m’17 It also is a small shift of the electrons’
Maxwellian. Because of the aforementioned characteris-
tic of the Coulomb collision, the thermal/fast ratio of the
anisotropy (pt/pa)|(Pja — P1a)/(p|r — p1t)| also will not
exceed these |u,|/vp ratios. This qualitative understand-
ing is one reason for which only the fast ions are regarded
as the anisotropic-pressure species, and the thermalized
particle species are regarded as the isotropic-pressure spe-
cies in many previous theories for the MHD equilib-
rium.'*'*!7 One purpose of this present study is to show
a method for confirming the validity of this assumption
quantitatively.

(3) In the situation of many present experiments where the
neug in the J = )~ e n u, (in particular, the P-S parallel
current) is non-negligible, the P-S and the classical radial
particle/energy diffusions (defined in Ref. 9) of thermal-
ized particles caused by the friction (momentum
exchange) collision also are modified. This transport
process will be important especially for impurities.
Simultaneously, this friction causes also the classical and
the P-S diffusions of fast ions themselves. In past calcu-
lations of the f;(x,v, &), this kind of radial transport is
often regarded as a higher order of p;/L, (p,: typical cir-
culating orbit deviation of the species a from the flux-
surfaces, L, = |V InY, p.|™": radial gradient scale
length) and is neglected. To investigate the radial
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transport of fast ions themselves is important as a confir-
mation of the validity of these calculations of the
fe(x,v, ). Analogous to the calculation of the P-S paral-
lel and the perpendicular currents, this friction calcula-
tion also requires knowledge regarding the anisotropy
(the second Legendre order).

The purpose of this study is to show a method to calcu-
late the flux-surface-averaged anisotropy in the f;(x, v, &) of
the NB-produced fast ions for these applications. However,
this velocity distribution in non-symmetric toroidal configu-
rations will have a complicated phase space structure
because the non-uniform magnetic field strength B - VB # 0
in the 3D real space makes three types of phase space
regions, i.e., circulating, toroidally trapped, and ripple-
trapped regions corresponding to different drift orbits. In
the drift kinetic equation (DKE) for the fast ions, a set of
o =uv/lvy| = =1 and 2 = uBy/w = (Bu/B)v? /v* with the
maximum magnetic field strength By on each flux-surface is
used mainly as the pitch-angle space parameter, rather than
E=y)/v=0(l - w/BM)I/z. The circulating and the
trapped pitch-angle ranges are defined as 0 < A <1 and
1 < 2 < By/B, respectively. The latter region consists of
the ripple-trapped range 0 < x> <1 and the toroidally
trapped range x* > 1, where x? is defined by > = {(Bu/
Bo)/2 — (1 +¢er —en)}/(2en) for stellarator/heliotron mag-
netic fields B/By =1+ er(s,0) + eu(s, 0) cos[LO — N
+ 7(s, )] with the volume averaged field strength By. In both
numerical (see the references cited in Ref. 3) and analytical'®
methods for solving these kinds of kinetic equations, appro-
priate calculation methods for the drift orbit and the collision
effects must be chosen and used complementarily for these
pitch-angle ranges, if we need the complete determination of
the solution f,(x, v) in the full phase space regions. From the
viewpoint of various effects of the fast ions on the thermal-
ized target plasma particle species such as that caused by the
Coulomb collision or the direct contribution of nfus as the
component of the current in the MHD equilibrium, however,
we do not need to know the complete structure of f(x, V)
itself. For its pitch- and gyro-angle space structure that is
handled by the spherical harmonic expansion, the Coulomb
collision operator (field particle portion'®) Cu(fum,f) is
an integral operator suppressing the higher Legendre
orders, and we should investigate the aforementioned lower
Legendre orders /=0, 1, 2 (corresponding to the energy
input, the momentum input, and the anisotropic heating,
respectively) first. For the MHD equilibrium, we need only
to know py¢ + pis, (pr — p.f)/B? for the perpendicular and
P-S parallel current, and (Bnsuj;) for the beam driven
current. On the real space structure of fi(x,v) in this MHD
calculation, it should be emphasized that the construction of
the aforementioned flux-surface coordinates system for the
transport analyses is included in the purpose of this calcula-
tion. This coordinates system is constructed for the B,J
vector fields basically satisfying V-B=V.-J=B.Vs
= J - Vs = 0. Therefore, only the surface-averaged contribu-
tions (p¢ + p.r) and ((pjr — p.r)/B?) of the fast ions” pres-
sure are required’ even if the solution of the DKE for f;(x, v)
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itself may have complicated phase space structures. This is a
reason why we adopt the adjoint equation method®® for the

([22P2 (LY (32)Cut (far, fi)d*v/B) integrals with j=0, 1,
2 of the Coulomb collision operator (Sec. III) [ij (K)

= (KK /IN\d (e KK*)/dK/  and  x, = v/\/2(T,)/m,
= v/v1,] and the ([ 1*P,(¢)f;d®v/B) integrals with k = —1,
1,2,4,6 of the velocity distribution function (Sec. IV) in this
study, instead of direct solution methods for the f¢(x, v) itself
such as the previously proposed eigenfunction that is defined
for the full pitch-angle range 0 < 4 < BM/B.21

It was found in a previous study’ that the friction
moments of the collision between thermal and fast ions
(B[ véLj(-3/ 2) (x2)Cat (fam, fi)d?v) in the tangential NBI opera-
tions have a strong dependence on the B-field strength modu-
lation on the flux surfaces ((1 — B/By)"/?) 5 0. This is due
to the fast ions’ parallel (to B) guiding center motion con-
serving the magnetic moment u. Analogous to the banana
regime parallel viscosity of thermalized particles,****
nection of independently determined solutions for ¢ = *1 at
v = 0 is used also in the solving procedures of the DKE for
the fast ions. Therefore, the previously found dependence of
the velocity distribution function f EOdd) = [fi(x,0,0,4)
—f¢(x,v,—0,4)]/2 on the field strength modulation will
appear also in fEeven) = [fe(x,v,0,4) + fe(x,v,—0, 1)]/2.

Only one difference from the fgomi) (x,v,0,1) is that the

trapped pitch-angle range 1 < A < By/B must be included
when we calculate the anisotropy ﬁl P, (&)f ¢dé. In this pre-

vious investigation of fEOdd), we used a direct solving method
for the fast ion DKE. This method was possible since this
component exists only in the circulating pitch-angle range
0 < 4 < 1. The mathematical method (eigenfunction) origi-
nally developed for axisymmetric tokamaks®* was easily
generalized to non-symmetric stellarator/heliotron configura-

tions. On the other hand, the fil P(E)fdE integral as the

purpose of this present study requires fﬁeve’” that can be
broadened to the full pitch-angle range 0 < 1 < By/B by
the pitch-angle scattering (PAS) collision during the slowing
down process. Cordey proposed a method for expressing this
velocity distribution function using the eigenfunctions that
are defined for the full pitch-angle range.?' However, numer-
ous analytical approximations assuming axisymmetric toka-

maks that can be justified only for ((1 —B/By)"?) < 1
were used. This method cannot be generalized to non-
symmetric stellarator/heliotron configurations. Instead of
that, we shall adopt the adjoint equation method that was
previously used by Taguchi for calculating the fast ions’ par-
allel particle flux (anqu>,20 since our purpose is not in the

f, Eeven) (x,v,2) itself but in some surface-averaged contribu-
tions of the velocity space integrals fd3v of this function.
Even though this adjoint equation also is defined for the full
phase space regions (X, v), we need its solution only at a spe-
cific pitch-angle range where the fast ion source exists. For
the tangential NBIs, the required solution is that in the circu-
lating pitch-angle range 0 < 4 < 1, and thus this method can
be commonly used for general toroidal configurations (not

Phys. Plasmas 25, 042509 (2018)

only axisymmetric tokamaks but also non-symmetric stella-
rator/heliotron devices).

Therefore, the rest of this work is organized as follows.
In Sec. II, the DKE for the fast ions in the tangential NBI
operations and the adjoint equation method are introduced.
Based on them, a formula that is applicable for various
integrals in above applications with a common form
([ Ha(v)P2(&)frd*v/B) is derived. The application of this
formula to the anisotropic heating analysis is shown in Sec.
III. However, an important issue in this section is a relation
of this newly added part in the thermalized particles’” DKE
with the previously studied parts for handling various radial
gradient forces and parallel forces. As responses to these
forces, the poloidally and toroidally varying anisotropies
Plla — PLa and 1, — 11, are generated corresponding to the
neoclassical viscosities that also have the CGL (Chew-
Goldberger-Low) form n, = (pj, — p1a)(bb —1/3), vy — 1,1
= (rla — 7'1a)(bb —1/3) with the unit tensor I. The genera-
tion of these velocity distribution components is complicated
rather for the thermalized particles than for the fast ions in
Sec. 1II, since the thermalized particles’ velocity distribution
is strongly affected by the field particle portion Cyp(fam,fp1)
in the linearized collision operator as a coupling between
DKE:s for different particle species, and the E x B drift due
to the ambipolar radial electric field —0®/0Js. The collision
and the drift approximations must be appropriately chosen
for these components. This difference between the fast ions
and the thermalized particles will be discussed in Sec. III. In
Sec. IV, methods for calculating the parallel and the perpen-
dicular flow moments of the fast ions and various fiction
integrals caused by them are shown for the P-S and the clas-
sical diffusions of both thermalized particles and the fast
ions themselves. The nsug in the current caused by the fast
ions’ anisotropic pressure also will be obtained by a method
in this section. The summary is given in Sec. V. In these
discussions, the knowledge regarding the perpendicular and
the parallel particle/energy fluxes (in particular, that on the
solubility condition of the parallel fluxes) of general particle
species with non-negligible anisotropies is required. This
explanation is given in Appendix A. The anisotropic heating
analysis in Sec. III utilizes the Braginskii’s matrix expression
of the anisotropy relaxation collision based on the three
terms Laguerre expansion. The required matrix elements are
summarized in Appendix B.

Il. ADJOINT EQUATION FOR INCLUDING FAST IONS’
PARALLEL GUIDING CENTER MOTION EFFECTS

The drift kinetic equation for the tangentially injected
fast ions is given by”2*!

VHff = Z Cfb (fﬁfb) + Sf(S, v,0, )“)7
b

Vi=yb - Vi i—const
vb-VB N,
=véb - V(U,é):oonst - ET (1 - gZ) 8_5 (1)
In this section, we shall investigate the Oth order of p;/L,
(B)f1 in the gyro-phase-averaged velocity distribution
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fe(x,v,0,1) by using this equation excluding the perpendic-
ular guiding center drift velocity vqr = (¢/ ef)(mfvﬁ /B + w)b
xVInB. Although we also will investigate the poloidal/
toroidal variations of the 1st Legendre order moment

ﬁl &f;1dE (contributing to the P-S current and causing the
P-S radial transport) as a response to the radial gradient term

(var - V)OF S Jos  for £ = [f1(x,0,0,2) +F(x,v,
—a,1)]/2 after this determination of the Oth order compo-
nent (see Sec. IV), this f;, is the Ist order of p;/L, (a veloc-

ity distribution function component being o (B) ). Note
that the perpendicular differential V f, in the DKEs in this
paper is that keeping constant (v, ¢), not only in the E x B
operator V introduced below but also in this vy, - Vf,. Since
VB xB-VB =0, the field curvature effect b-Vb =
V. In B does not appear in the V, f, for the purpose of the
Vda - Vf,. This is in contrast to the gyro-phase-dependent
part in Sec. IV and the other curvature effect b - VInB in V).
This procedure, in which (vq, - Vs)9df,/0s is added after
obtaining the solution being V|f, = 0 of the equation exclud-
ing vq, - Vf,, 1s analogous to that for transport of fusion-born
fast ions in burning plasmas.** The procedure will be applied
also for the fast-ion-driven component of
(B! Lll P (&)f,dE) (a # f) in Sec. 1T if it is not negligibly
small. It also is known regarding this drift velocity vg; that
the poloidal precession of the deeply trapped particles in
k? < 1 due to Jey/0s and Oer/ds is sometimes important
together with the radial component vy - Vs.* In this study,
however, we shall assume that the fast ion source term
Se(s,v,0,2) o< (v —vp)/v* (given by HFREYA and
MCNBI codes®® that are used and/or assumed in recent
related works®?) exists only in the circulating pitch-angle
range A < 1 (i.e., tangential NBI). In this case, the trapped
particles in x* < 1 that will be generated by the PAS colli-
sion during the slowing down process exist only in the low-
energy region v < v.. Here, v. is the critical velocity that
will be introduced in the fast ion collision operator Eq. (2).
Therefore, to allow the —cV® x B /B2 precession and the
collisionless detrapping/retrapping of the low-energy trapped
particles in x> < 1 caused by the ambipolar electrostatic
potential®’ in following discussions is more important than
the radial gradients ey /s, der/0s of the B-field strength.
In spite of this implicit allowing of —cV® x B/B? for
v < v, and k* < 1 in the adjoint equation method, the elec-
tric field term E - 9f;/9v in the Vlasov operator is not taken
into account explicitly at least in Eq. (1) analogously to the
previous investigation of the parallel momentum input. In
particular, the E x B flow divergences in Eqs. (Al4) and
(A15) caused by the ambipolar electrostatic potential being
an order of [V®| ~ |(Vp,)/(eqans)| (a # f) are not important
for high-energy ions with msvg/2 > T.,T; while the diver-
gences correspond to a part of the thermodynamic force
in the DKEs for thermalized particles.3_6 The various
fvv""zfad3v flow moments (in Sec. IV) of various particle
species caused by the —cV® x B/B? drift vanish in the per-
pendicular and the P-S parallel current, and the classical and
the P-S radial transport because of the charge neutrality and
the Galilean invariant property of the Coulomb collision. For
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the inductive parallel electric field (B-E®)B/(B?), the
momentum conservation of electron-ion and ion-electron

collisions is the reason for this omission of EI(‘A)(?ff/BvH.

When the Joule heating current is generated by £ |(|A>, the con-
servation law proves that m, [vECue (% f_llfadé,fe) d’v

~—(Z, /Zeff)eanaEﬁA) for both thermalized and fast ions
a # e. Here, the so-called effective charge number Zg
=D utes Z2n,4/ne is assumed to be order unity. In the DKEs

for thermalized ions a # e, f, to retain El(‘A>8f_ ¢/0v) for the

confirmation of the Onsager symmetric relation between the
bootstrap current and the Ware pinch is meaningful when the
collision term Coe(fum,fo1) = meV - { [ V&2 (0)fod®V }m /Pa
for f, = fom + fe1 given by the usual small mass ratio approx-
imation for the ion-electron collision is simultaneously
retained. On the other hand, in Eq. (1) for the fast ions, to
retain the inductive field term is meaningless as long as we
use the collision approximation Cr, (f;,fs) = Cra(ft,fam) for
a # f in which field particles’ flow velocity moments u,
= [vf,d’v/n, in their shifted Maxwellian distributions
fam(v — u,) generated by various mechanisms are neglected.
The reason for this collision approximation is that the flows
of the thermalized target plasma species are often subsonic
flows (i.e., the electron flow is |u.| < v, and that of thermal-
ized ions is |u,| < v.) in various experimental measure-
ments and theoretical calculations.
This fast ion collision operator is given by’

Z Cfa(ffvfa) = Z Cfa(ffyfaM)

a#f

Jlj1rof, 3yn 3

:E{E%{v vTe—z G(xe) +vg (fe
Zo0°

+ ;wff] = Cifr,

L

10 N0 1
E(a_é(l_i)a_éﬂ—éza?z)

_Bu (o0 0 1 0%
"B (208121)8& 209 ) @

In contrast to the collision operators for the thermalized par-
ticles discussed in Sec. III, the nonlinear collision term
Ci(ft, fr) is omitted because of the low density of fast ions
themselves and the momentum/energy conservation of like-
particle collisions. In addition to the neglect of the shifts u,
of the Maxwellians and consequently of the Rosenbluth
potentials'® H(f,), G(f,) for a # f, higher Legendre orders
[ > 2 in the potentials also are neglected because of their
characteristic as integral operators and a nearly thermalized
state |fu1| < fum for f(x,v) = fum(s,0) + fa1(X,v) of the
thermalized target particles species at the thermal energy
range myv* ~ 2T,. This relation will be confirmed in
Sec. III. The constants tg, Z,, and vg being independent of
(0,¢,v) on each flux-surfaces are defined in Ref. 9. The PAS
parameter Z, is a dimensionless coefficient of order unity
(Zy = Zegr > 1 for NB-produced fast ions), and the critical
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velocity v, has a relation (v./ UTC)S ~ (3\/E/ 8)me /Mamu
=3.65 x 107 with the electron thermal velocity where
Mamu = 1.66 X 10’27kg is the atomic mass unit (Dalton).
This approximation of the PAS term o £ in this study where
szg’ /7s is handled as a constant in the full velocity range
0 < v <y, is justified by a fact indicated by the resultant
solutlon that the PAS collision for the second Legendre order
f P>(&)fydé/B) is substantially effective only in a slow
velocrty range v=v,. The Chandrasekhar function G(x)
= %x” Jo y*exp(—y*)dy with x. = v/vre, which can be
easily calculated by using the usual error function, is
included corresponding to the slowing down collision fre-
quency of the f-e collision. Although this slowing down term
includes an artificial violation of the particle conservation
fC ta(ft, faM)d3v = 0 of collisions of the fast and the thermal-
ized ions (a # e, f), this violation concerns only the non-zero
boundary value fi(v = 0) # 0 of the lowest Legendre order

component ff([:()) = %ﬁl f¢d¢ that determines the particle
fueling to the thermalized ion species with m, = my, e, = ey.
This fueling effect is irrelative to the generation of B

V(J"_I1 &fdé/B) in the suprathermal energy range that will
be discussed in this section and Sec. IV.

