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Abstract. Energetic particle driven geodesic acoustic modes (EGAMs) in the Large

Helical Device (LHD) plasmas are investigated using MEGA code. MEGA is a

hybrid simulation code for energetic particles interacting with a magnetohydrodynamic

(MHD) fluid and in the present work, both the energetic particles and bulk ions are

described by the kinetic equations. The low frequency EGAMs are reproduced. Also,

the energy transfer is analyzed and the bulk ion heating during the EGAM activity

is observed. The ions obtain energy when the energetic particles lose energy, and this

indicates that an energy channel is established by EGAM. The EGAM channeling is

reproduced by simulation with realistic parameters for the first time. The heating

power to bulk ions is 3.4 kW/m3. It is found that the sideband resonance is dominant

during the energy transfer from EGAM to the bulk ions, and the transit frequencies

of resonant bulk ions are one-half of the EGAM frequency.

1. Introduction

Geodesic acoustic mode (GAM) is an oscillatory zonal flow coupled with density

and pressure perturbations in toroidal plasmas[1–6]. In the past decade, energetic

particle driven GAM (EGAM) has been observed in JET, DIII-D, Large Helical Device

(LHD), HL-2A, and ASDEX-Upgrade[7–13]. Many publications have been devoted to

various aspects of EGAMs including the fundamental properties[14–31], the continuum

damping[15, 32–34], the high frequency and low frequency branches[15, 35–38], and the

half-frequency subcritical instabilities[39–41]. In the DIII-D experiment, the drops in

neutron emission during the EGAM activities suggest beam ion losses[9]. Also, in the

LHD experiment, anomalous bulk ion heating during the EGAM activity suggests an

energy channel established by EGAM[42]. In addition, EGAMs interact with turbulence

and thus affect the plasma transport and confinement[43, 44]. Then, the understanding
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of the EGAMs is important for magnetic confinement fusion, because the energetic

particles need to be well confined and the bulk plasma heating efficiency needs to be

improved.

The EGAM channeling phenomenon has attracted the interest of many researchers

because of the direct significance for plasma heating efficiency. The energy channel of

GAM was discussed within the framework of quasilinear theory and the possibility of

the GAM channeling was proved for the first time[45], and then, the energy transfer

between particles and mode were simulated with a flat equilibrium profile for the first

time[46]. In LHD, after observing the EGAM channeling for the first time[42], another

investigation is being conducted to find the relation between EGAM channeling and

the shear of safety factor[47]. However, at present, the existence of an EGAM energy

channel has not been demonstrated by simulation with realistic parameters. In addition,

although it is widely believed that the bulk ions obtain energy from EGAM via Landau

damping, it is still not clear which resonant bulk ions are the dominant. The present

paper is devoted to solving the above problems and demonstrating clear evidence, and

it is organized as follows. In section 2, the simulation model and realistic parameters

are described. In section 3, the linear properties of the simulated EGAM are shown, the

EGAM channeling phenomenon in LHD is reproduced, and the mechanism of EGAM

channeling is revealed. In section 4, the main conclusions are summarized.

2. Simulation model and parameters

A hybrid simulation code for energetic particles interacting with a magnetohydrody-

namic (MHD) fluid, MEGA[48–52], is used for the simulations of EGAMs. We have

two versions of MEGA. In the conventional version, only the energetic particles are

described by the kinetic equations, while in the extended version not only the ener-

getic particles but also the thermal ions are described kinetically. The simulation of the

EGAM channeling is conducted with the extended version, and the simulation model is

the same as Ref. [51]. This extended version is very important for EGAM channeling

simulation, because the Landau damping process is a kind of wave-particle interaction

process, and this process can be simulated only by the kinetic thermal ions model. In

the past EGAM simulations by MEGA, the EGAM channeling was not found because

of the MHD description of thermal ions. The following equations in the extended model

are different from those in the conventional model:

