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Abstract. The theoretical model of the feedback instability is proposed to explain

the mechanism of the correlation between the detachment and the cross-field plasma

transport. It is shown that the feedback instability on the detached divertor plasma

can be induced in a certain condition in which the volume recombination frequency

is larger than the ion cyclotron frequency in the recombination region. Further, the

density gradient and the electric field in the direction perpendicular to the magnetic

flux surface are not zero in the condition. The feedback instability can provide the

cross-field plasma transport in the boundary layer of magnetic fusion torus devices.

Furthermore, the properties of the radial transport observed in the NAGDIS-II linear

device experiment are compared with the estimation by the feedback instability model.

The dependence of the feedback instability mode on the total collision frequency and

the recombination coefficient and the density gradient has been also investigated.

Although the dependency on the total collision frequency and the recombination

coefficient for the typical fusion torus device case is opposite to that for the NAGDIS-II

case, the represented dependencies show the reasonable tendency in each case.
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1. Introduction

The correlation between the detachment [1] and the non-diffusive cross-field plasma

transport in the boundary layer has been reported in various magnetic confinement

devices. These are tokamak [2, 3], helical [4] and linear [5, 6, 7, 8, 9, 10, 11, 12]

devices. Such a correlation is expected to expand the width of the heat flux to the
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divertor target, i.e., λq. Thus, the observation and analysis regarding the correlation

phenomena have been actively performed in linear devices, e.g., the NAGDIS-II

[5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20]. However, the physical dynamics of the

correlation has not been revealed sufficiently. On the other hand, the detached divertor

plasma can be considered as the coupling of two magnetized plasmas characterized

by different current mechanisms. Such a coupling system is also found in the space

plasma as the magnetosphere-ionosphere (M-I) coupling. The electric current in the

magnetosphere streams along the geomagnetic field line, while that in the ionosphere

can flow in the direction perpendicular to the geomagnetic field because the frequency of

collision between ions and neutrals νin is larger than the ion cyclotron frequency Ωci [21].

This difference of the current mechanism between the magnetosphere and the ionosphere

can induce the instability called “feedback instability” [22]. The field-aligned current

(FAC) and the ionosphere plasma density grow locally by the feedback instability and

auroral arcs are formed in the region where FAC is enhanced [23, 24, 25].

In this study, we investigate the cross-field dynamics in the detached plasma state

with the coupling model between magnetized plasmas characterized by different current

mechanisms as described above. In the recombination region in front of a divertor

target, the volume recombination frequency νrec can be larger than Ωci because of the

high density and the low temperature. In such a situation, the cross-field motion of

ions is mainly in the direction of the electric field, while that of electrons is almost in

the direction of the E × B drift. Thus, the difference in the direction of motion may

provide the cross-field current in the recombination region. On the other hand, the

cross-field current can be generated by only the polarization and the diamagnetic drifts

in the upstream plasma. We have considered whether such a difference between the

current mechanisms in each region induces the cross-field plasma transport. In Sec. 2,

the linear dispersion relation is derived on the basis of the coupling model. In Sec. 3, it is

shown that one mode of the dispersion relation becomes unstable in a certain condition

for the typical fusion torus device parameters. We also discuss the heat flux density

reduction and the heat flux width expansion which may arise from the radial transport

by the unstable waves. The details of the unstable mode for the NAGDIS-II linear

device parameters are also presented in Sec. 4. Here, the NAGDIS-II contributes to the

establishment of the detachment mechanism for future fusion reactors such as ITER

and DEMO [26]. The group velocity estimated by the theoretical model is compared

with the result of the NAGDIS-II linear device experiment [8]. In Sec. 5 we discuss the

dependence of the unstable mode on some physical parameters. Finally, we summarize

this work in Sec. 6.
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Figure 1. Configuration of the system for the theoretical model. The wave vector k

is assumed to be perpendicular to the magnetic field B as k = (k cos θ, k sin θ, 0).