In this study for some Velocity space integrals with the
common form of [Py(&)H,(v)f;d’v, the aforementioned
f feve" (x,v,4) as an even function of v defined for the full
pitch-angle range 0 < 1 < By/B is required. Although it
may be possible to obtain the expression of this function if
the configuration is a simple axisymmetric tokamak. In fact,
Cordey previously proposed an expressing method using
eigenfunctions that are defined for the full range.*' The
eigenfunction for expressing arbitrary functions in0 < 4 < 1
was defined by using the surface-averaged parallel particle
velocity ((1— AB/By)"?) as shown in Refs. 9 and 24.
Hereafter, the surface-averaging operation (F (1)) for func-
tions of 1 or ¢ is the average keeping constant 4 values. In
the Cordey’s eigenfunction, this concept is extended to the
trapped pitch-angle range 1 < A < By/B by using the
bounce-integrals. However, this method cannot be easily
generalized to non-symmetric stellarator/heliotron configura-
tions since there are two types of pitch-angle space regions
0 < k> <1 and x? > 1. Since our purpose is to obtain some
surface-averaged contributions of the [Py(&)Ha(v)f d’v
integrals as stated in the introduction, instead of this kind of
direct solving method for Eq. (1), we shall adopt the follow-
ing adjoint equation method.?® The adjoint equation has the
following form:

(Vi+C)fa=0a(x,0,0.0),

A 1] Pore(3vn/2)G(xe)+03 0 ZZUC
Cf =—|— )
Tg v 81)
3)
This differential operator C}* satisfies
JH(C?F)d% = JF(CfH)d3V 4)

for arbitrary functions satisfying F(v=0)=0 and
H(v =0o0) =0. Following this relation and the anti-
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symmetric property f F(VH)d¢) = f H(V|F)d¢&) of
the parallel orbit propagator V), we can obtaln a relation

(Jos={[ptsmgan) « rcine)
<J fA(fo)d3V> + <J fa (cfff)d3v>

= <JSf(S7U,O',)u)fAd3V>. 5)

When this method is applied to the tangential NBIs where
the fast ion source S¢(s, v, 0, 1) exists only in A < 1, we can
immediately know ([ aafd’v) only by solving Eq. (3) for
fa in 4 < 1 without solving Eq. (1) for f; in the full pitch-
angle range. We shall calculate the szP L(S/ 2)
(x2)Cut (fum, fr)d*v/B) integrals of the Coulomb colhsron
operator (for the anisotropic heating analyses in Sec. III) and
the ([ v*P5(&)fid*v/B) integrals of the velocity distribution
function (for the current, and the P-S and the classical radial
transport in Sec. IV) in general toroidal configurations by
this method. As noted on Eq. (1), this adjoint equation
method implicitly allows the poloidal precession of the
deeply trapped particles in x> < 1 and their collisionless
detrapping/retrapping by various mechanisms since the rela-
tion Eq. (5) holds even when the operator V| is replaced by
V| + Vg that is often used for the thermalized particles.
Here, V is defined by’

V ><B Vs x B
Ve=cE, 202 v(m_cmjucE_( ~g—Vin B)

{(1—52)6 é+(1+é2>vi} (©6)
with E; = —0®/0s being constant on each flux-surface, and
satisfies (| H(VeF)d*v) fF (VgH)dv). The basic idea
of the fast/thermal separatron that the f;(x, v) determined by
the collision operator in Eq. (2) will have the isotropic pitch-
angle space structure and the flat energy space structure at
the low energy limit v* < v? also due to this actual existence
of the —cV® x B/B? drift that eliminates the velocity space
loss region.”” The statement on Eq. (1) that we do not calcu-
late Jey/0s, Oer/0s, and OP/0s means an approximation
neglecting these quantities only for the solution of Eq. (3) in
/A < 1 analogously to the theory of thermal particles’ banana
regime parallel viscosity in general toroidal plasmas.?**
Although this method in Egs. (3)—(5) can be applied for
arbitrary function g (X, v, 0, 1) as long as the boundary con-
dition at v = 0, co in the energy space is satisfied, we investi-
gate only cases of ga(x,v,0,1) x P,(&)/B(6,{) in this
paper because of the following two reasons. The first reason
is the DKE for thermalized particles that will be shown in
Sec. III. The additional velocity distribution component
caused by the anisotropic heating effect has a form of
o P2(¢)/B — 1/B + (1/B) that satisfies V|| (P2(¢)/B — 1/B
<1 /B}) =0. The determination of this component requires
- f P2 Cat (faM, fr)dE). An important advantage of
thrs g I P2 )d¢) integral of the DKE is that the third
Legendre order component fil P3(&)f,d¢ generated by vari-
ous mechanisms is excluded. The second reason is that the
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required parallel/perpendicular flow moments of the fast ions
for the P-S and the classical diffusions and the current are
determined by ([ v*P2(E)fid®v) and ([ vFP2(&)fed’v/B?)
with k= —1,1,2,4,6 as shown in Sec. IV. Since these
kaPz ﬁd3v integrals in the tangential NBI operations
are moderately varying functions in the (0,{) space
(f v"Pz ffd3v o B! at most) as discussed at the end of
this section, both types of the surface- averagmg are obtained
by approximations ([ *Py(&)fid®v) = ([vFP,(& ﬁd3V/B> /
(B7!) and ([ v*Py(&)fpdv/B?) = fukpz Efid*v/B)(B).
Therefore, we should find the solution of

Hy(v)P2(¢)

wsB(0,0)
Here, H,(v) can be arbitrary functions of energy having finite
values of [v®H(v)],_, xaG(xq), \%xﬁ byt
exp(—y?)dy discussed in Sec. III, and v* with k = —1,1,
2,4, 6 in Sec. IV. The previous application of this method by
Taguchi was a calculation of the fast ions’ parallel particle
flux (Bnguys) by solving (V| + Cp)fa = Bvé/15.*° In this
past application, the solution fa being an odd function of v
existed only in 0 < 42 <1, and the result agrees with the
(B [ F(v)&fid’v) integral formula in Ref. 9. In contrast to this
previous calculation, the solution of Eq. (7) for investigating
the anisotropy exists in the full pitch-angle range. However,
we need only the solution in 0 < 4 < 1 as long as our pur-
pose is in the tangential NBI operations. As a preparation for
the solving procedure of Eq. (7), we shall define a function
V(v) for each flux-surface by

(VH n CA) fa = %

such as

. dv
InV(v) = 31)2 Jv{usze (3ﬁ/2)G(xe) N Ug} )

®)

Although various energy (v) space integrals including the func-
tion {v?vre (3v/7/2)G(xe) + 03 }_l will appear when handling
the fast ions in the NBI-heated and/or the burning plasmas,
indefinite integrals [ v/{v*vre (3v/7/2)G(x.) +v}}~'dv with
integers in the range j > —1 such as InV(v) can be easily
obtained by an approximation G(x) = { (3v/7/2) /x + 2x2}_1
(a fitting formula that is exact for x> < 1, x> > 1, and x ~ 1)
and analytical integral formulas of [x/(x* 4 a*) 'dx and
[0+ a*)”'dx. By this method, we find that a basic char-
acteristic of Eq. (8) is V(v) ~ v*/(v* + v2). There are some
formulas related to this function V(v) that are derived only by
the definition in Eq. (8) as follows:

. ZHZ {V }Zz
POV} JOUZUTe(?’\/_/Z) (Xe)+U3dU
H;(v)P, ()

_ H20)Pale). ©

Ts
3
30w F(v) + {uszegG(xe) + v }u o

- {DZUTe%ﬁG(Xe) + 0 } {V(v)}_“v% [{V(v)}“F(v)} ,
(10)

—C?
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o (" V{V(v)}do
vy [ e
0 V2ure (3v/7/2) G (xe) + v
L Jt1 J v/dv
j A 130 o vure (3y//2) G(xe) + U
forj >0, >0, and v’ < vz

v vdv 1 ot
where L o (V26 1o gt U
3, r (Y0} do _w} foro > 0.
0 U{UZUTC (Sﬁ/Z)G(xe) + UZ} o
(12)

Equation (7), which we should solve, can be rewritten by
using Eq. (9) and P,(¢) = 1 — 3 AB/By as follows:

Py
v 1)2H2(1J){V(1J)}Z2
.
0 V2ure (3v/1/2)G(xe) + 03
+ GA(97 §7 v, ;“)7

(Vn +Cy )GA = ( >{V )}

y v UzHZ(U){V(U)} 3 )

For this separated component Ga (6, {, v, 1), we shall use the
usual asymptotic expansion method for the long mean free

path conditions Z,/(v.ts) < |(6B/B)*/*b - VInB|. The Oth
order of (vts)~

G3.(0.L,0,7) = <__> V)

y J V2 H, (0) {V(v) }*
0 V2ure (3y/7/2) G (xe) + v

fA(evgv, i) = _P2TE6)

"in the solution will have a form of

dv + ga(v, 4).

The integration constant condition for the first term o 1/B
— 1/By is chosen to minimize both this first term and the
second term ga(v,A) as the integration constant simulta-
neously. Then the solubility condition ((B/vj)CfG}) =0
for Eq. (13) in the circulating pitch-angle 0 < 4 < 1is

M 3} 8gA(Uaﬂ“)
> G(xe)tug 0780

3/ B v\ 9 v\ dga(v,4)
+2ZZU°< ”A<v> 04

) Eplebo)
vH (v)

ng )V 2 ! {V(U)}Zz v
8v{{v( )} JOUZUTe(3\/E/2)G(xe)+“2d }
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Although this function ga (v, A) also exists in the full pitch-
angle range 0 < A < By/B and its trapped range 1 > 1 is
determined by bounce-integrals instead of this surface-
averaging, we need only to know 4 < 1 of this function. We
shall use the eigenfunctions A, (1) with the eigenvalues «,, in
Ref. 9 for this purpose. They are defined by

B v\ 'o v\ OA,

2 (L) =~

<BM v|> di. o
in0<1<1,A,(0) =1, A,(1) =0. (14)
Since ((v/v))(1 —B/Bwm)) = a((1 fB/BM)1/2> at A=11is
finite, and (B/v|) is often singular at A = 1 (analogous to the
logarithmic singularity of the complete elliptic integral of 1st
kind), their ratio can be expressed by the appropriately trun-

cated orthogonal expansion’ using the eigenfunction Au(2)
as follows:

(£ (0-8)
ha () [

b, 0(1 = iB/By)"?
2 ,
<J0 A"Td’“ ) (15)

By using this expansion, Eq. (13) becomes an ordinary dif-
ferential equation for gu,(v) in a series expression ga (v, 4)
= >, gam(v)A,(A). Using Eq. (10), and an integration by
part for [dv with Eq. (12), we find that the Oth order of
(vts)” " in the solution of Eq. (7) at / < 1 is

fals,v=10,4<1)
1 3
5 (-3
v H, (v)

V() 12 1™
g {V(Ub)} dU_B—MJO o1 (3v/7/2) G (xe) + 03

J”b v H, (v)
0 v?ore(3v7/2)G(xe) + 03

<(BM/B _) J; A{a - AB/BM)I/Z/G)L}d)L>
2 <£ w001 - iB/By) 2 /8i}di>

{;)(()> } o {{;)(()) }/
[} fJee

In the integrations by parts, Eq. (11) is used for the boundary
condition at v =0. Since the fast ions source term is a delta
function oc (v — vy) in the energy space, only this [;"dv
definite integral is required for Eq. (5). A function x

+(x"”/3 —x)ic,/(k, —3) for 0 <x <1 and k, > 1 that is
included in the part expressed by a series ), of the

x Ay(2)
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eigenfunctions is shown in Fig. 1. In this calculation, a rela-
tion [(x*™ — x)/a], ., = xInx also is used.

In the eigenfunction method, the parallel guiding center
motions and the PAS effects in toroidal configurations with
finite modulations B - VB # 0, which can be measured by
(1-7B/
BM)l/ *)7'd2, are expressed as an increase in the eigenvalues
K, from n(2n—1) of the usual Legendre polynomials
Py,—1(¢). In the summation ), in Eq. (16) including this
x4+ (&3 —x)K,/(x, —3), terms with large eigenvalues
K, > 1 being localized at v ~ vy, cannot effectively contrib-
ute to the ([ v*P,(&)fd*v/B) integrals with k ~ 1 that will
be calculated in Secs. III-IV by substituting Eq. (16) into
Eq. (5) with oo = H»(v)P2(&)/B/ts. This is one reason for
truncating the series ) ., appropriately. Analogous to the pre-
vious investigation of the surface-averaged parallel friction
integrals®'® (B [véL; 3/2( ) Cot (fum, fr)d3V), the six eigen-
value numbers 1 < n < 6 are used also in this study.

Since this adjoint equation method gives only the quan-
tities with the velocity space integral and the surface-

the reduction of a pitch-angle integral fol A

averaging (jd3v>, a change of the velocity distribution

ffeven (x,v,4) caused by the existence of the operator V)
with b - VInB # 0 in Eq. (1) cannot be investigated directly.
To investigate this contribution of V), we shall consider a
method for comparing a calculation removing V|| and that
includes this DKE term by using Eqgs. (5) and (16). We shall
assume fast ion sources localized at 4 < 1 since accurate
calculations of the anisotropy are required in those cases.
There will not be this requirement if the beam ionization
pitch-angle is 4 ~ 2/3. In addition to this assumption, we
previously clarified that Sy;(x,0,4) in the source term
Sxi(x,,2)8(v — vp)/v* must be a function of only (s, a,2)
in 0 < 1 <1 because of a consistency of the B- and the J-
vector fields in the MHD equilibrium, and of a characteristic
of the initial drift orbit conserving the magnetic moment just
after the beam ionization.” Therefore, analogous to this pre-
vious momentum input calculation, we shall use a delta func-
tion approximation of the source term

1 ;

—e— kappa=1

08 Ll 7 kappa=3

’ —— kappa=10
x- - kappa=30

0.6 .| —kappa=100

& - kappa=300

/3 xVicn/ (164 — 3).

FIG. 1. The function f (x, k,) = x + (x’
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Sxi(s,0=1,2)0(v—vp)/v*

BMé(l—/ALb) 5(1)—1)]3)
B(1-2B/By) 'P) 0
. B(1—iwB/By)" 1 1/2] 6(v—1p)
S0<B(1}~bB/BM)1/2>5{5 (1= )] 2
Sxi(s,0=—1,1)0(v—1p) =0,

1
So= <J Sxi.(s,0= l,l)dé>,
0

that can be obtained by appropriate Monte Carlo codes such
as that in Ref. 26 for tracing the initial drift motion in a time
scale 27R /v, < t < 15 just after the beam ionization. A
fixed value 4, = 0.17 is used in numerical examples in Secs.
III-IV. When using this model source term, the
By(B™! Lll P;(&)d¢) integral of Eq. (1) is

(mosh)
- <Bg“jllz>z<f> (cfff)dé>
BM<(1 —isB/By) " 2<1 —%ibB/BM»é(vvb),

a7

+So

(B(1—2B/Bu)""%) v
(13)
Here, a formula
- _ ! (+1)/2 F
Vi{Pi(OF(x,v)} = T Pra(O)B b-V i
[+1 1 1/2
+va,+1(§)mb-V(FB/ ) (19)

for Legendre polynomials P;(¢) is convenient not only for
this kind of pitch-angle integral of the DKEs for fast ions,
but also for various derivation steps of various formulas
for thermalized particles in Sec. III. An integration by part
(HB - VF) = —(FB - VH) for arbitrary scalar quantities
F(x) and H(x) also is used to derive this LHS. In the lowest
order of (vrs)_l in the asymptotic expansion method for the
long mean free path conditions, the 1st Legendre order must
be j éffdf x B(6,{) (ie., a function with a symmetric
phase F(—0,—() =F(0,{) in toroidal configurations with
the stellarator symmetry B(—0, —() = B(0,{)), and thus van-
ishes in the LHS of Eq. (18). In the next order of (v1s) ",
there will be a component of the odd function f g()dd) (x,0,0,1)
with the anti-symmetric phase F(—0, —() = —F(60,{) in the
real space that is caused by the poloidal/toroidal variations of
the slowing down collision for f ;1:0)
component in (B~'B- V([ & d¢/B))
b-VInB) is analogous to the

f Py(&)f¢d&)B - VInB) of the fast ions themselves in the

previous momentum input calculation. To measure this con-
tribution of V| that is included in results of Eq. (5), we

The generation of this

(L &rdd)

parallel v1scos1ty force”
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compare the results with calculations omitting the LHS of
Eq. (18). Analogously to the usual Legendre polynomial
expansion method®® for b - VInB = 0, the solution omitting
the LHS is given by

By [ (b VB—
(] e

BM<(1 — JpB/By) 2 (1 - ;ibB/BM)>

(B(1 — /sB/By)'/?)

H (v, — ) V() 2
X 2 07e (3ﬁ/2)G(xe) +v3 {V(Ub)}

for <BlB -V (Jll éffdf/B> > =0,

with the unit step function H(v, — v). This is an artificial
function only for the comparison with Eq. (5) that will be
shown for the ([x2Py(E)LY? (32)Cut(fum. fi)d*v/B) inte-
grals with a # e, f in Sec. Il and the ([v*P,(¢)fid’v/B)
integrals in Sec. IV. This comparison will clarify that the
parallel guiding center motion described by the V| operator
reduces not only the previously investigated 1st Legendre
order moments (B [ F(v)&fd*v) but also these 2nd Legendre
order moments ([ H,(v)P,(¢)fid*v/B) depending on the
B-field strength modulation on the flux-surfaces. However,
these reductions are quantitatively different since the even

= Sots

(20)

function flc (x v, ) can be broadened to the full pitch-
angle range 0 <A< By/B while the odd function

f tOdd (x,v,0,4) is limited in the circulating range 0 < 4 < 1.
The reduction of the anisotropy is order of 1 — (B)/By at
most.

Although the adjoint equation method does not give us
the phase space structure of f;(x, v) itself, one clear fact is
that the lowest order of (vrs)_l must be V”ff =0in Eq. (1).
The previous investigation of the first Legendre order
moments (B [ F(v)&fid®v) also was based on this fact.”?'

Because of this constraint, the basic structure of ffeven

(x,v,4) in the (0,{,A) space at a low energy range v < v,

where the higher Legendre order structures f = 2l

SERTZ

fgeven)(07 é’a v, )“) -

)f¢d& with [ > 4 are suppressed will be
Py(&) 1 1
B "B\

_ /N 34
T \B 2 By

even

(")

on each flux- surface that satisfies VHf f = 0. The collision

term Cut(fum, ff ) in the DKEs for thermalized ions a #
e, f that will be investigated in Sec. Il and [ v~'P»(&)fpd’v
of fast ions themselves in Sec. IV are integrals operations, in
which only this low energy range of fﬁeven)(é),é’,v, /) can

contribute, and thus will have the real space structures of
o« 1/B(0,{) on the each surface. On the other hand,
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Cet(fomt, f Elzz)) in the electron DKE and [ vfP,(&)fid’v with
k > 1 are different integral operations that are determined by
the full energy range 0 < v < v, of the fﬁ“e“)(e, (o, 4). In
the high-energy region v, < v < vy, the existence of this
velocity distribution function will be still limited to a pitch-
angle range of 4 < 1. (Recall that our interest is not in beam
ionization pitch-angles of A, ~ 2/3.) For this type of func-

tion depending only on (s,v,4) in A < 1, the 2nd Legendre
order becomes

jll FO)Py(&)de

Rt

B 1
~ 55

3. B B\ '/
22 ) (1=-2= y)
i) (1) @

F(2) <1 - /135) dA forl < 1.