ρ
∂

∂t
uE⊥ = −(M · ∇)uE⊥ −∇pe + (j− Zie

mi

ρivpi −
Zhe

mh

ρhvph)×B, (1)

E = −uE ⊥×B +
∇‖pe

(−e)ne
+ η(j− jeq), (2)

ρ = ρi + ρh, (3)

M = ρuE⊥ + (ρivi‖ + ρhvh‖)b + ρivpi + ρhvph, (4)
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ρivpi =
mi

Zie
(−∇pi⊥ ×B

B2
+ (pi‖ − pi⊥)

∇× b

B
). (5)

The subscript h denotes the hot particles or the energetic particles, and the subscript

i denotes the bulk ions. The Eq.(1) is momentum equation, and Eq.(2) is Ohm’s law.

The particle-in-cell (PIC) method is applied for ρi, ρh, ρivi‖, ρhvh‖, pi‖, pi⊥, ph‖, and

ph⊥. The switch of collision is turned off in the present simulation, thus the bulk ions

cannot absorb any energy from energetic particles via collision processes. This turning

off operation is reasonable because the beam velocity is higher than critical velocity[53],

and the similar operation can be found in Ref. [18].

A realistic 3-dimensional equilibrium generated by HINT code is used for the

simulation[54]. This equilibrium data is based on the LHD shot #109031 at time

t = 4.94 s. At this moment, the EGAM activity is very strong, thus it is good for

reproducing the EGAM phenomenon. In LHD, the EGAM frequency should be similar

to that in tokamaks[3, 4]. The energy of neutral beam injection (NBI) is high, thus it

is possible to excite a high frequency branch of EGAM under the condition of bump-

on-tail distribution[36, 37], while the high frequency branch has not been observed in

tokamaks. The following six parameters for the EGAM simulation are based on an

LHD experiment[42]: 1) The plasma major radius R0 = 3.75 m. 2) The magnetic

field strength on the magnetic axis B0 = 1.5 T. 3) The electron density in plasma

center ne = 0.072 × 1019 m−3, and density profile is the same as experiment. 4) The

safety factor q = 2.82 on the magnetic axis, and q = 0.83 on the plasma edge. 5) The

injected neutral beam energy is ENBI = 170 keV. And finally, 6) a Gaussian-type pitch

angle distribution function is assumed for the energetic particles, and the distribution

function peaks at Λ = 0.1 where Λ = µB0/E is the pitch angle variable, µ is the magnetic

moment, and E is the particle energy. A slowing-down energetic particle distribution

function and a Maxwellian bulk ion distribution are assumed in the paper.

The number of computational particles is 8 million for both energetic particles and

bulk ions, but a larger number of particles, 67 million, is also used to decrease the

noise and to investigate the numerical convergence. Cylindrical coordinates (R, φ, z)

are employed. For LHD equilibrium, there are ten pitches in the toroidal direction (φ

direction). Since the toroidal mode number of the GAM is n = 0, for simplicity, only

one pitch from φ = 0 to φ = 0.2π is used for the present simulation, while the other nine

pitches from φ = 0.2π to φ = 2π are obtained by periodic extension. This simplification

is made to save computational resources and time. The numbers of grid points of

this pitch in the (R, φ, z) directions are (128, 64, 128), respectively. The viscosity and

diffusivity are set to be ν = νn = 4.5 × 10−7vAR0 = 64.97 m2/s and the resistivity

η = 4.5 × 10−7µ0vAR0 = 8.16 × 10−5 Ω ·m in the simulation, where vA is the Alfvén

velocity at the plasma center.
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3. Simulation results

3.1. Mode linear properties

The spatial profile of the simulated mode is shown in Fig. 1. This mode peaks around

r/a = 0.2, very close to the plasma center. The mode width is as large as approximately

0.4a, thus the simulated mode is identified as a global mode. Figure 2 shows the

mode frequency and amplitude versus radial position to confirm the global property.