2. Linear Dispersion Relation

In this study, we have derived the linear dispersion relation from the continuity

equations,

∂nP

∂t
+∇⊥ · (nPvP

s⊥) +
ΓPS
s∥ − ΓB

s∥

Lz

= 0 (1)

and

∂nR

∂t
+∇⊥ · (nRvR

s⊥) +
ΓB
s∥ − ΓDP

s∥

h
= −α

[
(nR)2 − (nR

0 )
2
]
, (2)

and the charge conservation equations,

∇⊥ · jP⊥ +
jPS∥ − jB∥

Lz

= 0 (3)

and

∇⊥ · jR⊥ +
jB∥ − jDP

∥

h
= 0, (4)

in the upstream plasma and the recombination region in the simple configuration as

shown in Fig. 1. In this configuration, the magnetic field B is parallel to the z axis

and the x and y directions correspond to the direction perpendicular to the magnetic

flux surface and the toroidal direction in torus devices, respectively. Thus, ∂B/∂y = 0.

Furthermore, we assume that the waves propagate in the direction perpendicular to the

z axis, that is, the z component of the wave vector is equal to 0, and that the plasma
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density n, the electric potential ϕ and the temperature T are uniform in the z direction

in each region. Here, vs⊥ is the flow velocity perpendicular to the magnetic field, Γs∥ is

the parallel flux, α is the recombination coefficient, j⊥ and j∥ are the perpendicular and

the parallel currents, the superscripts P, R, B, PS and DP indicate the quantities in the

upstream plasma, in the recombination region, at the boundary between those regions

(z = 0), at the plasma source (z = Lz) and at the divertor plate (z = −h), respectively,

and the subscripts s and 0 represent the particle species and the equilibrium state. The

parallel flux at the divertor plate ΓDP
s∥ includes the flux of charged particles provided by

the recycling process.

The upstream plasma flow velocity vP
s⊥ is composed of the E×B, the polarization

and the diamagnetic drifts as

vP
s⊥ =

(−∇⊥ϕ
P)×B

B2
− ms

qsB2

(
∂

∂t
+ vP

s⊥ · ∇⊥

)
(∇⊥ϕ

P)

+
TP
s

qsBnP

(
∂nP

∂x

y

y
− ∂nP

∂y

x

x

)
, (5)

while the recombination region flow velocity vR
s⊥ is described by each drift with the Hall

mobility µH and the motion in the direction of the perpendicular electric field with the

Pedersen mobility µP according to the analogy with the ionosphere [21], that is,

vR
s⊥ = µHs

[
(−∇⊥ϕ

R)×B

B
− ms

qsB

(
∂

∂t
+ vR

s⊥ · ∇⊥

)
(∇⊥ϕ

R)

+
TR
s

qsnR

(
∂nR

∂x

y

y
− ∂nR

∂y

x

x

)]
+ µPs

qs
|qs|

(−∇⊥ϕ
R). (6)

Here, ms and qs are the mass and the charge of s particle and µH and µP are defined by

µHs =
|qs|
msνs

|Ωcs|/νs
1 + (Ωcs/νs)2

(7)

and

µPs =
|qs|
msνs

1

1 + (Ωcs/νs)2
, (8)

respectively, in which νs is given by

νe = νrec + νen + νei (9)

or

νi = νrec + νin + νie. (10)

In the discussion in this paper, it is assumed that νe ∼ νi and νs is replaced with ν∗.

Furthermore, the neutral wind term and the collision term are neglected in Eq. (6)

because those terms will vanish in the derivation of the dispersion relation under the

condition assumed in this paper.

The equilibrium and boundary conditions are given as follows: The equilibrium

density and potential are uniform in the toroidal direction as ∂nP
0 /∂y = 0, ∂nR

0 /∂y = 0,
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∂ϕP
0 /∂y = 0 and ∂ϕR

0 /∂y = 0. The current density at the plasma source (z = Lz)

is zero and constant in time, that is, jPS∥ = 0. The equilibrium current density at

the boundary is also zero as jB∥0 = 0. On the other hand, the current density at

the divertor plate (z = −h) is constant in time and satisfies the relation jDP
∥ =

h|qe|(−∂ϕR
0 /∂x)[(µPe+µPi)(∂n

R
0 /∂x)−2nR

0 (µPe/B)(∂B/∂x)] in order to keep the charge

conservation. The particle fluxes at z = Lz and −h are also constant in time and equal

to the equilibrium flux at the boundary, that is, ΓPS
s∥ = ΓB

s∥0 = ΓDP
s∥ . In this paper, for

simplicity, the recycling process included in ΓDP
s∥ does not vary even if the plasma density

is perturbed. The temperatures in each region are assumed to be uniform and constant

in time, i.e., TP
s = TP

s0, ∂T
P
s0/∂x = ∂TP

s0/∂y = 0, TR
s = TR

s0 and ∂TR
s0/∂x = ∂TR

s0/∂y = 0.