0 M
Therefore, the real space structures of the integrals will deviate
from the form o 1/B(0, () and instead will approach different

Cor(foa /U)o Po(E)B(0,0) and [ kP, (&)fidy

o B(0, ) when the high-energy range v, < v < v}, contributes
to them. These characteristics of the real space structures must
be taken into account in solving procedures for the DKEs for
thermalized target plasmas (Sec. III), and in the estimation of

[!, & ¢ in Eq. (18) (Sec. IV).

forms

lll. ANISOTROPIC HEATING ANALYSIS
A. Collision between thermalized particle species

In this section, we shall consider the difference between
the previously investigated part and the newly added aniso-
tropic heating part in the DKE

(V) + VE)far — Z Cas(Furfs)
bt

= (v ) = X7 ) 2

_ B(B -E®W fa
+ Caf (faMaff) + 1)660%<

Ta)’
1 9{pa) oD _ 0T
(ng) 0s B Xar = Os

Z

Xa = — 1)

for the thermalized particles’ gyro-phase velocity distribution
fa=fm+fu. Here, analogously to Sec. II, vg, = (c/e,) (my, vﬁ /
B+ )b xVInB is the perpendicular guiding center velocity,
and %(pa%%(ﬂl} in X,1,X,> correspond to (va, - Vs)Ofum/Os
given by the differential keeping constant (v,¢) that is men-
tioned in Sec. II. The radial electric field 0%(1) in X, corre-
sponds to Vgf,m given by Eq. (6). This equation is solved
under a constraint (Lll Jfa1d&)=0 for the full (0,(,&) range as
the definition of the density (n,) (number of particles) and the
pressure (p,) (energy) of the species a. We must take care of
the fact that we already calculated responses to these radial gra-

dient forces 2 (p,),ma2(ra) =32(pTa), 4@, and the parallel
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force terms E ,

Cat (fam, ff ) in this RHS before adding the

anisotropic heatlng source term C¢ aMJf(z:z)) Here, f(’>=

P(&)%H j P(&)f ,dE is the Legendre expansion term of
order l in the gyro-phase-averaged velocity distribution.
Reasons for which we omit Cy¢(fy1,f;) of collision with the fast
ions are stated in Refs. 9 and 19. The reason for f_ll Pi(&)Cyt
(f ,of 1)dE with =0, 1 (i.e., energy/momentum input) is the
conservation of energy and momentum in the combined use
with Eq. (2). For higher Legendre orders />2, the relation
|Cat (far )| <D pse Cab (far ofim) + Caa(famrofar) | due to a low
density of fast ions is a main reason. Therefore, it also should

be  noted  that J" Pi(E)Cut(fur f ) df|<<|f Pi(¢
Cat(fam.f ¢ )dé| is not guaranteed for general Legendre orders l,

and thus to retain Caf(faM,fi«(l)) with too large / values in Eq.
(21) is meaningless. This is one reason why we restrict our
investigation of the fast-ion-driven effects only to Cg

(Fanof"=?). For the friction collision term Cog(fun /'), we
should include not only the previously investigated Sonine
(generalized Laguerre) polynomial expansion coefficients of
<lelécaf aM,ff)dé>,6 but also those of the poloidal and
toroidal ~ variations 1 ECu(famfr)dE  — (B ECu
(fumof ) dE)B/(B?) U (0,() for which an obtaining method
will be shown in Sec. IV. Essential differences between the
DKEs for fast ions (Sec. IT) and for thermalized particles (this
section) appear in the LHS of Eq. (21). One difference is in the
linearization Cab(fmfh)zcab(fal;fbM)‘f'Cab (faszbl) of the
collisions between thermalized particle species a,b#f, in
which Cup(fa1.fom) is a differential operator for the test par-
ticles” f;;; while Cu(fum.fp1) is an integral operator for the
field particles’ f,1, and the other is the explicit inclusion of the
E xB operator Vz. When this V|| + Vg operator is included,
various pitch-angle space structures (Legendre orders) in f;,
Jo1sfet,-.. with various phases in the (0,() space are generated
by the source terms in the RHS of Eq. (21). This situation
is complicated in Eq. (21) rather than in Eq. (1) for the fast
ions.

For avoiding confusion in considering these (0,(,¢)
space structures of f,1, fp1, fe1, ... of thermalized particles
simultaneously, we shall separate the problem described
by Eq. (21) into three parts: (1) viscosity, (2) Pfirsch-
Schliiter (P-S), and (3) anisotropic heating. This separation
is based on following characteristics of the Coulomb
collisions between the thermalized particle species
a,b,c,... #f. One is that the field particle portion
Cap(fam,fo1) causing the coupling between equations for
thermalized species is an integral operator and an eigenop-
erator of spherical harmonics suppressing its higher
Legendre orders. Another reason is the unimportance of
the lowest Legendre order moment of the collision term
that is indicated by the relation Cyu(fim,fom) =0 for
(T,) = (T}), the energy conservation of like-particle colli-
sions [ 0*Coa(fas f.)d®v =0, and the particle conservation
of general colliding species pairs [ Cop(fy,f5)d>v = 0. An
important difference between Egs. (1) and (21) exists also
in the self-adjoint relations



042509-10 Shin Nishimura

Jggcab (f s fom) &PV = Jfacab(gafaM7fbM)d3V>
Jg,,cab oL o) A2V = Jfbcha(th7g’afaM)d3V

of thermal-thermal collisions. In the neoclassical transport
theory for deriving the transport matrix, however, it is
required that these relations must be satisfied only in their
surface-average. We can consider the separation into the
three parts also based on this fact. In particular, the necessity
of the field particle portion Cyup(fam,fp1) depends on velocity
distribution function components with various (6, {, ¢) space
structures, and thus is important in this separation. Here, we
summarize the necessity of Cpp(foM, fb[ =0 2)).

First, the first Legendre moment fal_l) consists of two
components with different (0,() space structures. For this
kind of consideration, we shall recall Eq. (19). One compo-
nent is the poloidal/toroidal variation that is determined by
the lowest Legendre order (/ =0) term [corresponding to the
particle/energy balance equations Eqs. (A14) and (A15)] of
this equatlon The other component is the integration con-
stant { Bf &fdé)B/ (Bz) of this balance equation that is
determmed by the Bj &dg) integral of the DKE (i.e.,
surface-averaged parallel force balance). Because of these
different determination procedures, their v-space structures
also are different. Both components exist dominantly in f;;
in various colhs1ona11ty conditions and thus the field particle
portion Cyp(fam, f bl ) is a main cause of the coupling of the
DKE:s for different species. On this Legendre order, it also
should be noted that the first Legendre moment
f E(Vgfu)dE of the E x B operator Eq. (6), and that of the
VB and the curvature drift term j &(Vaa - Vfa1)dE must be
omitted as long as we use the flux-surface coordinates sys-
tem based on the MHD equilibrium where the CGL tensor
formula is used with neglecting the inertia force as in Egs.
(A1) and (A2). Although the DKE solution is always deter-
mined under the constraint of the parallel force balance as
the fil £d¢ integral of the DKE, the Vg + vy, - V operators
are irrelative to this force balance.

Second, explicit handling of the energy scattering/
exchange collision for the lowest Legendre order /=0 will
be required only for calculating the P-S diffusions of
multi-ion species plasmas.'” In contrast to the fast ion
DKE shown in Egs. (1) and (2) where the poloidal/toroidal
variations of the slowing down collision for ions with
suprathermal energies may generate (b V(f_ll &fdé/B)),
the energy exchange between unlike thermalized species
approximately given by

deUZCab(fa,fb)dSV
_ 2 3
— meU Cbu(fhafa)d v
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is only a minor function of the collision operator. Therefore,
the Cap (£ " . fom) + Can(fumt. o1
dal/toroidal variation of f;{zl) in Eq. (19) is explicitly
included only in a collisional limit where the poloidal/toroi-

dal variations of the local temperatures p,/n,, pp/n, may
become dominant components of f,;, fp;. It also should be

noted that, even for the fast ions, this B - V(Ll1 &fpdé/B) in
the suprathermal velocity range does not effectively contrib-
ute to the poloidal/toroidal variations of the friction integrals
as explained in Sec. IV [negligible in comparison with the
diamagnetic flux divergence described by (vg4 - Vs)Of;/Os].
Also for the thermalized particles’ DKEs, in which our pur-
pose is in the determination of the f,(x, v) in the thermalized
velocity range m,v* ~ 2T, within an accuracy where the first
few Laguerre orders in each Legendre moments are correct,
the parallel flow divergence due to the lowest order

0>) as a cause of the poloi-

Legendre moment Lll Cap(f 4f »)dE with the aforementioned
characteristics is not important. Analogously, only for the P-
S diffusion calculation, cV® x B - V£~ in the V; operator
is regarded as substantial divergences of the parallel particle/
energy fluxes that can contribute to the parallel friction colli-
sion. Since it corresponds to V® x B - V(n,/B?) and VO
x B -V(p,/B?) in Eqgs. (A14) and (A15) in Appendix A, it
substantially contributes to the friction only when [fal | /
faM ~ (BM Bmm)/(BM + Bmm)

Finally, the necessity of the Cg(fum, fb1 ) for the sec-
ond Legendre order is considered. Although the poloidal/
tor01da1 variations of the anisotropy f Py(E)fndé — (B!
f Py(&)f,ndE)B~/(B72) correspondmg to the neoclassical
viscosity tensor can become a dominant component in the
fa1(x,v) in the long mean free path conditions of non-
symmetric stellarator/hehotron plasmas, its amplitude is
[fa(i 2)| V | at most as long as the ambipolar condition
(J - Vs) = 0 is satisfied. Because of a relation

inpz(f)cuh My P (E)fom) v

Jxaécab(faM, xpEfom )V

6v v 21 6v v 2™
= _ﬂ 1 + & = _lh 1 + lh
5 v UT) Svta UTq
for the thermal-thermal collisions, the / > 2 field particle

pOI'tiOD Cab aMaf}S{ZZ)
often neglected, and only C,,;,(faM,fb(i:l)) is retained as the
coupling between the DKEs for the thermalized species The
assumption of the ambipolar conditions with |2 5O >

) of unlike-particle collision a # b is

2T, \e" 9 InB| in the present study is required not only for
the drift approx1mat10n of Vlasov operator where vq, - V[,
(in particular the drift being tangential to the flux-surface) is
neglected as in Eq. (21), but also for this collision approxi-
mation where an appropriate suppression of the so-called
1/v diffusion of ions by this radial electric field is assumed.
Based on this assumption, the poloidal/toroidal variations of

Cab (faM 7fb(i22)

) are still neglected in the determination of the
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and Ce (f, £'~") in the RHS in
Eq. (21), while we add a surface-averaged component

Cah(faM,f,fl:2>) o P,(&)/B(0,{) (b=f{, ions) caused by the
anisotropic heating effect due to the fast ions. [The aniso-

responses to Vg, - Vs, E‘(‘A),

tropic heating source term Ces(fem, ff(lzz)) in the electron
DKE may have a different real space structure as discussed
in the end of Sec. II.] When this term is included, a velocity
distribution function component having a real space structure
satisfying the local parallel force balance in the (0,(,v,¢)
space V)(Pa(8)/B —1/B+(1/B)) =V ((1/B) ~/Bu) =

is generated as the response. Since this determination is irrela-
tive to the first Legendre order in the velocity distribution and

collision operators, the field particle portion C,,;,(faM,fb(i:z))
for this component (both for like-particle collisions a=b and
unlike-particle collisions a # b) also is included. For collision
between the electrons and the thermalized ions, however, we
shall use the usual small mass ratio approximation for allowing
. . (1I=2) (I=2)
|T. —Ti| ~ T, Ti, in which Cei(fem.f,; ) and Cie(fimofs; )
are not included. The necessity of the /=2 like-particle field
particle portion Cyq (fom, a(fzz)) depends also on the generation
of higher Legendre orders / > 3. In the previous theories for

the neoclassical viscosity such as Ref. 3, the Cu,(fam, fa({iz))
is often neglected because of a relation |Cu(fom.f, ’>2))‘

1>2
L[ st Ca
[ > 3. In the anlsotroplc heating calculation for the additional

, f;,M)| due to the generation of the orders

velocity distribution component fa(izz) x P»(&)/B(0,(),

however, the Cuy (fum, a({:z)) also is retained since the orders
| >3 are scarcely generated by the anisotropic heating
source term. In this method where the /=2 field particle

portion C,p, (faM,fb(i:z)) is neglected for the poloidal/toroidal
variations while it is retained for the surface-averaged com-
ponent o P,(£)/B(0,{), the aforementioned self-adjoint
relations are retained in their surface-average. The poloidal/
toroidal variations corresponding to the neoclassical viscos-
ity are not important for the anisotropic-pressure MHD equi-
librium because of a relation (pi, —pja){(PLa —PJa)/
B?) < 0. When only this type of the anisotropy exists, the
radial gradients discussed in Appendix A are regarded as
those of isotropic-pressure species. From the viewpoint of
the drift approximation, this handling of the radial gradients
corresponds to a neglect of vy, - Vfu1| < [(V) + Vi)fa | for
the solubility condition of the parallel particle/energy fluxes.
On the other hand, this DKE term approximation is not
appropriate for the velocity distribution component gener-

ated by the anisotropic heating effect C¢(fom, ff<l:2)). If the
generated anisotropy is non-negligible in Eqs. (A14) and
(A15) (i.e., comparable or larger than the poloidal/toroidal
variations), the absolute value of the radial gradient term
(Vaa - V$)Of;m/Os must be corrected for a consistency with
the P-S current in the MHD equilibrium. This correction
corresponds to a drift approximation retaining a part of
(Vda - V$)Ofa1/Os analogous to the radial gradient of the fast
ions’ velocity distribution that was mentioned in Sec. II. [As
mentioned below, not only the parallel velocity term V| but
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also the E x B term Vi, for this velocity distribution compo-
nent < P,(&)/B(0,() is neglected.]

B. Separation of the DKE for thermalized particles

Based on these characteristics of the collision operator,
the aforementioned three parts in Eq. (21) are considered.
From the discussion based on Eq. (19) in Sec. II, it is obvious

that f (1=3) generated by various mechanisms is excluded in

the (B! f P,(&)d¢) integral of the DKE. The calculations
in thlS section also utilize this fact. However, poloidal/toroi-
dal variations of the first Legendre order J“_ll Efndé
—(B Ll L &fndE)B/(B*)  with the anti-symmetric phase
F(—0,—-{) = —F(0,{) may remain there. Even when solving
Eq. (21) with excluding the anisotropic heating source

term Caf(faMaﬂ(l:2)), the existence of 71] : Py(

{(VH =+ VE)fa}d@ ! j Py(¢ Zb;éf ah(faafb)d@ is
not forbidden. Although this quantity is irrelative to the defi-
nition of (n,) and (p,), it may change radial gradients dis-
cussed in Appendix A. On the operator V|, based on the fact

that [, &f,dé/B in

<B?MJ1_1 Py(¢) (Vlfa)df> = U<B?M (Jil éfadé>b . VlnB>

must satisfy the solubility condition (B V(Ll1 &f dE/B))
= 0, we investigate the lowest order j=0 in the Laguerre
expansion of this quantity by using Eq. (A15) as follows:

<%M J P28 (VY. a)d3V>
_ mi <FB \Y Q">

— _3cE, < : (Vst B v1n3> }%>
N <%M (J PCa(f)d <Jvzca(fa)d3V>) > (22)

On the other hand, the ( 1f P>(&)d¢) integral of the
E x B operator in Eq. (6) is 1rrelat1ve to this solubility condi-
tion, and thus given by

(e [ermar)ev)

E, /B VsxB F
T )

(23)
which is obtained by straightforward integrations by parts.
The lowest Laguerre order of the (B~! fil Py (&{(V)

+VE)f ,}d&) integral given by these methods is negligible in
the viscosity part, and may be generated in the P-S part with
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finite radial electric fields O®/ds #0 in following
discussions.

Next, we shall discuss the approximation and solving
procedure for the viscosity and the P-S parts. The viscosity
part handles responses to a part of the radial drift term

Oxa = V4o - VS — imaVH (UM])
€q

Vs x B

- imava2(5)< + Ub) VIinB  (24)

€q

and the surface-averaged parallel force term by a method in
Refs. 3, 5, 29, and 30. Here, U is the solution of B - V(lj/B)
= (B x Vs) - VB2, (BU) = 0. The solution g, of the sepa-
rated equation

(Vn + VEDKES>ga ~> Ca (gf,#o),fbM)

bAf
R e
b 3. B
X <B Jq Qfa1d5> +§§@
1
<2
-1

<B é{z Cap (furfo) + Car aM,ff)}df>

bAf
+ vée,

B(B-EW) fu
(B%)  (Ta)’
ova = —maV (vB) = —mav*Py(E)b - VB (25)

is obtained by the following approximations. One approxi-
mation is that for the collision operator

Z[Cah(gmfblvl) + Cab(fam; &) ZC b(ga ,fbM)

bAt bAf

in the LHS. In this approximation, the field particle portions
Caup(fam, g») are omitted and gt(f:O) is excluded for the parti-
cle/energy conservation since the definition of this g,

includes (B fil £g,d&) =0, and since various parallel flow
divergences explained in Sec. I A such as [, Coy(f,,f))dE
and Vgf,| (1=0)
higher Legendre orders g
Second is the use of

are not important in this LHS handling the

(=2) as dominant components.