The frequency profile is spatially constant. This is similar with Fig. 2(c) of Ref. [9]

and Fig. 6 of Ref. [20]. The global mode structure is caused by large orbit width

of energetic particles, and it is consistent with Fig. 4 of Ref. [14]. The dominant

mode number is m/n = 0/0 for poloidal velocity vθ as represented by the red curve

in Fig. 1(a). The components weaker than 4.31 × 10−5 (10% of the peak value of the

0/0 cosine component) are considered as negligible and thus they are not plotted. Also,

the dominant mode number is m/n = 1/0 for pressure perturbation δP as shown in

Fig. 1(b). Similarly, the components weaker than 10% of the peak value of the 1/0 sine

component are not plotted. These mode numbers are consistent with the nature of GAM

and EGAM[1, 2, 14, 20]. The dominant component of poloidal velocity vθ is the cosine

part because sine part is zero for m/n = 0/0. The dominant component of pressure

perturbation δP is the sine part because the density accumulation is proportional to

Ẽ × B · ∇B2/B4 where Ẽ is the fluctuating electric field[1]. Finally, the magnetic

perturbation exists, but it is much weaker than the poloidal velocity perturbation, and

this indicates that the mode is an electrostatic mode. This is also consistent with the

nature of EGAM[14]. Thus, according to the above three features of mode width, mode

number, and weak magnetic perturbation, the simulated global electrostatic mode is

identified as an EGAM. This is the first time to reproduce an EGAM using the extended

model of MEGA code.

In addition, the simulated EGAMs’ linear frequencies are between 40 kHz to 50 kHz

as shown in Fig. 3, and are lower than the theoretically predicted conventional GAM

frequency 54 kHz. Thus, these are low frequency branches of EGAM. The mode

frequency decreases with increasing βEP , which is the ratio of the energetic particle

pressure to the magnetic pressure, and this frequency decreasing is consistent with the

EGAM property[9, 14, 18, 20, 46]. The mode frequencies are lower than GAM frequency

because the energetic particles contribute negatively to the mode frequency under the

condition of slowing-down energetic particle distribution function.

3.2. The reproduced phenomenon of EGAM channeling

A typical case where βEP = 0.04% is used to demonstrate the EGAM channeling

phenomenon is shown in Fig. 4. Figure 4(a) shows the frequency spectrum of simulated

EGAM. The mode frequency in linear stage is 50 kHz, and then, the frequency chirps up

in the nonlinear stage. At t = 0.5 ms, the frequency has already exceeded 60 kHz. The

frequency chirping rate dω/dt gradually decreases with time. Fig. 4(b) shows the time
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Figure 1. The simulated mode profile of (a) poloidal velocity vθ with dominant mode

number m/n = 0/0 and (b) pressure perturbation δP with dominant mode number

m/n = 1/0.
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Figure 2. The mode frequency and amplitude versus radial position.

evolution of EGAM amplitude vθ. The linear stage is from t = 0 to about t = 0.1 ms.

At t = 0.1 ms, the mode amplitude reaches the maximum value, and then steps into

the nonlinear stage. Fig. 4(c) shows the energy transfer of various species. The energy

transfer to each species is analyzed by the volume integration and time integration

Etrans =
∫ t
0
dt′

∫
j · EdV . Here, j stands for the perpendicular current of the species,

which consists of ∇B drift current, curvature drift current, and magnetization current.

E is the ideal MHD electric field −v×B. For energetic particles and bulk ions, ∇B drift

current and magnetization current are given by perpendicular pressure, and curvature

drift current is given by parallel pressure. For electron, the perpendicular and parallel

pressures are replaced by a scalar pressure. This is equivalent to the diamagnetic current

j = −∇p×B
B2 . The bulk ion heating during the EGAM activity is observed. The ions
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Figure 3. The energetic particle pressure dependence of EGAM frequency in the

linear growth phase.