Linearizing Eqs. (1)–(4), as a result, we obtain the cubic equation regarding the

frequency ω as the dispersion relation, that is,

ω3 + A2(k, θ) ω
2 + A1(k, θ) ω + A0(k, θ) = 0, (11)

in which

A2 = − (vPy0 + V P
y0 + V R

y0)k sin θ + i

(
V P

Lz

+
∂vPy0
∂x

cos θ sin θ

)

− A3

[
2

B

∂B

∂x
vRPe −

dR

h
− i(V R

P cos θ + V R
H sin θ)k

]
, (12)

A1 = (vPy0V
R
y0 + V P

y0V
R
y0 + vPy0V

P
y0)k

2 sin2 θ

−

(
V P

Lz

+
∂vPy0
∂x

cos θ sin θ

)(
vR

2h
+R0n

R
0

)
− V P

Lz

∂vPy0
∂x

cos θ sin θ +
vPV R

2hLz

− i

[(
V P
y0

∂vPy0
∂x

cos θ sin θ + vPy0
V P

Lz

)
k +

ηdPG

c1Bk

+

(
∂vPy0
∂x

cos θ sin θ +
V P

Lz

)
V R
y0k

+ (vPy0 + V P
y0)

(
vR

2h
+R0n

R
0

)
k

]
sin θ

+ A3

{[
2

B

∂B

∂x
vRPe −

dR

h
− i(V R

P cos θ + V R
H sin θ)k

]
[
(vPy0 + V P

y0)k sin θ − i

(
∂vPy0
∂x

cos θ sin θ +
V P

Lz

)]

− i
dPV R

hLz

}
, (13)

A0 =
ηdRvPG

2hc1Bk
sin θ − vPV R

2hLz

(
vPy0k sin θ − i

∂vPy0
∂x

cos θ sin θ

)
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+ i

[(
V P
y0

∂vPy0
∂x

cos θ sin θ + vPy0
V P

Lz

)
k +

ηdPG

c1Bk

]
[
V R
y0k sin θ + i

(
vR

2h
+R0n

R
0

)]
sin θ

+ A3

{[
2

B

∂B

∂x
vRPe −

dR

h
− i(V R

P cos θ + V R
H sin θ)k

]
[
vPy0V

P
y0k

2 sin2 θ −
∂vPy0
∂x

V P

Lz

cos θ sin θ

− i

(
∂vPy0
∂x

V P
y0 cos θ sin θ + vPy0

V P

Lz

)
k sin θ

]

− i

[
dPV R

hLz

(
vPy0k sin θ − i

∂vPy0
∂x

cos θ sin θ

)

− ηdPG

c1B
sin θ(

2

B

∂B

∂x

vRPe
k

− i(V R
P cos θ + V R

H sin θ)

)]}
(14)

and

A3 =

(
G sin θ

2B

)/{
nR
0 MPk − i

[
nR
0

B

∂B

∂x

(
sin θ

B
− 2µPe cos θ

)
+

∂nR
0

∂x
(MP cos θ −MH sin θ)

]}
. (15)

In the above equations, all variables and coefficients are normalized by Ωci = qiB(x =

0)/mi, c
P
s =

√
TP
e /mi, ρ

P
s = cPs /Ωci, B(x = 0) and nP

0 (x = 0). Some variables and

coefficients which appear in the equations are defined by

vPy0 =
1

B

∂ϕP
0

∂x
+

miT
P
i −meT

P
e

|qe|B(mi +me)

1

nP
0

∂nP
0

∂x
, (16)

V P
y0 =

1

B

∂ϕP
0

∂x
− miT

P
e −meT

P
i

|qe|B2(mi +me)

∂B

∂x
, (17)

V R
y0 =

1

2B

∂ϕR
0

∂x
, (18)

V P = 2

√
2

π

miv
P
Te +mev

P
Ti

mi +me

, (19)