VIE)KES = cE; <B2>_IVS X B - V(y6)—const
instead of Eq. (6) in the LHS for the solubility condition
and the anti-symmetric property (J 3, (VPRESE £ dv)
ff (VPKESg £)d*v).>” This approximation is justi-
fied by the fact that dominant components in the g, are the
poloidal/toroidal variations of the higher Legendre orders
and therefore 9/0¢ and 9/0v in Eq. (6) become a higher
order of the B-field strength modulation on the surfaces. One
important advantage of this approximation together with the
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) fim) 2= v (v) Ly for
handling the higher Legendre orders / > 3 mainly is a reduc-
tion of the phase-space dimension of the LHS to 3D (0, (, &).
Therefore, the solution g, is given by a combination of solu-
tions Gy, and Gy, of the equation

(VH + VRS — ug.c) [g’;] = {Zﬂ (26)

further approximation »_, Cup(gU70

as shown in Ref. 3. It also should be noted that the anisot-
ropy relaxation Krook operator'’ Y, o Cap (8172, fim)
>~ —14(v)g"? including the energy scattering effect,
instead of this PAS operator, is used for a low energy region
VA v > (8/57)(4n2/ V') y'm — W'n|/(BX)"/* of each Fourier
modes sin (m0 — n{), cos (m0 — n{) in the (0, {, &) space for
which the higher Legendre orders />3 are suppressed.’
Here, 7 =dy/ds, ' = dy/ds, and V' = dV/ds are radial
gradients of the poloidal flux, the toroidal flux, and the
volume enclosed by the flux-surface s = const in the contra-
variant expression of the B-vector field, respectively.’
This problem results in an algebraic handling of
(B fvéL (3/2) (x2)f.d*v) using the Braginskii’s matrix expres-
sion of the full linearized collision operator for the first
Legendre order /=1, and these surface-averaged parallel
flow moments included in the RHS of Eq. (25) also are deter-
mined. Slnce the poloidal/toroidal variations of the parallel
friction f ECar(Furf5)AE — (B [1) ECup(Fanf5)dE)B/ (B2)
are neghglble in this part, the “frictionless” local paral-
lel force balance determines the lowest Legendre order
gy:o) as a minor component. A basic characteristic of
this component is easily understood by approximated

relations
3/2 Plla = Pla _ Plla —Pla
<B > ( B3/2 B3/2 )

_2up3/ay [ Tle ~ Tl <rHa —Tla
3<B >< B3/2 B3/2 >

with an approx1matron B3/ ~ (B3/?). Based on this charac-
teristic, the (B~! Ll Py(E{ (V| + VE)ga}dE) in Egs. (22)
and (23) is considered. The contribution of the operator V| in
Eq. (22) is negligible since (b - V(Q|,/B)) in this viscosity
part is scarcely generated. The E x B operator V in Eq. (23)
also is negligible because of this local parallel force balance.
The integrals [v*f,d*v =3p,/m, and 2 [v*Py(&)f ,d°v

= 2(p|la — PLa)/ma Will cancel each other there within an
accuracy of the approximation B2 ~ (B3/?). Therefore, the
anisotropy generated in Eq. (25) is a poloidally and toroi-
dally varying one that satisfies (p1o — pja){((PLa — PJa)/
B?) < 0. This characteristic justifies the drift approximation
neglecting |Vaq - Vga| < [(V) + VE)ga|, and the collision

approximation neglecting C(fum, gl(,[:2>) for the calculation

that is independent of the anisotropic heating part shown
below. On the other hand, the P-S part must handle the sepa-
rated component V| (vU) in the radial drift term and the
poloidal/toroidal variations of the parallel friction forces.
This equation is given by

IIZ

— (pa)

1%

ra — (ra)
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(V) + VE)f{fls - Z [Cab PS fom) +Cap aM7f/flS)}
brt
:ﬂV” (U”[j) é{xal _XaZL (/2) ( )} aM

(Ta)
3. B ! _
e (o] sl "))

+ Caf (fuM 7ff(l:1))
Because of the approximation fil E(VEfa1)dE =0 for the
consistency with the MHD equilibrium, this equation is
rewritten as

(VH + VE)gES — Z |:Cab (gf,)s 7fbM) +Caw aM7gES)]
b

=U) [ ab< {Xal ~XoLP (x )}faM>th)
bt
+Cap <faM> %UH é {Xm —Xth(13/2) (%%)}fbM)]
t=n)_3. B /[, (=)
+Cu(finefi ™) =3 OB—2><BJIécaf(faM7ﬁ’ ‘)d5>

27
for

_ ps _ Ma
8a =Jal <Ta>

~e£{Xal _XaZL (3/2) ( )} aM

The radial electric field 9®/0s in X, vanishes in the first
term o< U in the RHS at this step because of the Galilean
invariant property of the Coulomb collision. This first term
o U will be easily expressed as a Sonine polynomial expan-
sion series using the Braginskii’s matrix elements, and the
second term corresponding to the friction (momentum
exchange) collision with the fast ions also will be calculated
as the polynomial expansion series by a method in Sec. IV.
When these terms in the RHS are given, the response gES
= h, + k, will be determined by

(VHha) (=00 + VEDKESh((Jz[:O> - Z[Cab(ha ,fbM) + Cab (faM, hb)]

ol

{Xal — XL (x )}fanth>
bAt
+Caup (faM7 %UH é {Xhl *szLfm () }fbM)]

+Cat (fu ") —%é%@ Jll ECut (faM,ﬁ“))d5>,

(Vi VB )k = 3 [CabKasfin) + Can fos )]
bt

—(Vjha) "=, (28)

where the first function 4, includes only the lower Legendre
orders /=0, 1 and satisfies ( Bf Eh,dE) =0, f hadé)
= 0. The notation (VHha)( = L;”P, f_] Pi(&)(V)ha)dE is
used. The use of VEXESA(=0) for the solubility condition is
justified by this definition in which 5%1:0) /0v in VEhy:O)
becomes a higher order of the B-field strength modulation.
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This problem can be converted to simultaneous algebraic
equations for each Fourier modes (m,n) # (0,0) of the

Laguerre expansion coefficients J"L(l/ 2>( Hh,d*v  and
fvéL;-B/z) (x2)had*v/B by taking [L; (/2 x2)d*v  and
J“vaJG/ (:2)d*v integrals of this equation. As in Refs. 17
and 31, the three terms Laguerre expansion with j=0, 1, 2
will be appropriate. The Fourier expansion in the Boozer
coordinates is suited for the ambipolar condition with the
finite radial electric field in VEDKEShg’:O). Therefore, the func-
tion U also is expressed by using &) = L, [27 4oy
o7 dCg((B?) /B — 1)cos(mly —nlg). >
including the field particle portion for these lower Legendre
(1= 01))

This is a method for

orders Cab(faM, and for retaining the momentum/
energy conservatlon. The Onsager symmetric P-S diffusion
matrix is obtained at this step since this algebraic method
can retain also the self-adjoint relation of the collision opera-

tor and the anti-symmetric property jgg{ (V| + VPKES)f

Fa}dv) = —([£ (V) + VEKES)g fn }d?v) of the Vlasov
operator. After solving these algebraic equations for the
Fourier-Legendre-Laguerre series expression of /4, in the 4D
space (0g, (g, v, &), the second equation for the response &,
driven by the source term —(VHha)(I:Z) will be handled by a
method that is analogous to the aforementioned procedure
for ox, o< P2(&) in Eq. (25). The contribution of the E x B
being fil P> (&)(VPXESh,)dE = 0 is not important in the RHS
of this equation. An analytical solution given by the Fourier
expansion method for the plateau and the P-S collisionality
conditions™** 14 /v > |(6B/B)**b-VInB| s
However, the details of these procedures determining g&s
= h, + k, are beyond the scope of this paper. In particular,
the second function £, is not practically important, since the
RHS of Eq. (27) is non-negligible in comparison with that of
Eq. (25) only in the P-S collisionality condition, and there-
fore this function is suppressed by the strong anisotropy
relaxation collision in that condition. We shall consider here
only a difference between this generation of —(V)hy )(1:2)
and oy, from the viewpoint of the (B~' [1 P»(&)(V|f,)dé)

in Eq. (22). When the radial electrlc field in the VPKESp(1=0)
is finite, the first function h, includes this (b -V (Q./B))

#0 and thus (B! Lf_ll P (E)k,dE) # 0 is generated by the
balance of the Vlasov and the collision operators. This bal-
ance is analogous to the anisotropic heating effect that will
be shown in Sec. III C. But this is only a minor component
in k, that is basically a poloidally and toroidally varying
function. By using Eq. (19) again, we find also that
(B3 [ P2(&)(Vh,)dE) = 0. Therefore, the k, in the P-S
collisionality condition also is (B’ f_lle(é)kad@ =0 for
J ~3/2. As discussed in Appendix A, for the drift kinetic
problems where the Fourier expansion in the Boozer coordi-
nates is essential, we can regard the radial gradient term
(Vaa - Vs)O(f ) /Os as that of the isotropic-pressure species
even when (B*(pis —pja))(Pia —Pja) <0 and (B*(ri,
—7ja)){"La = |a) < 0. (Instead of the usual

useful.

surface-
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averaging for actual geometrical shapes of the flux-surfaces, a
simple plane-averaging ;> [* [ Fd0gd(g = (B*F)/(B?) for
the (g, (g) space is used for this judgment on the isotropic-
pressure and anisotropic-pressure species.) Therefore, the
approximation (vq, - V$)O(f,,)/0s 2 (Vag - V) Ofam/Os in
Eq. (21) is still appropriate even when (B! J_lle(é)kadf)
# 0 is generated. The velocity distribution component f; in
Eq. (21) generated without the anisotropic heating term
is handled by the approximation neglecting |vq, - Va1
< (V) + Ve)far| for both long-mean-free-path conditions,
where g, in Eq. (25) is its dominant component and short-
mean-free-path conditions, where g in Eq. (27) is dominant.
However, it also should be noted that, for the perpendicular
particle/energy fluxes and the resulting classical diffusions
(T . Vs) and (Q' - V), this anisotropy generated in the P-S
part in Eq. (28) corresponds to a finite contribution of
(B) L ([ v*P1(&)kod’v/B?) with k=2, 4 in (V-m,) /B>
=1BV {(pra—pja)/B*} and {V - (r,—r0)} /B*=31BV.
{(ria=r1a)/B*}.

In addition to these viscosities and the P-S parts for han-
dling v, - Vs, EﬁA), and Ci(fa, /") in the RHS in Eq.
(21), we must investigate also the response to the anisotropic

heating term Cu¢(fom, ff(l:2)). As already mentioned, how-
ever, this newly generated velocity distribution component
has contrasting characteristics. One is that the assumption
IVaa - Vifar| < |(V) + VE)fa| is not appropriate for this com-

ponent. The second is that the first Legendre order fa(i:l) and

the higher Legendre orders fa(iz‘” are scarcely generated by
this source term. Therefore, after the determination including

the Cup(fam, fb(i:2>) (except the small mass ratio approxima-
tion for the electron-ion and the ion-electron collisions), we
may need to include the obtained anisotropy in the radial
gradients O(p1q + pja)/0s, O(ria +1a)/0s in Egs. (Al4)
and (Al15) and the corresponding DKE term (vy, -
V$)Ofam/0s in Eq. (21). In this study, however, we still
assume the nearly thermalized states for which
(0" Vs), (q7" - Vs), (B-J) — (B - [vfid'v), (TG% - Vs),
and <qES-Vs> can be expressed by Onsager symmetric
transport matrices as in Refs. 3—6 and 33. This symmetry
requires the (0,{, v, &) space structure of the radial gradient

term (Vg - V)O{f ")) /Os oc v*(1 + 62){1 + ocL(l3/2> (xg)}
fmVs x B - VB~2 even when absolute values of d{p,)/Os
and O(r,)/0s in it are modified. There are two reasons for
which we do not consider this matrix expression for the
radial and the parallel particle/energy fluxes of the NB-

produced fast ions. One is that the self-adjoint property of
the collision does not exist there, and the second is that their

radial gradient a(ff( /Os does not have this v-space struc-
ture. In contrast to this, we assume nearly isotropic states
[(£=2)/B)/(B~")| < fum for thermalized particle species
and thus the above v-space structure of the radial gradient
term is used. One purpose of this section is to show a method
for confirming the validity of this assumption for each exper-
imental condition. The basic (0, {, v, &) space structure of the

even) >
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response to the new source term Ci(fum, ff(lzz)) is the
aforementioned

= (5 5+ () Ty

- P2aj .
s Zo<%>455/ () < fum (29)
=

that is expressed by the series of the Sonine polynomial
L;S/ 2 (x2). Although we shall consider only this basic struc-
ture in the DKEs for thermalized ions (a # e, f), a small
deviation from this form will be included in the electron
velocity distribution function (¢ = e) as discussed below.
The operator V| vanishes for this basic structure. The contri-
butions of the /=0 energy scattering/exchange collision
effect [ Cup(f,fp)dé and ¢V® x B - V=0 in the V.
operator for the lowest Legendre order component
—1/B+(1/B) to the
V(ﬁl &f ,dE/B) and the resultant parallel friction collision
can be neglected analogously to the viscosity part Eq. (25).
Therefore, the equation

parallel flow divergence B -

(VH + VE)g';n — Z [Ca;, (gZ“,f;,M) + Cap (fam, g?,n)]
At

= Cur(fun ) (30)

for this determination is independent of the P-S part Eq.
(27). However, Vg for the dominant component P;(¢) must
be that in Eq. (6). This Vgg3" will have a role that is analo-
gous to Vgf,m in the RHS in Eq. (21). Here, we shall investi-
gate this effect for the lowest Laguerre order term j=0
(corresponding to the pressure anisotropy) Pz (&)v*fum/B. It
is given by

VE (PT(Q v, aM)

When this type of source term is included in the RHS of Eq.
(21), the solving procedure will be analogous to the v4, - Vs
in the viscosity and the P-S parts in Egs. (25) and (27), and
analogous velocity distribution components will be gener-
ated there. However, this generation is not important as long
as the nearly isotropic condition [g2"| < fum is satisfied. As
shown in Egs. (A14) and (A15), this contribution of the
anisotropy to the divergences of the E x B particle/energy
fluxes oc V@ x B - VB~? is small compared with the diver-
gences of the diamagnetic perpendicular particle/energy
fluxes, and is only to change 5(p,)E,Vs x B-VB~2 to
(3pa +Pia +Pa)EsVs xB-VB% in B-V(Q|,/B). This
fact can be confirmed also by integrations by parts for Eq.
(6), and is unchanged even when the higher Laguerre orders
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j > 1in Eq. (29) are included. Therefore, we shall neglect
Veg® in comparison with (v, - Vs) {Xal — XL 3/2)( )}
fam/{T,). These approximations are commonly used for the
thermalized ions and the electrons. One remaining issue is
the small deviation of the electron solution from the basic

form in Eq. (29). This deviation is caused by the fact that the
real space structure of the electron heating term

Cef(feM,f‘f(lzz)) will not have the form of oc P»(¢)/B(0,() as
mentioned at the end of Sec. II. Rather than this form, this

term may be close to Ceg (fam, fo:z ) ~3P,(&)(B! f P, (¢&
Cet(fom, f;)dE)B. Since this problem is mdependent of the
anisotropic heating of thermalized ions because of

Cei(fem, f (22) ) = 0 in the usual small mass ratio approxima-
tion, we should solve only

_ |:Z Cep (g:g7fbM) + Cee (feM, gzg)] = Cyf (feM7ﬂ<l:2))

bAf
(31

and

al 1#0) , .
Vigh =37 Ca( () in) = Vil (2)
bt

When the anisotropic heating source term has a form of

Cef(feM,ff([:z)) =f(v)P2(&)F(0,{) on each flux-surface in
the first equation, its solution also has the same real space
structure and thus g% = g(v)P2(&)F(0, (). This problem is
solved by using the anisotropy relaxation matrix in
Appendix B. In Eq. (32) for a small component g%}, the

el
VEgsy being smaller than (Vde~Vs){Xel —XSZLWZ)( )}
fem/(Te) is neglected in the RHS as already stated, and the
approximation neglecting |(Vg + va. - V)gi| < [V g8} in
the LHS is appropriate because of the large thermal velocity
\/2T./m.. For the collision operator for this g%, we shall
adopt the method for Eq. (25) [only v§(v) Lg%} substantially].
The purpose of this investigation is only to understand that
the deviation of gi" = g3 + g&] from the form in Eq. (29)
includes only the poloidal/toroidal variations of the even
function of ¢ with the symmetric phase [P;(&) cos (m0 — n{)
with [ = 0,2,4,...] and those of the odd function with the
anti-symmetric phase [P;(¢) sin (m0 — n{) with [ =3,5,...]
and that these velocity distribution components are irrelative
to (I Vs), (@ Vs), (B-J) —er (B [vfid®v), (TS . Vs),
and (q*® - Vs). Analogous to the analytical methods for solv-
ing Eq. (26),'® two methods for the two v-space regions of
the second function g2 are considered. The first method
is that for the plateau and P-S energy region vf/v

>|(6B/B)*/*b-VInB| using the Fourier expansion for the
(0,{,¢) expressions of the solution and the DKE terms, and
the second is that for the long-mean-free-path (banana)
energy region using the (0,{, 1) expression that is analogous
to Sec. II for the fast ions. First, the plateau and the P-S
energy region is calculated by using Eq. (19) for the source
term  —V) g% =—g(v)V {P2(&)F(0,0))} in Eq. (32) as
follows:
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Vi{P2(&)F(0,0)}
_ e[ E/B) 2 — (F/B)B”'/(B?)
f((B 7P vB 587 v B3/2 )
+§UP3(§)}gb-V(FB). (33)

By the “frictionless” local parallel force balance, this first
term o< v generates a velocity distribution component being
the lowest Legendre order / =0

P () -2 ()
()

in the response g“"/g(v). Here, an approximation B3/?
=~ (B*?) is used for the minor components. When F oc B!,
this second term vanishes. The response to the second term
x vP3(€) in Eq. (33) is obtained by using the Fourier expan-
sions of

1 1 422 ([,
5" VB = G ( “”acB)( B)

FB = (FB),, cos(mfg — n{y) (35)

m,n

and the solution
ga1/8(v) — (U, €) cos(mbp — nl)
(m,n)#(0,0)

+ Fom
(m,n)#(0,0)

(v, &)sin(mbp — nlg) (36)

in the Boozer coordinates, and an approximation of the oper-
ators V) —vpL ~ ((B)/B)véb - V(, &)—const + 61 in the
LHS of Eq. (32). The electron Krook collision operator is
chosen to be —6vf for the polynomial P3(¢). The result of
this method for the short-mean-free-path energy region is

s 3oP3(&)4n? 615,

"5 BV { (e (B)) (dm2 V) (m—'n) } 4 (605
x ({'m—y/n) (FB),,,,

3vP5(&)4n? (vE/(B)) (4m?/V") (ym—y'n)

5 (B V' {(ve/(B)) (4n2/V") (xm—y/'n)} + (614,

x ('m—y/'n)(FB),,,. 37

C

mn~

Because of a rough approximation in the LHS of the equation,
this solution cannot be used for the purpose of Lll &fsdé that
does not exist actually due to the partlcle/energy conservation.
This solution cannot be used also for f I, because of this
violation of I A& =0. The “frlctlonless” local parallel
force balance w111 determine the correct value of this lowest
Legendre order. The method for the long-mean-free-path
energy region is analogous to that in Sec. II, and is easier since
we should calculate only the PAS operator £. The solution
will have the form
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ge1/8(v) = —=P2(E)F(0,0) + g2(4), (38)

and we determine the integration constant g»(4) by the solu-
bility condition for the next order of v, /v. For the circulating
pitch-angle range 4 < 1, this calculation is

(FLl=POF0.0 0} )0

o3 (2w o). o

Analogous to the calculation in Sec. II, this g,(A) exists in
the full pitch angle range 0 < . < By/B, and the trapped
range 4 > 1 is determined by the bounce integral

53 e
~ _% G;dl)l jﬁ{%F(e,o}dz (40)

instead of the surface-averaging. This dg,/d4 is continuous
at the trapped/circulating boundary A1 =1. Since
B(0,0)F(0,() is a moderately varying function on the flux-
surface in comparison with the parallel particle velocity vy,
this solution g,(4) is almost a linear function of A in the full
pitch-angle range. The boundary condition of this [ d/ inte-
gral is determined by ([’ 1 82d&) =0 for the full (0,(, 1)
range corresponding to the definition of (n.) and (p.).
Therefore, this function is roughly estimated to be g»

~ (F(x,v)/B)(P2(&)/B — 1/B + (1/B))/(B~2). Therefore,
the solution gg" = g5 + g¢ in the long-mean-free-path
energy region becomes insensitive to the dev1at10n of the
anisotropic electron heating term Cer(fom, ﬁ 2>) from the
form of x P,(&)/B(0,{) that was mentioned in Sec. II. In
conclusion on the newly added part Eq. (30) (both the ther-
malized ions and the electrons), this part is irrelative to the
previous obtaining procedures for the transport matrix
elements and can be calculated independently even if its
result may become minor corrections of the radial gradients
Opra+Pja)/0s, O(ria +1)a)/Os as the thermodynamic
forces in this matrix expression.