obtain energy when the energetic particles lose energy, and this indicates that an energy

channel is established by EGAM. The EGAM channeling is reproduced by simulation

with realistic parameters for the first time. The first demonstration of energy exchange

between EGAM and thermal plasma was made in 2014[46], but a flat equilibrium profile

was applied. In the present work, from t = 0 to t = 0.36 ms, the energy transferred

from energetic particles is 63 J. About one-half of this energy (51%) is transferred to

bulk ions (34%) and electrons (17%), while the other half is dissipated by the terms of

ν, νn, and η. The heating power to bulk ions around t = 0.1 ms is 3.4 kW/m3.
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Figure 4. (a) The frequency spectrum of EGAM. (b) The time evolution of EGAM

amplitude vθ. (c) Energy transfer of various species during EGAM activity. EP is the

abbreviation of energetic particle.
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3.3. The mechanism of EGAM channeling

In order to identify the dominant resonant particles, the δf distribution of both

energetic particles and bulk ions at different times are analyzed in the particle transit

frequency space, as shown in Fig. 5. The particle transit frequency ftr is defined by

ftr = v‖/(2πqR0), where v‖ is particle parallel velocity. For simplicity of ftr calculation,

q = 2.8 is a constant for all the particles in the above ftr equation, although q value

has a normal shear profile in the equilibrium of simulation. The simplicity of constant

q is reasonable because most resonant particles are located around the q = 2.8 region.

The EGAM obtains energy from energetic particles via inverse Landau damping, and

EGAM transfer energy to bulk ions via Landau damping. These processes modify the

distribution function of both energetic particles and bulk ions, and thus, δf values

change with mode evolution. The particles with negative δf values form the hole

structure in phase space, and the particles with positive δf values form the clump

structure. Large absolute δf values indicate strong interactions between EGAM and

resonant particles. Fig. 5(a) shows the δf of energetic particles. A hole around

ftr = 50 kHz is formed. The bottom of this hole moves rightward. This indicates

that the transit frequencies of particles in the hole increase with time and this increase

of frequency is kept consistent with the chirping up of EGAM frequency. The resonance

condition between EGAM and energetic particles is given by fEGAM = ftr,EP . Fig. 5(b)

shows the δf of bulk ions. Two clumps around ftr = 25 kHz and ftr = 5 kHz are

formed. The peaks of these clumps move rightward. This indicates that the transit

frequencies of bulk ions in these clumps increase with time and these transit frequencies

are kept at the half of the EGAM frequency (and one-tenth of the EGAM frequency).

The resonance condition between EGAM and bulk ions is given by

fEGAM = l · ftr,bulk, (6)

and dominant l values are l = 2 and l = 10. The resonant condition l = 2 is similar to

Fig. 4 and Fig. 5 in Ref. [55]. Sideband resonance is important for the interaction

between EGAM and bulk ions. This is the first time to quantitatively reveal the

resonance condition between EGAM and bulk ions during the establishment of EGAM

channeling.

The resonant particles in µ phase space and in radial spatial space are also analyzed.

It is found that the µ values of dominant resonant energetic particles are relatively

higher, while the µ values of dominant resonant bulk ions are relatively lower. This

indicates that the high-µ energetic particles excite the mode and the low-µ bulk ions

absorb energy. This is similar with that in Ref. [18]. For the spatial distribution, it

is found that 99% resonant energetic particles distribute around the core region where

r/a<0.7.

In Eq. (6), l = 2 is important because l = 2 sideband resonance condition is much

easier to be satisfied than higher l value cases. However, l = 10 corresponds to the

resonant ions with very low transit frequencies, and these low transit frequency ions can

hardly obtain energy from EGAM. In order to confirm that, the energy transfer rate
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Figure 5. The δf distributions of (a) energetic particles and (b) bulk ions in ftr phase

space at t = 0.18 ms (red), t = 0.36 ms (green), and t = 0.58 ms (blue). EP is the

abbreviation of energetic particle.