V R = 2

√
2

π

miv
R
Te +mev

R
Ti

mi +me

, (20)

vP = 2
√

2/π(vPTe + vPTi), vR = 2
√

2/π(vRTe + vRTi), dP = 2
√
2/π(vPTi − vPTe), dR =

2
√

2/π(vRTi − vRTe), v
R
Pe = µPe(−∂ϕR

0 /∂x), V
R
P = MP(−∂ϕR

0 /∂x), V
R
H = MH(−∂ϕR

0 /∂x),

MP = µPe + µPi, MH = µHe − µHi, η = nP
0 /n

R
0 ,

c1 =
nP
0

nP
0 (x = 0)

Lz

ρPs

B2(x = 0)

B2

(
1 +

me

mi

)
, (21)
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Figure 2. Dependence of the growth rate γ of the unstable mode on the wave number

k and the propagation direction θ for the typical fusion device case. The definitions

of k and θ are shown in Fig. 1. The hatched area inside the red contour line which

represents γ = 0 designates the unstable region.

G =
nR
0

B

∂B

∂x
− ∂nR

0

∂x
, (22)

R0 = 2αnP
0 (x = 0)/Ωci, v

P
Ts =

√
TP
s /ms and vRTs =

√
TR
s /ms.

3. Typical Fusion Torus Case

It is found that the one mode of the dispersion relation shown in the previous section

has a positive growth rate under a certain condition when the typical parameters for

fusion torus devices are assumed. Figure 2 shows the dependence of the growth rate

γ of the unstable mode, i.e., the feedback instability mode, on the wave number k

and the propagation direction θ. In Fig. 3 we present the dependence of the group

velocity vg = ∂ω/∂k of the unstable mode on k and θ. Here, the parameters are set

as follows: B(x = 0) = 5 [T], ∂B/∂x = −1 [T/m], nP
0 (x = 0) = 5 × 1019 [m−3],

∂nP
0 /∂x = −1.67 × 1021 [m−4], the initial electric fields −∂ϕP

0 /∂x = −∂ϕR
0 /∂x = −100

[V/m], the electron and ion temperatures TP
e = TP

i = 50 [eV], TR
e = TR

i = 0.3 [eV],

ν∗/Ωci = 10, R0 = 10, Lz = 10 [m], h = 0.3 [m], the ion-to-electron mass ratio

mi/me = 3.67×103 and the ion-to-electron charge ratio qi/|qe| = 1. In those figures, the

hatched area inside the red curve designates the unstable region in which the feedback

instability can be induced. Thus, Figs. 2 and 3 indicate that the waves kρPs > 0.8

and θ ∼ 3π/4 can transport the plasma lump with the speed ∼ 0.002cPs . The simple

estimation as mentioned in Fig. 4 shows that the maximum of heat flux density is

reduced to 1− (vgx/c
R
s )(ñ/n

R
0 )(h/λ

B
q ) ≈ 82 % of the initial value and that the heat flux

width is expanded to 1+ (h/λB
q )(vgx/c

R
s ) ≈ 280 % of the initial width if ñ/nR

0 ∼ 0.1 and

λB
q ∼ 3 [mm]. Here, vgx is the x component of vg and ñ is the time averaged density of

the transported plasma lump.
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Figure 3. Dependence of the group velocity ∂ω/∂k of the unstable mode on the

wave number k and the propagation direction θ for the typical fusion device case. The

hatched area inside the red contour line which represents γ = 0 designates the unstable

region.

Figure 4. Schematic diagram for the estimations of the heat flux density reduction

and the heat flux width expansion. The width of expansion and the total flux for the

initial width λB
q are estimated as (h/cRs )vgx and [nR

0 λ
B
q − ñvgx(h/c

R
s )]c

R
s , respectively.

4. NAGDIS-II Linear Device Case

In order to verify the feedback instability model, the spiralling plasma ejection observed

around the recombination front under the detached divertor condition in the NAGDIS-