C. Solution of the anisotropic heating part

Since Eq. (30) with the neglect of Vggi" is a integro-
differential equation including the integral operator
Cap(fam, &) of like-particle collisions a =5 and of unlike-
ion collision a # b, we shall convert it to the simultaneous

algebraic equations for obtaining (pa,/B) = éjsfgj;,,m

x ([1*P5(&) 5/2 (x2)f.d*v/B) /{p,) by taking the Laguerre
expansion moments of

X

1
= <B1 J IPZ(E)Caf aM7ff)dé>7 (41)

and using the Braginskii’s matrix expression of the full
linearized collision operator in Appendix B. One con-
trasting situation, which 1is quite different from the

){Cab(gu Jom) + Cab (fam, &5 )}d5>
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previous determination of the first Legendre order com-

S (B [vELY P (2)f,dV) /(na). s that

we eliminated the operator V| even for the electrons by taking

the (B -1 f P, (&)d¢) integral of the DKE. In the determination
of the (Bu”aj) the parallel viscosity matrix M{, | 1 for these
parallel flow moments that expresses a part of { Bf L E(Vfa)dé)
was required together with the friction matrix /4 1k since
the latter matrix does not have its inverse matrix because of
the momentum conserving and Galilean invariant property
of the Coulomb collision.*"® In contrast to this, the contribu-
tion of the V|| operator is not essential for the determination
of the (p,,j/B) integrals. Therefore, we should solve only a
simple algebraic equation

ponents (Bu,) =

B Qaa Qab Qar o QaN 1r P, 7 B C, ]
Qba be Qb(' ) ) QbN Pb Cb
B Qca Qch Qcc o Q(:N P(’_ _ CL_
i Q;Va QNh QNL QNN 11 PN | i CN ]
(42)

Here, Q“" are matrices of the Braginskii’s elements in
Appendix B (Q®” = Q" =0 for b # ¢), P, is a vector of
2(paj/B), and C, LP?
(x2)Cut (fam, fi)d?v) of the thermalized particle species a. In
a previous investigation on the parallel flow moments
(Buy4), it was found that the Laguerre expansion with the
three terms j =0, 1, 2 is sufficiently accurate for various con-
ditions of various thermalized particle species.’® Following
this experience, the three terms expansion is used also for
this anisotropic heating analysis. As pointed out on the P-S
part in Eq. (28) with E; # 0, the Laguerre expansion coeffi-
cients of (B! ﬁle(é){(VH + Vi)hy }d&)
included in this RHS as the source term. However, the
response to this source term component due to Eq. (28) will
not substantially change the radial gradients d(p .4 + pja)/
0s, O(ria +1|4)/0s in the DKE for determining the gyro-
phase-averaged velocity distribution, even if it may be a part
(B) £ ([ v*P>(&)k,d*v/B?) in the per-
pendicular particle/energy fluxes and the resultant classical
diffusions. Here, we investigate only the response to
B~! [x2P,(¢& L(S/z( 2)Cot(fam, fi)d’v) for the gyro-phase-
averaged velocity distribution. This integral of the aniso-
tropic heating source term is calculated by the formulas'®

inpz(é)cab(fm,fh)d%

2 00 3
— 167%n, (e"e”> In A J [(’"_ n _)
mg 0 mp 2

y {SG(xa) _ jﬁexp(—xle)} _X”G<xa)]

Xa

is a vector of (B~![x2P,(&)

also can be

of a finite contribution

1
« (J Pz(é)f,,d§> 2dx,, 43)
—1
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J L(S/z)( P2(E)Cap (fura f5)dPV

2 00
= 167°n, (ede;,) In Ay J
gy 0

< exp(—2) — 3{3Gﬂ - %exp(—xi)}]

Xa

1
< (J Pz(é>f‘,,d<f> 2d, (44)
—1
and

J 21 512 ()P (&) Canfin fi)d

(o)
= 2473/?y (“eb> ln/\ahJ {7—+2
0

—2(@—&— 1) }exp xﬁ ( f,,df)x dx,.
mp
(45)
Here, a function
2 4
3G(x) — —=xexp (—x 2Jyex y
(x) e R

4 &
\/_x;2n+5n'

is included in the Laguerre orders j=0, 1 in Egs. (43) and
(44). This function will often appear also in Sec. IV. We
shall use Eqgs. (5) and (16) for numerical integrals of these
jx2L<5/ 2)( x2)P2(E)Cot (fam, fi)d*v formulas. For the bound-
ary condition at v=0 assumed in this adjoint equation
method, stralghtforward use of these formulas is favorable.
Although the [xL 5/2>( P2 (E)Cet (fom, fi)d?v integrals of
the e-f collision in injection conditions with v? < 2T, /m.
may be obtained also by using ([ v*P»(&)frd’v/B) with k >
2 that will be discussed in Sec. IV, this method needs appro-
priate  polynomial expressions of G(x), 3G(x) — \%
xexp(—x?), and exp(—x?) that depend on the injection veloc-
ity vp. The straightforward numerical integral is a method for
handling arbitrary v,. For a qualitative understanding, how-
ever, the following approximations for v < 2T, /m. also are
useful:

2 P — P
S‘Es <Te> ’

5/2 ° AP
R P Carlfons )Y 22 5=

9 Py —pis
4’Es <Te>

2P (&) Cot (fon, fr)dPV =~

LY (2P () Coet (far, fi )PV ~ (46)

Here, 15 = 3memev3,/(16y/7e*Z2 (ne) In A.) is the slowing
down time that is already used in Eq. (2). The dependence of
these fx2L 5/2)( x2)P2(E)Cet(fom, fr)d’v integrals on the B-
field strength modulation discussed in Sec. II is close to
that of ((pj¢f — p.r)/B). This dependence will be shown in
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Sec. IV. In this section, only the dependence of fsz /2
(2)P2(&)Cout (fum, fr)d*v with j=0, 1 of ions (a # e, f) is
shown in Fig. 2. As understood by Eq. (12), this j=1 inte-
gral is determined by a velocity range 0 < v=<uv. of the slow-
ing down velocity distribution and must be included as a
typical application example of Egs. (5) and (16) of the
adjomt equation method. On the other hand, fsz( /2)
(x2)P2(&)Cat (fum, fr)dv is only a contribution of the thermal
velocity region v? ~ 2T;/m, and thus is negligibly smaller
than the j=0, 1 integrals. Since various approximations in
Egs. (1) and (2) become physically meaningless for this ther-
mal velocity region, this j =2 integral is not shown. In Fig.
2, these results of the adjoint equatlon method are normal-
ized by fsz D (2)Py(E)Cat (Firt, F V") dy that are
given by Eq. (20). The assumed magnetic configurations and
the plasma parameters are chosen to be almost identical to
those in Ref. 9, and thus

B/By =1 — &(s)cos O + &(s)(1 — cos O )cos(LOg — N{(3)
(47)

with L=1,N=4, and 0 < &g < 0.26 are used for the B-field
strength. The e~ + D* 4 C®" multi-ion-species plasma with
Zet = 1.9, T, = T. = 0.5keV, ne = 1 x 10”m—> [resultant
parameters in Eq. (2) are v, = 1.01Mm/s and Z, = 3.70]
that is sustained by a hydrogen beam with mfvﬁ /2 = 27keV
is assumed. Analogous to the previously investigated parallel
momentum input by the tangential NB injections, the
dependence on ¢ is large when the energy space weighting
to low energy regions is large in this kind of integral
([ Ha(v)P2(&)frd*v/B). However, the contrasting fact is that
the reduction of these second Legendre order moments due to
the B-field strength modulation is proportional to 1 — (B)/ By,
while the reduction of the first Legendre order moments
(B [ F(v)&fid’v) was determined by ((1 — B/By)"?). This

. . . dd o
difference is due to a difference between f EO ) that is limited to

S
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FIG. 2. The configuration dependence of the ion anisotropic heating term
[ 2L (32)P2 () Cot (o, fr)d*v with j=0, 1 for D* and D** in the model
field Eq. (47). The result is normalized by the calculation using Eq. (20) for
b-VB =0.
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the pitch-angle range A < 1 and f, Eeveﬂ) that is broadened to the
full range 0 < 1 < Byi/B as mentioned in Secs. I and II.

Next, by using the anisotropic heating term given by
this method, we investigate the pressure anisotropy ((pj, —
P1a4)/B) that is given as the response in the LHS of Eq. (42).
Based on past experimental and theoretical studies on the
Shafranov shifts in the NBI-heated plasmas,7’8’10’ll we shall
assume a possibility of |pyr — pui| ~ pr ~ pe ~ > 1o Pas
and investigate the dependence of |(pj, —pia)|/(Pa) ~
(pe)/ P {(Pla — P1a)/B)/{(pys — p1)/B)] in that condi-
tion on the plasma parameters (n,, T,) and the beam energy
me% /2. When considering this problem with a fixed Zg
value, the ratio ((pj, — p1a)/B)/{(pjr — p1t)/B) is insensi-
tive to the plasma density, and the dependence on it is due to
only a weak dependence of the Coulomb logarithm on the
density. In addition to this fact, the ratio ((pje —pie)/
B)/{(pyr — pLt)/B) of the electron anisotropy is insensitive
also to the injection velocity v, and the electron temperature
(Te) as understood by the vi < 2T./m. approximation in
Eq. (46). Furthermore, the electron anisotropy ratio is small
because of a mass ratio relation ((pj. —pie)/B)/
((pjr = p1e)/B) ~ 15" ) D st Teg = Me/mi/Zegs. In contrast
to this simple situation of the electron anisotropy, this kind
of simple scaling on the parameters vy, (Ti) = >_, 0 ¢(Pa)/
Y ares(Na), and the masses does not exist for the anisotropic
ion heating. Therefore, the anisotropy of the thermalized
ions must be investigated by the numerical solution of Eq.
(42). The numerical examples of the ratio ((pe)/(pa))
[{(Pja — P1a)/B)/{(pjs — p1t)/B)| of the thermalized ions
a # e, f together with that of the electron are shown in Fig.
3. The assumed B-field strength is er = 0.1 in Eq. (47). For
investigating the temperature dependence, the other parame-
ters are changed from those in Fig. 2, and thus we assume
the e~ + DT + C®" multi-ion-species plasmas with n, = 1
x10”m—3, Zyr = 1.9, and 0.2keV < T; = T. < 5keV that
are sustained by a hydrogen beam with mgv?/2 = 50keV.
The critical velocity v, o vt in the fast ion velocity distribu-
tion is varying in this temperature scan even though Z, =~ 3.7

107
.2
g
o107 1 :
o
e
2
‘=
<
o
5 10*
wn
&
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107
0.1 1 10
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FIG. 3. The temperature dependence of the anisotropy ratios ((pe)/(pa))
[{(Pja —P1a)/B)/{(p)s — p1r)/B)|. The assumed B-field strength is Eq. (47)
with & = 0.1 and the beam injection energy is 50keV.
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is unchanged. The relation of the injection and the critical
velocities becomes vy =~ v, at T, =~ SkeV. This numerical
result indicates that ion anisotropy may become large for
high-T; conditions (in particular, when vy = v.) while the
electrons’ anisotropy ratio is insensitive to the temperature
following the above scaling based on the v < 2T./m.
approximation of the source term. In these conditions,
however, the ions’ anisotropy ratios are still ({p.)/{p.))
[{(Pja — P1a)/B)/{(p|t — P1r)/B)| < 107* and thus they can
be regarded as isotropic-pressure species for the MHD equi-
librium, the DKE Eq. (21), and the classical diffusions. It
also should be noted that the ion “anisotropic heating” source
term has a polarity of [x2P5(&)Cat(fum.f5)dV/(pyr — pos)
< 0 and the resultant ions’ anisotropies also become ((p|,
—p1a)/B)/{(p)r — p1t)/B) <0 in these investigated cases.
This is a contrasting characteristic compared with the elec-
tron heating and the previously investigated beam driven
flows. The anisotropy of the thermalized ions tends to cancel
that of fast ions in the slow velocity range v < v..

IV. FLOW AND FRICTION MOMENTS IN PARALLEL
AND PERPENDICULAR DIRECTIONS

In this section, we shall develop a method to obtain fric-
tion integrals including the slowing down velocity distribu-
tion function for the parallel direction for the P-S diffusions
(FES - Vs) = —e;lc <0F\|a1>, <QES -Vs) = —e, 'cm,
(U G|a)» and the perpendicular direction for the classical dif-
fusions (I'"- Vs) = e, 'c(B™2F,; x B-Vs), (Q% - Vs) = ¢!
cma(B72G, x B - Vs) due to Fu =my [V, Cap(furfo)dV,
Go = (mg)2) [v0* Y, Cap(furf>)d*v of both the thermalized
target plasma species and the fast ions themselves. The
required integrals are IVLJ(-3/ 2) (x2)Cat (fum, fr)d>v [basically

with j=0, 1, 2 for Eq. (28)] of thermalized species and
fvvzjzb#Cfb(ﬁ,th)d3V (with j=0, 1) of fast ions. The
fast ion friction integrals should be obtained not by Eq. (2)
but by the standard formula of the test particle portion
Crp(ft,fom). For obtaining the fast ions’ gyro-phase-averaged

slowing down velocity distribution function f¢(x, v, , 1) that
should be |f\"="| < £ (an isotropic structure in the pitch-

angle space) and |0%f, EI:O) /O /f, §’:°> < my /T; (a flat energy
space structure) at the thermalized energy range v? ~ 2T;/
mg, Eq. (2) includes some minor modifications to the stan-
dard formula [mainly, (msv,/Te + 0/0vy)ft = msv,fs/Te for
the f-e collision and (msv/T; + 0/0v)f; =2 mpvf; /T; for the f-i
collisions]. After determining such f;(x,v,0,.) based on
Egs. (1) and (2), various collision integrals such as the
momentum/energy transfer to the thermalized target plasma
particle species, and 3, ; Cr (ff<[:0> Jom) giving the particle
fueling to the thermalized ion species with m, = m; and
e, = er should be calculated by the standard formulae. A dif-
ference between Eq. (2) and the standard formula in the
energy transfer my [0*Cro(fi,fum)d>V = —my [V Cor(fum, fr)
d®v and the physical meaning of the difference are already
explained in Ref. 9, and analogous differences in G¢

= (Mf/Z) fVUz Zb;éf Cfb(ff,fbM)d3V and JG()Ca)U_1 Zb;éf th
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(ft, fbM)d3V will be shown in this section. Most of the

required friction integral formulas are already shown in Ref.
19 except this Gy. It is obtained by using

Jlﬁ ECup(furfi) Y

a

2 1
-3 (ﬂ+ 1> e G(x;,)} (J éfadé> v*d, (48)
mp Ty 1

with the error function ®(x

2 00
=87n, (eaeb) In AahJ {ZCD(xh) +4G(xp)
0

) = %fg e~ dy. First, the paral-
lel friction for the P-S diffusions is considered. From the
viewpoint of a consistency with the P-S current in the MHD
equilibrium, the first order Legendre moment L]l &f pdé of
f; as the first order of p;/L, basically has a form of’

1 B 1 B B
L Snde = <BJ1 3 fl‘@@

_cmp - 0 ! N =
= ‘ZTanl(l +¢ )ffdé>. (49)

For general particle species a in general toroidal plasmas,
the response to (v, - Vs)f)fffven) /Os usually includes the
spontaneously generated integration constant (B Lll 9]
of the particle/energy balance equation (corresponding to the
well-known bootstrap current). This generation also should be
investigated for fusion-born fast ions,>* and thus a calculation
method for non-symmetric stellarator/heliotron plasmas will
be reported in a separated article. For the NB-produced fast
ions in the tangential NBI operations, however, the Oth order
of p;/L, determined by Eq. (1) already includes the large first
Legendre order component (B ﬁl &fpdE) as the response to
the fast ion source term that is already investigated for non-
symmetric stellarator/heliotron configurations in Ref. 9.
Therefore, the integration constant in the first order of pg/L,
is neglected here. Basically, the parallel friction integrals
must be obtained by substituting Eq. (49) into the aforemen-
tioned formulas of fvéL (3/2) (x2)Cut (fam, fi)d?v  and
fvzj+1§ Zb# Ctp(fi, fsm)d®v. For the lowest Legendre order

component % <Lll f¢d&) in the RHS in Eq. (49), an analytical
solution that can be commonly used for this purpose in gen-
eral toroidal configurations is already known.” The application
of the adjoint equation method in Sec. II for obtaining
(| v*f;dv) with k > —2 is easy and straightforward, and sup-
ports the validity of the analytical expression. However, the
energy space structure of 2- (ﬁl P (&)f;dE) cannot be given
by this method since it is a method to obtain fd3v ) integrals
in Eq. (5). Instead of f Ps( ffdé) we shall use

_ B
Jukléf“d3v—< J e dly ><Bz>

_ g 91y @)
- -thgl <Jv(1+§)ffdv>, (50)
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with k = —1,1,2,4,6 as f dv integrals of Eq. (49), and use
Egs. (5) and (16) for obtaining ([ v*P,(&)f;d’v/B)/(B~') in
this RHS. The numerical differential of the radial distribu-
tion of the numerically obtained ([ v*P,(&)frd’v/B)/(B~")
will be adequate for this purpose since the poloidal/toroidal
variations of the NB-produced fast ions’ anisotropy in the
tangential NBI operations are [ v*P;(&)fid®v o< B(0,()™"
most. As shown below, the required friction integrals are
obtained by using only these radial gradients.