dE/dt ·δf of bulk ions in ftr phase space is analyzed as shown in Fig. 6. There is a peak

around ftr = 25 kHz, and this peak gradually moves rightward. Similar to Fig. 5(b), this

rightward movement indicates that the bulk ions with the half of the mode frequency

are kept resonant with the mode. The energy transfer rate is positive, and this indicates

that the bulk ions absorb energy from EGAM. In Fig. 6, the red curve at t = 0.109 ms

represents the time of transition between linear growth stage and nonlinear frequency

chirping stage. At this time, the peak value of dE/dt ·δf is very large because the mode

amplitude is very large as shown in Fig. 4(b) and the energy transfer rate is also large as

shown in Fig. 4(c). Then gradually, the peak values around ftr = 25 kHz decrease with

time, because the energy transfer rates decrease, which is also consistent with Fig. 4(c).

It is very significant that the high frequency (high energy) bulk ions absorb energy from

EGAM. Since the bulk ion temperature is high in ITER-like device, it is possible to

infer that the EGAM channeling may improve the heating efficiency in ITER, although

the present paper is based on a stellarator configuration. From t = 0.145 ms in the

fully nonlinear stage, a lower peak appears around ftr = 15 kHz. In this simulation, the

bulk ion temperature Ti = 4.85 keV, and this thermal velocity corresponds to a transit

frequency 14.7 kHz. The lower peak around ftr = 15 kHz appears in Fig. 6 because most

bulk ions’ transit frequencies are around 15 kHz. In Fig. 5(b), there is a peak around

5 kHz, but this peak is very weak and difficult to identify in Fig. 6, because the particles

around 5 kHz do not absorb too much energy. The bulk ions mainly absorb energy via

the particles whose transit frequencies are the half of the EGAM frequency. In Eq. 6,

l = 2 is more important than l = 10 for the establishment of EGAM channeling.
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Figure 6. Energy transfer rate dE/dt · δf of bulk ions in transit frequency ftr phase

space at different times.

3.4. Numerical convergence

In order to confirm that the simulation results are reliable and the number of simulation

particles is sufficient, numerical convergence has been investigated with regard to the

number of particles. Four cases with different numbers of particles are compared at

r/a = 0.26. The smallest particle number case was run with 223 = 8.39× 106 energetic

particles and the same number of bulk ions, while the largest particle number case was

run with 226 = 6.71×107 energetic particles and the same number of bulk ions. In other

two case, the particle numbers are in between. The time evolutions of poloidal velocity

vθ are shown in Fig. 7. For the smallest particle number case, the mode linear growth

rate and the frequency are 12.4% and 50.1 kHz, respectively. For the largest particle

number case, the growth rate is 13.7% and the frequency is 50.7 kHz. The difference of

linear growth rates is about 10%, and the difference of mode frequencies is only 1.2%.

According to this comparison, it can be concluded that the numerical convergence is

good enough for the results presented in this paper.

4. Summary

In summary, a global electrostatic mode is reproduced using the extended version of

MEGA code, and the simulated mode is identified as an EGAM. Both the mode number

and the mode frequency are consistent with the theoretical predictions. The ions obtain

energy when the energetic particles lose energy during the EGAM activity, and this

indicates that an energy channel is established by EGAM. The EGAM channeling is

reproduced by simulation with realistic parameters for the first time. The heating power

to bulk ions is 3.4 kW/m3. The δf distribution of both energetic particles and bulk ions

at different times are investigated, and the transit frequencies of resonant particles are
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Figure 7. (a) Time evolution of poloidal velocity vθ for different numbers of particles.

Four cases with different numbers of energetic particles are compared, and the number

of bulk ions is identical with that of energetic particles. (b) Linear growth rates and

frequencies versus the numbers of energetic particles.

analyzed. Also, the energy transfer rate of bulk ions at different times are investigated

and compared with δf distribution. The resonance condition fEGAM = l · ftr,bulk is

satisfied where the dominant l values is l = 2. Another resonance with l = 10 was also

found. The resonance condition between EGAM and bulk ions during the establishment

of EGAM channeling is quantitatively revealed in the present work.
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