The approximated friction formulas for thermalized ions
use an approx1mat10n G(xb) (2x7)” ' for the situation
|8ffl 2 /8 | < |3ff - /8s| at v*> ~ 2T; /my as follows:

mgy J vécaf (faM7ﬁ)d3V
= —m¢ J vECea(fi, fum) AV

2 N U 1
— 8n2w <@ + 1) J (J fﬁdf) do
mg my 0 -1

Jva 3/2) (02) Cat (fam, fr)d v

a(€a 21 Aa o ! =
— g2 Ma(Cact)”In Aur fJ (J szd§>dv,
0 —1

m,
[0 (2) o Sy =0 forj = 2. s1)

These are obtained by using only [v~2&f;d’v driven by
I ((Jo'P2(&)fid’v/B) /(B~)). For the approximated fric-
tion formulas for electrons, we shall basically use the first
three terms in the power series expressions

G(x) :ixi(_il)nxbl exp (— i )"
VI = (2n43)n!" ol
Therefore, the e-f friction integrals are given by
Me JUéCef(ferf)CPV
=—my Jvfcfe (frofem)dv

21 A 1 2 4 1 B
:léns/zWJ (3 g J ¢ ) o,
e —1

meJUfL 3/2( ) Cet (fom f)d?

o(eer)?InA, 1 3 5
oyl Nt ef%e - fJ X <3 St 2)

X ( éffd§>
mer«fL 3/2) (62) Cer(fom fi)dPv

e(eer)?InAs (% 5
_ o2 Nelee)InAer J xe<1_3x§+§x§>
e 0

1
X (J gffcw) v*dv. (52)
—1
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When vy, /vre < 0.8, the e-f friction integrals can be obtained
by these formulas that require only fv"’léf 1c1d3v driven by
2 ([P (&)fid’v/B)/(B~")) with k=2, 4, 6. When more
accurate calculations for a wide range of v,/vre ratio are
required, it is better to obtain these integrals having a com-
mon form [* F(x.)([', & d&)vdv, in which F(xe) is a mod-
erately varying functlon and L &fpdé o v? at v > v, by a
polynomial expression

27 (5 / w 200\ 3. o\*
iy Bl ) —F “Fl— — -

3 {8 <3UTe> <3UTe> 8 (UT6> } <Ub)
(53)

This formula converges to the first three terms in the power
series expression of F(x.) when (up/vre)* < 1. (The purpose
for which we consider a calculation method of [ KL dy
with k=4, 6 below is not in these integrals themselves with
large k values but in the e-f friction integrals where the
weighting of the high energy range v ~ vy is reduced.) A
method for Fy; = m¢ [v > bzt Ci (frs fim)d’v of the fast ions
themselves is already obvious because of the momentum
conserving relations in Eqgs. (51) and (52). The formula for
the energy weighted friction integral Gy is obtained by sum-
ming Eq. (48), and using ®(x) = 1, G(x;) = (2x3) " for the
f-i collision b # e, f as follows:

Jv3f > Coplfifm)dv

bAf

_ o va{%zv MG< &)
s Jo 2 Ut
) 1
(342 4T‘2)}<J fffdé>v2dv. (54
msgv _1

This calculation also requires only 2 ({f *P, (E)f:d*v/B)/
(B~1)) with k = —1,1,4,6. For covering a wide range of the
Uy /vTe Tatio only by these limited integrals, the Chandrasekhar
function G(x.) is calculated by a polynomial expression

G(xegvv—;) ~ 0 2fG<vaTe> G(%’)

o) <2} ]

(55)
Although @(x.) + 2G(x.) can be retained in the f-e collision
integral itself, this term 1is negligible in this total

[y, 2t Crp (fi,fsm)dv integral formula. Therefore, an
essential difference between the fvvzd v integrals of Eq. (2)
and the standard formula of ), o Cp(ff,fom) exists only in
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the last term oc 4T;/(msv?) in Eq. (54) originated in colli-
sions with thermalized ions b # e, f. In the straightforward
use of the standard formula instead of Eq. (2), f; at mgv?
~ 4T;/(3 +Z,) cannot contribute effectively to (QF° - Vs)
and (Qf'-Vs). The radial transport of this thermalized
energy range must be handled in the kinetic equation for the
thermalized ion species with m, = m; and e, = eg, and the
fi(v* ~ 2T;/m¢) has only a role as a particle source to that
species. Therefore, Eq. (2) overestimating the contribution of
myv? ~ 4T;/(3 + Z,) is not used for the purpose of the P-S
and the classical energy diffusions.

On the parallel flow moments given by Eq. (50) and the
resultant parallel friction integrals, it also should be noted
that, when the first order of (v75)”" that will appear in the
straightforward solving procedure of Eq. (1) (i.e., the proce-
dure of Cordey mentioned in the introduction) is included,
the real space structure of parallel flow moments will deviate
from the form o U. Although the parallel particle flux given
by k=2 of Eq. (51) has this form for the consistency with
the J-vector field in the MHD equilibrium, other parallel
flow moments k # 2 can deviate from this form without any
inconsistencies. The existence of ( f &fdE/B)) #
that consists of f_l &f (dé being o (v‘cs) in Eq. (18) and
with the anti-symmetric phase F(—0,—() = —F(0,() is
obvious in comparisons of Eq. (20) neglecting this term and
Eq. (5) for including it. Examples for (B! fxsz;S/ 2)
(x2)P2(&)Cat (fum, fi)d?v) with j=0, 1 in the DKE for ther-
malized ions were already shown in Sec. III. In the compari-
sons for ([ vfPy(&)fd*v/B) that will be shown below, the
contribution of the (b- V([ &fd¢/B)) #0 in the DKE
term balance is large for k ~ —1 and small for £ > 2. These
results suggest that le &f 1 dé with the anti-symmetric phase
substantially exists only in a relatively low energy range
v=v, analogous to the ((Jﬂ_ll P, (&)f;d¢)B - VnB) as the par-
allel viscosity force of the fast ions themselves.® Therefore,

k > 2 of Eq. (50) determined by the full energy range 0 <
v <, is basically correct even when the first order of

(015)71 is included. The deviation may appear in integrals
that are determined only by the limited energy range v=sv.
such as the momentum exchange between the fast and the
thermalized ions in Eq. (51). Even in this low energy range,

the f_l] éf (d in Eq. (1) is estimated to be small by the fol-
lowing comparison of L‘l d¢ integrals of Eq. (1) and
(V) = Ce)fpy = —Var - Vfﬁeven). The integral of Eq. (1) is

1

| e
BV —

1 1
=v! Zcfb (J frdé — <J ffdé>7th>
bAf -1 -
, 1
i < [ stwonie—(] st ﬂ~>dé>>
—1 —1

(56)
and is compared with
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(Boozer)
= +B n)
der T (B2) '

1
« gﬁoozer) sin(m()B — I’ZCB)% <J (1 + éz)ftdé>
—1
(57

that determines the response to g - Vf | Eeven). Hereafter, the
covariant expression of the B-vector field

B — BgBoozer)vs + BgBoozer)veB _’_BéBoozer)véB (58)

in the Boozer coordinates is assumed. In Eq. (56), we should
exclude the surface-averaged term >, Cg,((ﬁl £edE) . fom)

—l—(ﬁl St(s, v,0,4)d€) that includes the particle source to the
thermalized ion species with m, = m; and e, = e;. This
averaged term balances not with the operator Vf; but with

2 (oo
ere 4 0 » miv 0
4n| — Gxayv™' 540> mZyInAyG M
“<mf> Jo (¥a)v 30{0})#”}; b N Afp (xb)(Tb +3
4n<ﬁ>2riz
nmyg o U

4 3
——x exp n;,Z In Ay G (xp) | frdv
VAP

1Jml
T tg )y 02

x fido iff (0 ~ 2T /mg) =

bAE

This calculation also includes the function f y exp( —y?)dy
that is already explained for the fsz 5/ 2>( 2P, (&)

Cap(fum,f»)dv integrals in Sec. IIL In the second equality
for cases of ﬁ(v ~ 2T;/mg) = 0, the first term including the
fo" y*exp(—y?)dy that gives a posmve COHtI'lbuthIl can be
obtained also by the [;° vG( xa)(Cfft )dv integral of Eq.
(2). Analogously to the energy transfer integral and the
energy weighted friction integral [vi? 3", 2t Con (fr, fim)d’v,
an essential difference between Eq. (2) and ), o Crp(fi, fom)
exists in the second term o exp(—x2) making a negative
contribution. The existence of the broadened tail component
of B- V(j_ll &fdé/B) at v* > 2T;/mg, which must be han-
dled by the fast ions” DKE Eq. (1) with the collision term
Eq. (2), will be indicated by the positive contribution of the
first term. On the other hand, the second term o exp(—x2) in
the integrals for the thermalized ions a #e,f is only a

2 37 2 m, T, 37
<3G(xa) - \/—%xa exp(—xi)) <vsze T\/_G(xe) + vg) — \/_%m_fT_axa exp(—2) (vsze T\/_

Phys. Plasmas 25, 042509 (2018)

gna + % (nqu, - VV) of that ion species at the thermalized
energy range v ~ 2T;/m;. We will compare the RMS(root

square)s (B~ V [, &F,de/B))
\/((B -V Lll &f11dE/B)?) after following investigation on

the energy space structure of the collision term ), 2 Cib

mean and

(ﬁlf ¢d&, fum), because these are oscillating functions in the
(0,0) space with the symmetric and the anti-symmetric
phases F(—0,—{) = F(0,{), F(—0,—{) = —F(0,(), respec-
tively. Since the purpose of this comparison is in the momen-
G (x,) ([ & de)dv,
we shall derive an integral formula of [°vG(x,) >, 4t Crp

tum exchange integrals being o fgo

(f 5’20), fom)dv of individual thermalized target particle spe-
cies a. Integrations by parts using a boundary condition

{G(x;,){ll) <3G(xa) - jixa exp(—X§)>

v 0
(450 .0

give

Yo

<3G(xa) - j%x,, exp(— ) DA Af,,{ ( _bxg> G (%) + 3G (%) — %X}) exp(XE)}

(59)

contribution of the fi(v> ~ 2T;/m,) at the thermalized
energy range. When this integral formula is used for the pur-
pose of Eq. (56), this contribution corresponds to the possi-
bility of small poloidal and toroidal variations of the particle
fueling effect that is order of the aforementioned 2 50t o dV
(nqu, - VV). We shall exclude this term oc exp(—x2) with
a # e, f. Equation (5) of the adjoint equation method is use-
ful also for investigating this collision integral. Analogous
to Eq. (18), the (B™" [~ v’G(x,)dv) integral of Eq. (56) is
used. The boundary condition at v =0 required for this cal-
culation is automatically satisfied by straightforward calcu-
lations of the functions G(x) and 3G(x) — %xexp(—xz)
without any approximations. To solve this adjoint equation
(V) 4+ C)fao = Ho(v)(1/B — (1/B))/1s for the lowest
Legendre order, /=0 is easy and straightforward, and the
solution is
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on(U:Ub, A< 1):7

1 (* v*Ho(v)

I?ML v (3v/7/2)G(xe) + 03
B <(BM/B ) Jl Ao /By)" /8&}di> D) R

i <F> " Z <J; Ai{;(l - AB/BM>‘/2/62}dz> An(i){ } e

This solution is used for the first term in

BM<b M> <BMJ Zcfb( . (1 0) > fbM)d3V>

bAf

s o), (Bl —/wB/Bw)"'?)  /But
+2 SOG<UTa> b ((B(l —)vbB/BM)71/2> <B >> (61)

A relation

. <(BM/B—1)J1 An{au_AB/BM)I/Z/az}dz> (v e
1_<;>+; <J;A5{:;(1}B/BM)I/Z/ai}di> An(ﬂb){ U}

Bym
1—(—) atv’ <o}
<B> atv” < vy
Bwm B v 1<v< B)>
1—(—)+ —(1-— ~0 atv’ >}
< B > [<BM l)|> UH By A=

indicates that the first Legendre order of the velocity distribution fil &f pdE and the lowest Legendre order of the collision
term jl Ctp(fs,fom)dE in Eq. (1) are generated mainly in the relatively low energy range v<uv.. This scaling on the B-field
strength modulation o 1 — (By/B) is consistent with the fact that reductions of ( ljx Lo 2 P (E)Cat (fumt, fr) V)
caused by (b j &fdé/B)) in Eq. (18) are proportional to the field strength modulation as shown in F1g 2. Although the

fast ion source term being o 0(v — vp) in Eq. (56) and in resultant Eq. (61) balances not with the operator VHf ¢ but with the
collision term Zb 4t Crp(ft,fom) only, as a result of this balance, poloidal and toroidal variations of the source term make anal-

ogous variations of the collision term at the slowing down energy range v < vp (mainly v < v) that balance with V”f £
Equation (61) includes this effect of the source term. When this equation is calculated for the friction collisions between the
fast and the thermalized ions a #e,f, this source term contribution is only a minor component in the

B- V{ffG(xd)f deV/B}. For friction collisions between the electrons and the fast ions a = e, the first term in Eq. (61) is
very small because of the particle conservation be 2f Cep(ft, th)d3V = 0, and thus the second term as the source term effect
is dominant. Next, since the adjoint equation method gives only the surface-averaged quantity (b - V{féG(xa)f fd3V/B }>,
the comparison of Eqs. (56) and (57) requires an assumption on the real space structure of >, 2 Cib (]‘Tglzo), fom). When this

collision term is generated at the low energy range v=<v, as discussed above, because of the “parallel force balance” that was
mentioned at the end of Sec. II,

ool L ) (1),
pEEE )T e

| coteriay
B V¥Y—————
B
will be appropriate. Then this quantity is compared with the radial gradient effect in Eq. (57). For a rough estimation, the sec-
ond Legendre order moment f Py(&)fdé) in 2 (f (1+&)fdé) =42 (f (1+1Py(&))fdE) is neglected. The
fo (x,)v*dv integral of this radial gradient is estimated by

1

1
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Joo 38<J1 fodf> ;—25ij<]11 fdf>dv% nTiadlﬁ/di J <J d£>dv forions a #e,f
(B)

G(x,)v dv ~

0 or 2 0", 2 © 4 L
3ﬁvTe5J0 v <J frdf>dv _3\/EvTedlﬁ/d1J <J_1ffd§>dv forelectrons a =e,
(63)

with the minor radius r that can be obtained by analytical integral formulas as already mentioned on Eq. (8). The RMS of the
(0, ¢) space oscillation is calculated by

2
B2 2
< <Bz> { Z (BEVBOOZSr)m-i-B((_)BOOZCr)n) szoozer) sin(mHB _ nCB) } > Z { ( (Boozer) +B(SBoozer)n) 82&0016)} )
( (

m,n)#(0,0) m,n)#(0,0)
(64)

By this method, we can confirm that the contribution of the slowing down collision in Eq. (56) is smaller than the radial gradient
effect in Eq. (57) by factors of 107> — 10~* in conditions assumed in Refs. 6 and 9 and this paper. In spite of this large value of
the diamagnetic flux divergence effect, it is irrelative to the surface-averaged DKE term balances such as Egs. (18) and (61) in
configurations with the stellarator symmetry B(—0, —() = B(0,{) within an accuracy neglecting d{n¢u; - VV)/9V in the parti-
cle balance and 9(Q; - VV)/9V in the energy balance for the fast ions themselves. Because of this difference between the two
types of the parallel flow generations, the procedure in Sec. II neglects this diamagnetic (perpendicular gradient) effect and

includes only Eq. (56) due to the slowing down collision, while we must include f_l] ECut (fm, f11)dE — (B ﬁ] ECur
(fun, f11)dE)B/(B?) oc U determined by Eq. (49) and can neglect Eq. (56) in the DKEs for thermalized particle species a # f
(the P-S part in Sec. III B).This estimation method for the >, Crp(fe — {f, El:0)>, f»m) may be applicable also for the poloidal/
toroidal variation of [Z; (1/2) (x2)C ot (fam, fi)d?v for the thermalized particles that can be included in Eq. (28) together with the

Fourrer-Laguerre series expressions of } _, ¢[C (B fim) + Cap (faM, =0 )]. However, this variation is smaller than the con-

tribution of (f f ) in Eq. (A6) that should be removed in Eq. (21). Therefore, in Eq. (28) for the purpose of the parallel friction

collision, the [ ; (172 (32)C s (fum, i )& also is neglected together with B - V/( f &f;dE/B) given by Eq. (56).

Next, the perpendicular flow moments ['v Nana (d*v with k = —1,1,2,4,6 of the gyro-phase-dependent part of the fast
ion velocity distribution for the perpendicular friction integrals in the classical diffusions must be considered. For consistency
in the construction of the flux-surface coordinates systems that is mentioned in the introduction (ie., V-B=V.]J
=B Vs=1J-Vs=0is assumed), we shall derive the perpendicular particle flux nfu s = [v W (d*v as a component of the
perpendicular current by using a component of V - (p¢I + 7r) that satisfies V - (npur) = 0 and npug - Vs = 0. It also should be
noted that the surface-averaged radlal transport flux (nsup-Vs) is excluded in calculations of the friction integrals
fv L; 3/ 2)( ) at (faM, ft) d3 fv 1L 3/ 2>( ) af (faMs ff)d v and the current J, . Therefore, the radial pressure gradient

(e R (S )]

is used for the perpendicular particle flux. The friction integrals also are obtained by using [v Nana (d*v driven by
2 ([ *P2(&)fid®v/B)/(B7")) and £ (([ *P>(&)frd’v/B)(B™")) with k = 1,2,4,6, which are generalizations of the
method for the current. In contrast to the parallel flow moments IVHv" ’f, f1d v, here we should include the field curvature
effect b - Vb 2 V| In B in the CGL tensor formula that we did not handle explicitly for V, f; in the fast ion DKE. The perpen-
dicular component of the fvv"‘Zd3 v integral of the full Vlasov operator for the fast ions gives

o 1
Jvtvl"szd% 7@[? (V vkzvvffd3v) x B

(Vs) V- (pd + mp) = |Vs|*

1mec 1 kp 13 mec 1 4 ;
:75 er ﬁv( Uffd V) XBe—fEV{(be/:S)JU Pz(i)fde XB,
k 3
U P(&)frd’v
Imgc 1 b 13 I mgc 1 Jk e 3 1 mgc J
=—c——= B———— P B+-—Vse¥————xB.
3 e BZV(u vfid V) X £ V( VP (&)fid’v ) X +5 o v 5 x (65)

In this determination of fv 1 Uk_zf fd3V vectors, the perpendicular friction integrals fv Lok Zb Cep(ft, f;,)d3 v are neglected since
erc 'B/my > 1/15, and the perpendicular electric field term (V, ®) - f;/dv also is neglected by a reason noted on Eq. (1).
These perpendicular gradient forces are given by a generalization of usual formulas for the CGL tensors 7, = (p|js — PLa)
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(bb—1/3) and r,—rd=(r), —ri.)(bb—-1/3) to
k= —1,1,6. This CGL method corresponding to a replace-
ment v = 0’I/3+ (v} — v /2)(bb —1/3) =0’1/3 +v*P5(¢)
(bb —1/3) neglects a possibility of non-diagonal elements in
the tensors [v~2vvfid’v. Although the co-existence of the
large first Legendre order in the gyro-phase-averaged part
f &fd¢ and the gyro-phase-dependent part f; 2 Z"é (b x
Vf;) may generate these non-diagonal elements (since
EP}(E)cosp=1P)(E)cosp), this method for V- [vf2v
fod3v with k > 1, where the full energy range 0 < v < vy, con-
tributes to this integral, is justified by the fact that the inertia
xV- {nf(Ufuf — u”fu”f)} = np(ug - Vug —uye - V)
+uysV - (nru r) is negligible in comparison with the pressure
gradient Vps even in the unbalanced tangential NBI opera-
tions giving mfnfuﬁfw pe. It also should be noted that the

force

“parallel pressure” in this tensor calculation is defined by

Pie EMfJU‘zﬁd3V as in Sec. I and Appendix A (not m; [|v)

_UHf|2ffd3 v) for including the parallel flow curvature effect
newje- Ve in the viscosity tensor term V- my instead of the
explicit calculation of the flow vector field npuy; in this force
term V- [vvfrd’v. In the extension of this method to k=—1
where V~jv’3vvffd3v must be handled, we should recall
that the high-energy region v > v, of both the gyro-phase-
averaged distribution f; and the gyro-phase-dependent com-
ponent f ¢ cannot effectively contribute to the integral
fv‘3vvﬁd3v. The neglect of the possibility of the non-
diagonal elements in it is justified for situations of | ['v w3
Frdv|| fvjo=3fd®v| < (fu=2fid®v)?, and this condition is

satisfied when the radial gradient scale length is 2”—‘1;1;0

< |Vin [v=2f;d®v|”". As a result of the field curvature b-Vb
=V, InB, the perpendicular flow integrals [v 2 «d*v con-
sist of two types of contributions of the anisotropy. One is

V({(J*P2(E)fed®v/B)/(B~")) x B/B* that satisfies V-
fvvk 2f;d®>v=0 as a sum of this perpendicular component
and the parallel component in Eq. (50), and the other is

V({[*P2(E)fed®v/B)(B~")) x B that does not cause the
dlvergence.

Therefore, the inclusion of the fast ions’ anisotropy in
the P-S and the classical diffusions and the parallel and the
perpendicular currents requires only ([ v*P5(&)f;d’v/B) with
k= —1,1,2,4,6. Here we show some numerical examples
on the configuration dependences of these quantities in Fig.
4. The assumed magnetic field and the plasma parameters
are those in Fig. 2 in Sec. III C. Also in this figure, the ratios

([ *P2(&)f e d®v/B) /([ vFPa(E ffb VB 43y /B) are shown.
The collision integral ([ x2P5(&)Cat(fum,fi)d*v/B) in Fig. 2
and the velocity distribution integral ([ v='P,(&)f;d’v/B) in
Fig. 4 have analogous configuration dependence since they
are obtained by an analogous energy space weighting. The
deviation of the ratios from the unity is proportional to

— (B)/Bwm. Although this scaling on the B-field strength is
different from that of the previously investigated parallel
momentum input, the dependence on the energy space
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FIG. 4. The configuration dependence of the ( Jkaz (&)f;d®v/B) integrals
for the model field Eq. (47). The result is normalized by the calculation
using Eq. (20) forb - VB = 0.

weighting v* indicates an analogous physical process. The
reason for this scaling on the field strength modulation has
already been stated in Sec. III C. In the tangential NBIs, this

reduction of f &f (dé and/or f P(&)f;dE caused by the
parallel guldmg center motion conserving the magnetic
moment is important for a slow velocity range v<sv. where
the velocity distribution is broadened in the pitch-angle
space, and is unimportant for the high energy range where
the velocity distribution is still localized around the injection
pitch-angle. This characteristic of f(x,v,0,4) gives the
dependence on v* in Fig. 4.

Finally, for the radial gradient of the lowest Legendre

order 8(}?2[:0)) /Os in both Eq. (50) and the gyro-phase-
dependent component of the distribution Fzv- (b x Vi)
off, El:0)> /Os that should be directly substituted into the fric-
tion integral formulas fVL 3/ 2)( D) Cut(fum, fr)d>v and [ vo¥
> 2t Crp (i, fsm)d>v, the aforementioned analytical solution
is used. The radial gradient is given by

1 8 S()‘L'S Hivn — v
205 ore 3y/a/2) Gy 12 0 Y)
1 S()‘Cs
= H -
2020T6(3\/E/2)G(xe)+vg’ (%0 =)

aln(Sg‘cs)_alnvC 3v g
Js ds v?vre(3v/m/2)G(x

)
_81ane3U 5 3V/1G(xe) 2xeexp( )
as 21" Vure (3y/7/2)G(xe) +03 |

Within the aforementioned accuracy neglecting O{n¢uy -

VV)/OV and 0(Q; - VV) /OV + es(nsug - VV)OD/OV, we do

not need to consider the dependence of this (f, El:()>> on the
field strength modulation B(6, {) on the flux-surfaces.

(66)
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V. DISCUSSION

Since this work was conducted assuming the tangential
NBI operations, analogous to Refs. 9, 20, and 21, the Oth
order of p;/L,  (B)™" in the fast ion velocity distribution
was investigated based on Eq. (1) in which the perpendicular
guiding center velocity v = ef’lc(mfvﬁ/B +uwbxVinB
is excluded. In other different injection conditions causing
the beam ionization at the deeply trapped pitch-angle
range,>* together with the radial drift velocity vg; - Vs that is
investigated in Sec. IV, the poloidal precession of the deeply
trapped particles in k> < 1 due to Jey/ds and der/ds also
will be required.25 In this injection method, however, the
injection energy will be chosen to be low. As a result of the
strong pitch-angle-scattering collision in the slow velocity
range v < v, the anisotropy cannot become so large. Rather
than this situation, the present study is focused on tangential
NBI operations with the injection energies of ug < vﬁ
<2T./m. where the contribution of the high-energy range
v > v, of the fast ions’ velocity distribution, for which the
slowing down is the dominant collision process, to the pres-
sure anisotropy pjr > pir is large. In the low energy range,
this velocity distribution is broadened to the full pitch-angle
range because of the PAS collision, and the calculation of
the anisotropy (the second Legendre order) requires this full
range. For the purpose of the surface-averaged velocity space
integrals such as integrals with a form of ([H,(v)
P, (&)f;d®v/B) in the tangential NBIs, however, only the
solution of the adjoint equation at the circulating pitch-angle
range 0 < 4 < 1 is required. The —cV® x B/B? precession
and the collisionless detrapping/retrapping of the low-energy
trapped particles in x> < 1 are implicitly allowed in this
adjoint equation method. In actual experimental conditions,
the velocity space loss region® is often eliminated by this
mechanism. This is another reason for which the direct solv-
ing for the DKE for f teven itself is difficult. The result of the
adjoint equation method for the ([ Ha(v)P2(¢)frd*v/B) inte-
grals includes the previously known analytical solution in
Ref. 28 as a limit of B = By;. The deviation of the actual
integrals from this limit was proportional to 1 — (B)/By.
This is a contrasting appearance of the parallel guiding cen-
ter motion effect compared with that in the previously inves-
tigated parallel momentum input (especially that for
thermalized ions)’ where the deviation is almost determined
by jol 2{(1 = 7B/By)"?)"'dJ. [Note also that the compari-
sons shown in this paper are those of the results of the
adjoint equation method for including <B’1(fll &fdé)b
VInB) in Eq. (18) and the results of Eq. (20) where this
term is neglected.] This difference is caused by the fact that
the full pitch-angle range 0 < 1 < By/B determines the
anisotropy, while the momentum input is determined only by
the circulating pitch-angle range 0 < 1 < 1.

After this derivation of formulas for the ([H»(v)
P,(&)f;d®v/B) integrals in Sec. II, we applied this method
for the anisotropic heating analysis of the thermalized
target plasma species in Sec III The handling of the newly
added DKE term C ¢ (fum, ff ) is independent of the previ-
ously investigated parts for handling the radial gradient
forces £ (pa), 2(rs), 2® and the parallel force terms
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A)7 Cat(fums ff(l:”), and thus a precedent calculation is pos-
sible. In contrast to the parallel momentum input
(B Lll ECut(fum, f1)dE) causing (TP Vs), (Q™ - Vs), and
(J - B), and to the poloidal and the toroidal variations of the
friction ["; ECor(faw,f)dE = (B [, ECurfont, £ )d)B/(B?)
o« U being a direct contribution to (I'®.Vs) and
<QZS - Vs), this newly added source term does not generate
velocity distribution components nor collision terms con-
cerning these transport fluxes. Another contrasting situation
in this anisotropic heating analysis is that the algebraic con-
version of the DKE as an integro-differential equation
including the full linearized collision operator for the second
Legendre order / =2 does not require any contribution of the
operator V. When solving the parallel force balance equa-
tion in the previously investigated part, the parallel viscosity
matrix M7, , ., for the parallel flow moments was essentially
required together with the friction matrix l 1441 since the
latter matrix does not have its inverse matrlx because of the
momentum conserving and Galilean invariant property of
the Coulomb collision. This viscosity matrix corresponded to
a part of the V| operator. In the anisotropic heating analysis,
this kind of role of V| is not essential since the collisional
anisotropy relaxation matrix (Appendix B) has its inverse
matrix. As a result of this inverse matrix and the
[x2P (¢ (5/ 2) (x2)Cut(fam,fi)d’v integrals given by the
adjoint equatlon method in Sec. II, it is found that the fast-
ion-driven anisotropies are ((pjc — pie)/B)/{(p)r — pLt)/B)
~3x 107> for electrons (Zgr =1.9) and ((pe)/(pa))
[{(Pja — Pra)/B)/{(pjt — pL)/B)| < 107% for thermalized
ions a # e, f (even when v, ~ v.) in typical operational con-
ditions (assumed in Refs. 6 and 9). Although these ratios
must be confirmed for individual experimental conditions, if
these small values are obtained, these thermalized species
can be regarded as the “isotropic-pressure” species in all of
the parallel and perpendicular currents in the MHD equilib-
rium, the radial gradient term (vg, - Vs)df,m/0s in the
DKEs, and the classwal dlffusmns Even though a relation

Cat(fum, f1) =2 Cat(fum, ff ) is not generally guaranteed for
the NB-produced fast ions, the response to Cou¢(fom, ﬂ )
can be neglected in these radial gradient calculations in
many practical cases.

In Sec. 1V, the adjoint equation method was applied for
the perpendicular friction and the poloidal/toroidal variations
of the parallel friction causing the classical and the P-S radial
diffusions of both the thermalized target plasma species and
the fast ions themselves. Basically, the friction integrals
Jv0¥ S Cralfe.f)d®y =0, 1) and [vL?(:2)
Cat(fum, ff)d3v (j <2) including the fast ion velocity distri-
bution f;(x, v) must be obtained by substituting the distribu-
tion function directly into these integral formulas explained
in Refs. 9 and 19 since the conventional methods for
thermal-thermal collisions such as the Braginskii’s matrix
expression cannot be applicable for this function. The radial

gradient of the lowest Legendre order 8<f<1 =0) )/0s can be
handled by this direct substituting, since an analytical
expression of it that is applicable for general toroidal config-
urations is already known. However, the adjoint equation
method adopted for the anisotropy is a method to obtain
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appropriate f(fo dv integrals instead of the energy space struc-

ture of the radial gradient %(Jﬂ_ll P, (&)f;dE/B). Therefore,
we shall apply this method for obtaining numerical radial
differentials & ([ v*P,(&)fid’v/B) with k = —1,1,2,4,6.
The P-S and the classical diffusions are obtained by sum-
ming these differentials, and the fast ions’ particle flux
neuy = fodeV in the perpendicular and the P-S parallel cur-
rents also is obtained as k =2 in this series. Numerical exam-
ples for this ([ v*P»(¢)fid*v/B) clarified that the absolute
value of the aforementioned deviation o 1— (B)/Bm
depends on the energy space weighting v*, and this depen-
dence indicates that the parallel guiding center motion effect
is important in lower energy ranges where the f;(x,v) is
broadened in the pitch-angle space. This dependence on the
energy space weighting is analogous to that in the previous
momentum input calculation.

In addition to these surface-averaged effects of
the anisotropy, the parallel viscosity forces (B-V -m)
= —<(pr —po)B . VII’IB>, <B -V l’f> = —<(er — I‘Lf)B .
VInB) of the fast ions themselves caused by the poloidal
and toroidal variations of the anisotropy are the other effect
of the anisotropy. The previous investigation on the momen-
tum input by the unbalanced tangential NBIs clarified also
the existence of these parallel forces.” The poloidally and
toroidally varying anisotropy included there will simulta-
neously generate also the viscosity-driven radial particle/
energy transport fluxes (I}"-Vs) = —e;'c((pjr — pir)
(Vs xB/B>+Ub)-VInB) and (Q¥-Vs)= —e;'omy
((rj — r1¢)(Vs x B/B>+ Ub) - VInB) that are defined
there. Since these anisotropies pr — p.r, 7 — 7Lt themselves
were not determined directly in this previous investigation, an
appropriate calculation method for these radial transport fluxes
is a future theme. Since these quantities also are definite inte-
grals of the fast ions’ velocity distribution in the 4D space
(0,¢,v,¢), the adjoint equation method will be a convenient
and powerful method also for this purpose. In contrast to the
P-S and the classical diffusion being the intrinsically ambipolar
transport process, this viscosity-driven transport is non-
ambipolar and must be included in the determination of the
ambipolar potential by the ambipolar condition (J - Vs) = 0.
Another difference between ((TTS +T¢).Vs), ((QF
+Q¢N) - Vs), and (T2 - Vs), (QP™ - Vs) in the tangential NBIs
is that the former is the dominant loss at the high-energy range
while the latter is substantially generated in a relatively low-
energy range v=v, of the f;(x, v) since the finite B-field modu-
lation effect causing (B -V - ), (B-V -rf) is important in
that energy range where the f¢(x,v) is broadened to a wide
range of the pitch-angle space. The determination of the Oth
order of p¢/L, based on Eq. (1) is justified when the total parti-
clefenergy losses O(I's - VV)/OV, 0(Qy - Vi) /OV, which are
sums of these transport processes with different roles, are small
compared with the fast ion source term. These issues will be
studied and reported in a separated article.
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APPENDIX A: THE PERPENDICULAR AND THE
PARALLEL PARTICLE/ENERGY FLUXES OF SPECIES
WITH NON-NEGLIGIBLE ANISOTROPIES

In this Appendix, we shall summarize the determination
of the perpendicular particle/energy fluxes and the resultant
parallel flow divergences based on the fd3v (particle bal-
ance), fvd3v (force balance), jvzd3v (energy balance), and
fvvzd3v (energy weighted force balance) integrals of the
Vlasov-Fokker-Planck equation analogous to Ref. 9. The
steady-state (9(nqu,)/0t =0, 0Q,/0t = 0) force balance
equations are given by

B
V- (pal+na) _eana(E+ua: > :Fah (Al)
V- g — e_a |:E . <§pu1 + na) + M} - Ga7 (Az)
my 2 c

with n, = [f,.d*v, Q, = (m,/2) [ vo*f,d*v, and the CGL
tensors 7, = (p|ls — Pra)(bb—1/3) and r, —rd = (1|,
—r14)(bb —1/3) including p 1, = m, [ |V, — um|2 fudv/2,
Pla = Ma [0ifud®V,  pa=(2p1a+pp)/3,  T1a = (m4)2)
[P fadV/2, 1y = (ma)2) fv2vfjad3v, and 1, = (2r.,
+7.a)/3. The perpendicular forces caused by these tensors
are

1 Pla = Pla
{V . (paI + na)}L = 5 (VL(pLa —|-[7Ha) +BZVL Bz)
(A3)
and
1 ia — g
(V- ry), = 3 (VL(FL(‘ +r“a) +BZVLLT). (A4)

Next, the steady-state (Op,/0t = 0) energy balance equa-
tion is

V-Q, — eangu, - E = %Jvzca(fa)d%

+ other source/loss terms,  (A5)

with Cy(fs) =), Cap(fusfp). When using this equation for
the purpose of the parallel energy flux divergence V - Q.
the surface-averaged component

0 oD
W (Q, - VV) + e4(nau, - VV) v eq
m,

=5 <J v Cy(f)d? V> + other source/loss terms, (A6)

nauy, - E(A)>

which is given by using the Gauss’ theorem for the volume V
enclosed by the flux-surface s = const, must be separated for
the solubility condition (V-Q,) = (B-V(Q./B)) =0.
Although the source/loss terms and the collision term in this
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RHS also must be separated from the DKE for thermalized
particles [Eq. (21)], this RHS is included in the DKE for the
fast ions [Eq. (1)] since the main purpose of this equation is
in the balance of the fast ion source term and the slowing
down collision term. Nevertheless, the separation of 8<Qa .
VV)/OV is commonly required for these general DKEs.
Analogously, (V- (n,u,)) = d(n.u, - VV)/OV must be
removed in the particle balance for the purpose of the deter-
mination of the steady-state gyro-phase-averaged distribu-
tion. For the thermalized particles handled by Eq. (21), the
heating energy input by the fast ions fszaf M ff)d3v and/
or the electron-ion temperature relaxation i, fvzcm
(feMafaM)d3V = —Mqy ‘[Uzcae(faMmfeM)dSV = _6nefg(,1 (me/ma)
(T. —T,) for a+#e,f is included in the RHS of Eq. (A6).
The contribution of the electrostatic potential in the LHS is
that for cases with |VsxB-V®| < 2T,le;'VsxB-
VInB| < ¢B?|Vs x B- VO| < |vq, - Vs| in the DKEs for
thermalized particles (the potential is almost a surface-quan-
tity). Analogous to Ref. 9, it also is assumed that the induc-
tive electric field, which is retained only for the confirmation
of the Onsager symmetric relation of the Ware pinch and the
bootstrap current, has only a parallel component E®)
= (B-E™)B/(B?). Therefore, we shall calculate
fundamentally

\ QH“ =-V- Qj_a —egnuy -V, O
+ m? (Juzca(fa)cﬁv - <J02Cd(fa)d3v>>. (A7)

The local collisional energy exchange between the species
due to the poloidal/toroidal variations of the lowest Legendre
order [v*C,(f,)d*v may be important for the P-S diffusion
calculation of multi-ion-species plasmas in an extremely col-
lisional condition'” and the fast ions’ slowing down process
discussed in Sec. II. By using Egs. (A1) and (A2), the perpen-
dicular particle and energy fluxes are given by

<
2e,
cVO xB

— I’laT, (A8)

1 Pla—Pla
nuq=— (ﬁv(pj_a +Pa)+V7) x B

B2

cmy 1 Tila=Ta
Q=77 (ﬁv(’w““VT) *B
B (5 Pla —p|a> cVO x B

PPat T3 B?

(A9)

In these perpendicular fluxes for the purpose of the parallel
flux divergences V - (nu),) and V- Q,,, the perpendicular
friction forces F,,; and G, (i.e., collision effects against the
gyro-motion) are neglected since erc™'B/mg > 1/t for fast
ions and e,c™'B >> |I54|/n, for thermalized particles where /43
is the friction coefficient."” The divergences of Egs. (A8) and
(A9) given by V-(HVF xB)=VFxB-VH—-H*].
VF for arbitrary scalar quantities F(x), H(x) are

C 1 Ng
V- (naui,)= —QV(pM +Pja) X B-VE—CV(D X B~Vﬁ
(A10)
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and

c my 1
V'Qla = —e—TV(rla—i—r”a) X BVE

a

5 a a a
o XB_V(_P_ﬁu),

2B 3B2
cmg o, 1
:_g_u?V(’la—i_r”a)XB.vﬁ
3pa  PiatPla  Pia —Pla
— VO xB-v(2le .
VP x v(232+ B2 R

(A11)

Even though p |, +p\|a7 (pl_a _p\|a>/B27 I'la+ Fl|a> and (rJ_a
—1a) /B? of individual species are not always constant on
the flux-surfaces s = const, and the J | vector also sometimes
may deviate from the surfaces (i.e., J - Vs # 0), the HJ - VF
in V- (HVF x B) was neglected by a low-beta approxima-
tion. On the other hand, the second term in V - QHa in
Eq. (A7) is

c
2e,

1 Pla—Pla
Mallia- V1 P= VQXB(I?V(PM—FP”H)—I-Vi)

BZ
(A12)

because of Eq. (8). Therefore, the first and the second terms
in Eq. (A7) become

-V QLa —eqngu 4 - VL(I)

c my 1
:e—GTV(FLa+VHa) X BVE
. 3 Pa  PlatDla 1

As already noted, we can retain only components in these
equations that satisfy the solubility conditions (V - (n,uy,))
= (B-V(nauo/B)) =0 and (V-Q,) = (B-V(Q)./B))
=0 for the steady-state conditions with On,/0t =0 and
0p,/0t = 0. Components corresponding to d(nsu, - VV)/
OV and 9(Q,, - VV)/OV + e,(n,u, - VO) must be removed.
For thermalized particles, this is one reason for which we
cannot retain the full terms in Eq. (6) that reproduces the
electric field term in Eq. (A13). The differential operator
Vdq - V with the perpendicular guiding center velocity vq,
= eglc(mavﬁ/B + )b x VInB also cannot be used for the
full part of the velocity distribution f,(x,v) because of
this solubility condition. When the electrostatic potential
is a constant on the surfaces, such parallel flux diver-
gences guaranteeing the solubility condition by the theo-
rem (Vs x B - VF) =0 for arbitrary scalar quantity F(x)
are

Nall)|q c 8<PJ_a +p\|a> 1
VB T2, o B VR
oL ng

and
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Qla _ cmy{ria+trya)
B e, 2 Js

oD 3 DPa <pLa +p|\a> 1 >

2 ([eesgarv—{ [eeamy)). @

For the diamagnetic flux divergences, this approximation is
due to a relation between the radial gradient scale lengths
LI (pra+pia)l |2 In(ria+rpe)| > |2 In(B~2)|. It also
should be noted that the poloidal/toroidal variations |(p,,
+Pa)/ Pra +Ppa) — 1] and |[(ria +7ya)/(ria + 1ja) — 1] of
individual species in stellarator/heliotron plasmas are not

B-V stB-V}%

+c

always the first order of p, /L, « (B)™' but often can become

N{(BM — Buin)/(Bm + Bmm)}3/2 o< <B>0 because of the col-
lisionless detrapping v regime ripple diffusion of light low-Z
species,?’ the resonant viscosity of heavy impurity ions,’>
and the P-S diffusions of impure plasmas. In spite of this
fact, these variations are not taken into account at least in
these diamagnetic flux divergences and the corresponding
DKE term (vg, - Vs$)9fum/Os. From the viewpoint of the drift
approximation, this neglect corresponds to a relation |vg, -
Vfa| < |(V| 4 VE)fu| for the poloidally and toroidally
varying  gyro-phase-averaged  distributions £, (x, v, &)
= fam(s,v) + fa1(x,v,€) in the ambipolar conditions with
0®/ds # 0. Since the “anisotropic-pressure species” in the
MHD equilibrium are defined as those with (pi1, — pja)
((pLa — Pja)/B*) > 0, it also is noteworthy that these diver-
gence terms do not always require rigorous surface-averages
of pia+pje and ri, + 1|, themselves but require the sub-
stantial radial gradients of those that are consistent with the
perpendicular particle/energy fluxes n,u, 4, Q. and the par-
allel force balance including the field curvature effect
b-VinB. When the DKE solution gives (p_1s — pja){(PLa
—Pla) /B?) < 0 for example, the radial gradients are regarded
as those of isotropic-pressure species with 2 (p1, + pja)
=25 pa), % (ria+1rja) =25 (ra), 5 {(pra = Pa)/B*) =0,
and & ((ria — rya)/B*) = 0.

In Eq. (A15), the surface-average of the neglected com-
ponent of the electric field term in Eq. (A13) can be rewritten
by using the definition B- V(U/B) = (B x Vs) - VB2 of a
function® U and the parallel (b-) component of Eq. (Al)
with b-V-(pJd+m,) Z%b~ [V(png-‘rphl) +BZV{(pHa
—p1a)/B?}], and the result is

Ca_(D PlatPla
Os 2

D /pia+Pla J
__Ca_<ﬂ3.v%>

1
VSXBVE>

Os 2

_ Ca_®<[7b P ;rP|a>

_ 00 (P — )<Vs x B n
=cC Os Plla = Pla B2

Ub) -v1n3>

(A16)
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Because of a relation (BU) = 0 as a part of the definition of
U , and the aforementioned assumption of the inductive elec-
tric field, (naEl(lA)ﬁ ) =0 is used. Therefore, the neglected
component of pi,+pj, corresponds to (I +T%°)
-VV)0®/90V in Eq. (A6). Analogously, by using the Gauss’
theorem’

(V- (HVF x B)) :%WVF x B-VV)

0
_—8—V<HVV><B-VF>

:£<FVV x B -VH),

v (A17)

we can confirm the fact that the surface-averages of the dia-
magnetic terms in Egs. (A10) and (A11) that are removed in
Egs. (Al14) and (A15) correspond to 5<(F2" + FSS) .
VV)/oV and 9((Q™ + QF) - VV)/OV. Further lineariza-
tion for the V@ x B - V terms by

a 1 _
stB-V%g <na>stB-V§+<BZ> 'Vs x B - Vg,

Da 1 _
stB~Vﬁg (pa)stB~Vﬁ+<Bz> 'Vs x B - Vp,

corresponds to the approximation of the E x B effect in the
DKE using VEXES for the solubility condition and the anti-
symmetric property ([ g,(VEXES fn)d*v) = — ([ £, (VRKES
gafan)dV).

On the radial gradients in Eqgs. (A14) and (A15), the fol-
lowing facts also should be considered. The negative value
(Pra —Pla){(PLa — Pa)/B*) < 0 given by the usual surface-
averaging  (F) = § § F\/gd0d(/ § § \/gd0d( for actual
geometrical shapes of the flux-surfaces corresponds to a
condition where we can regard the gradients as those of
isotropic-pressure species for all of the force balances in the
MHD equilibrium, the classical diffusions, and the DKE for
determining the gyro-phase-averaged distribution. The radial
gradient term (vq, - Vs)O(f,)/0s in the DKE also can be
regarded as those of isotropic velocity distribution (vg, - V)
Ofam/Os when its solution does not satisfy (pis — pja)
((Pra—Pja)/B?) >0 and (rio —rja){(ria —rja)/B*) >0
in the parallel force balance including b - VInB. Since the
geometrical shapes of the surfaces are not essential for the
DKE described by using the flux-surface coordinates, how-
ever, this judgment does not always require the usual
surface-averaging. The required inputs for the DKE from the
equilibrium configuration calculation are only some surface-
quantities (y',y', B¢, By) and the field strength B(s, 0,{) in
the contravariant and the covariant expressions of the B-
field.>*?” Based on this fact, one insistence of Ref. 3 is that
results for quasi-symmetric fields and geometrically symmet-
ric fields must be identical. In this kind of theory for the
gyro-phase-averaged velocity distributions, the appearance
of the (-) in various derivation steps in various formulas usu-
ally corresponds to the use of the theorems (HB - VF)
= —(FB-VH), or (HVsxB-VF)=—(FVsxB-VH),
or (V-F )=0(F,-VV)/0V. For example, the solving
procedure in Sec. II is based on a theorem
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(HB - VF) = —(FB - VH). However, to judge whether the radial gradient terms in the DKE or corresponding diamagnetic
flux divergences in Eqs. (A14) and (A15) can be regarded as those of the isotropic-pressure species is irrelative to these theo-
rems. Furthermore, some solving procedures for the DKE essentially require Fourier expansions in the Boozer coordinates sys-
tem with the Jacobian \/gg = (V’/4n*)(B?)/B>. In the P-S diffusion calculation, for example, linear algebraic equations of the
Fourier-Laguerre expansion coefficients are used for including the field particle portion Cup (fam, fo1), and this procedure is pos-
sible for non-symmetric stellarator/heliotron plasmas with finite radial electric fields 9®/0s # 0 only when the Boozer coordi-
nates system is adopted. In addition to this example, it is known from past experiences that this coordinates system is suited
for Fourier series expressions of various quantities in stellarator/heliotron plasmas rather than other coordinates systems.>> For
these DKEs described using the Boozer coordinates, we can use also a simple plane-averaging #ﬂn ffﬂ FdOgd(g
= (B®F)/(B?) for the (0p,{s) space for this judgment on the characteristic of p,, +Pjas (PLa —Pla)/ B, ri,+ Tlla» and
(ria —rja)/B*. As a result, the radial gradient term (va, - Vs)O(f ,)/Os can be regarded as that of isotropic-pressure species
even when (B*(p1a — pja))(Pra —Pja) < 0 and (B*(ria — rja))(ria — rja) < 0. For the perpendicular particle/energy fluxes
and the resultant classical diffusions in this situation, however, it is better to include (B fv"Pz Ef,d*v/B3) with k=2, 4 in

(V-m), /B> and {V - (r, —r 1)} /B>

APPENDIX B: THE BRAGINSKII'S MATRIX ELEMENTS FOR THE ANISOTROPY RELAXATION

By using the orthogonal relation

. 0 # k)
% J exp(— LY ALY (Pyde = { T(1/2+j+3)  Qj+5 . L (B1)
™o J! AR =k

of the Sonine polynomials Lj(-s/ 2) (x?), the polynomial expansion of the second Legendre order /=2 in the velocity distribution
is defined by

f(l 2) _

5/2 2
3< aM § p2aj g?

15 x 2j! m,
P2 = 0 5 (pay

The lowest order term in this series is the pressure anisotropy pa«0 = (Pja — PLa)/(Pa)- There are two methods for obtain-
ing the anisotropy relaxation matrix elements for the algebraic handling of these expansion coefficients p,,;. One method is
explained in Ref. 36, and the other method is to combine formulas for fl)"P] EYCoab(furfom) d3V fxaP le+1/ 2
(2)Cap(fam, fo)dv, and [ x2"~1®(x,) exp(—x2)dx, in Refs. 9 and 19. Results for the diagonal part (ions) in Eq. (42) corre-
sponding to Y, a;,(fal, Jfom) + Caa(fam,fu1) with a # e are expressed by using the Braginskii’s collision time t,, =
3m2v3,/ (16y/mnpeZer In Ayy) as follows:

(B2)
rmm”<m3

3 9 n, 3n,vr,

-3/2
2P Cu Xa P é aM> +Caa aM, X, P f a V=—— & 3+5% 1—"_% - - )
J 2( Z b (P2 (E)fams fom) (fam, 2P2(E)fam) | d 10,2 2y - m, N

Mqu%wmé”(mm@HMWﬂﬂmwwmﬂﬁ
b
= inpz(f)L(IS/Z) (xf,) |:Z Cap (XiPz(é)faM, fbM) + Caa (ng, ngz(f) aM):| d’v,
b
9 ng my, my, -5/2 27 n,
%%ﬁ(”%—b)(”mb) T 0VR
J x2Py (&) lz Cub( Py (¢ 5/2> (xg)fanfbM) + Caa (faM, 2Py (E)L5 L (x2) uM)]

= JXﬁPz(é)L§5/2> (x2) [Z Cap (P2 (ENfmt, fim) + Caa(funty ¥2P2(E) aM):|d3V
b

27 ng mg mg 7/ 2 27 ng,
=N 2 (432 (14 A
16;;; Tab < W») ( mh> 64v/2 Taa
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inP 5/2

3 21 1 112 21
:_izn_” 35(%) _;’_H(_) +E%+5 (]+%) _ 3 n_“__ﬁvﬂ7
10b7£a,e Tab mp 2 \my 4 4 mp 32v/2Twa 2 Tae UTe

anb( 2P, () 5/2 ( 5)f§zM,f};M> +Cu (faMa xiPz(f)L(ls/z) (ﬁ)fm)] d’v

|epaei Zcb(2P L5 (2t fimt) + Caa(Fort xaPz(aL;S/Z)(xz)faM)]d3v

= inP 5/2) [Z Cab( 2P 5/2 ( )faM»th> + Caa (faM; LZJPZ(é)L(f/z) (xz)faM)] d3V,
27 Ny ma\> 33 /m,\%: 135m, 31 ma\ %% 4401 n,
=3 Lo (L) 4= () e ——L 1+ -,
20 b; fab{ (’”b) 2 (W) 8 my 8 }( mb> 1280+/2 Tua
JX(%P LY (x [ZC b( 2Py (LY (x )faMafbM) + Caa (faM, 2Py (LS (xﬁ)faM)] &’y

27 AN 2\ N2 1317m, 235 A
- Z 105(70) 4 189(")" s aga("e) fag7(Me) 4 B M B ()
80#“ m;, mp mp mp 8 mp 8 mp

107001 n, 567 n, v,

C10240v2 %0 16 Teevre

When they are used for electrons, a =e, ), 2a. is Teplaced by o e With me /my =0, and vr,/vre = UTe/UTe MUSt be
omitted. The matrix elements for the field particle portion corresponding to the non-diagonal parts in Eq. (42) are

_ 3n,m, mg\ ~>/?
%P2 (&)Cab (o, X3P2(€) bM) =3 <1 +—) thPz )Cha (fbM7 X2P(E) aM)
Tab Mp my
27 (5/2)/ 2 2 5. g My my\ /2 ) 20 (5/2)
XLy (02)P2(E)Cap (farnts P2 (E)fom) v = Se,m 1 +m—b = [ 25P2(E)Cra fom, LY (x2)P2(E)fam
2 ~7/2
xﬁLﬁS/z)(xfl)Pz(f)Cab( aM X;Q,Lgs/z)(xi)Pz(é)ﬁ,M>d3v _ (m”) <1 + m“)
Tab \Mp mp,

= L0 PaE o (s 2L (2D ),

27 n, my, mg\ ~

72
JXZLgs/Z)(xg)Pz(f)Cah(faM, P (E)fm)dy = =~ (1 + —)

8 Tap My mp

= JX;Z,Pz(f)Cba (fbM7 5/2)( DP2(E)fa M)d \2

2 —9/2
J e eaerca o, S o)ty = T2 7 (T (147

8 Tab \Mp

:inLgs/z)(Xi)Pz(ﬁ)Cha(fbMa 2L (2P (8) M)

3
B e e L (N

64 Tap \Mp

—_
§|§
SEE
N—
|
=
S

J 2L (2)P2(E)Co (firas 2L (2)P2 (&) ) .

Since f,m o< exp (—x2) and x, = v/+/2(T;)/m, = v/vr, of ions in this paper are defined by using the averaged common tem-
perature (Ti) = >, 1(Pa)/ D uze (M) as stated in the introduction, (vry/ vra)? = my/my, is used for the ion velocity ratios in

these derivations. As a result, the matrix in Eq. (42) is symmetric because of the self-adjoint property of the Coulomb collision
operator with the linearization using this f,, with the common temperature.
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