II linear device experiment [8] is analysed. Figures 5 and 6 show the dependences of

the growth rate γ and the group velocity vg of the feedback instability mode on the

wave number k and the propagation direction θ. Here, the parameters are given as

follows: B(x = 0) = 0.075 [T], ∂B/∂x = 0 [T/m], nP
0 (x = 0) = 1.4 × 1019 [m−3],

∂nP
0 /∂x = −8 × 1020 [m−4], −∂ϕP

0 /∂x = −∂ϕR
0 /∂x = −100 [V/m], TP

e = TP
i = 0.7

[eV], TR
e = TR

i = 0.35 [eV], ν∗/Ωci = 10, R0 = 10, Lz = 1.72 [m], h = 0.33 [m],

mi/me = 7.33 × 103 and qi/|qe| = 1. Those figures indicate that the waves kρPs < 0.7

and θ ∼ π/8 can transport the plasma lump with the speed ∼ 0.2cPs , that is, with

vgx ∼ 800 m/s and vgy ∼ 200 m/s. On the other hand, in the NAGDIS-II experiment,
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Figure 5. Dependence of the growth rate γ of the unstable mode on the wave number

k and the propagation direction θ for the NAGDIS-II linear device case. The hatched

area inside the red contour line which represents γ = 0 designates the unstable region.

Figure 6. Dependence of the group velocity ∂ω/∂k of the unstable mode on the wave

number k and the propagation direction θ for the NAGDIS-II linear device case. The

hatched area inside the red contour line which represents γ = 0 designates the unstable

region.

the radial speed vr ∼ 80 [m/s] at r ∼ 20 [mm] and azimuthal speed vθ ∼ 200 [m/s]

at r ∼ 5 [mm] are obtained. Here, the plasma configuration in the NAGDIS-II are

schematically shown in Fig. 1 in Ref. [8]. Since vgx and vgy correspond to the radial and

azimuthal velocities, vgy estimated by the theoretical model is in good agreement with

the experiment. On the other hand, vgx estimated by the theoretical model is larger

than the radial speed observed in the NAGDIS-II experiment. However, the observed

radial speed is detected at the point far from the structure formation area (r ∼ 5

[mm]). Thus, if vr increases as r decreases in the NAGDIS-II and the theoretical model

is modified to the cylindrical system, the difference between the theoretical estimation

and the observation might become small.
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Figure 7. Schematic diagram for the comparison between the NAGDIS-II linear

device experiment and the theoretical model.

Figure 8. Dependences of the growth rate γ of the unstable mode on the wave number

k and the propagation direction θ for ν∗/Ωci = R0 = 5 (a) and 20 (b) for the typical

fusion torus case. The hatched area inside the red contour line which represents γ = 0

designates the unstable region.
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Figure 9. Dependences of the growth rate γ of the unstable mode on the wave

number k and the propagation direction θ for ∂nP
0 /∂x = −8.33 × 1020 [m−4] (a) and

−3.33 × 1021 [m−4] (b) for the typical fusion torus case. The hatched area inside the

red contour line which represents γ = 0 designates the unstable region.

5. Dependence on Physical Parameters

In this section we discuss the dependence of the unstable mode on the ratio of the

total collision frequency to the ion cyclotron frequency ν∗/Ωci and the normalized

recombination coefficient R0, and the density gradient in the x direction ∂nP
0 /∂x for

each device case.

5.1. Typical Fusion Torus Case

Figure 8 shows the dependences of the growth rate γ of the unstable mode on the wave

number k and the propagation direction θ for ν∗/Ωci = R0 = 5 and 20. This figure and

Fig. 2 indicate that the unstable region in the (k, θ) space is expanded as ν∗/Ωci and R0

increase. The reason is thought to be as follows. The increase of ν∗/Ωci enhances the ion

motion in the x direction in the recombination region through the Pedersen mobility.

The enhanced ion cross-field motion may contribute to the instability.

Next, the γ distributions of the unstable mode in the (k, θ) space for ∂nP
0 /∂x =

−8.33× 1020 [m−4] and −3.33× 1021 [m−4] are represented in Fig. 9. From Figs. 2 and

9, it is found that the unstable region disappears in the lowest density gradient case.

On the other hand, the unstable region is extremely expanded with the high density

gradient. This fact indicates that the density gradient in the direction perpendicular to
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Figure 10. Dependences of the growth rate γ of the unstable mode on the wave

number k and the propagation direction θ for ν∗/Ωci = R0 = 5 (a) and 20 (b) for

the NAGDIS-II linear device case. The hatched area inside the red contour line which

represents γ = 0 designates the unstable region.

the magnetic flux surface plays an important role in the instability.

5.2. NAGDIS-II Linear Device Case

Figure 10 represents the dependences of the growth rate γ of the unstable mode on

the wave number k and the propagation direction θ for ν∗/Ωci = R0 = 5 and 20.

This figure and Fig. 5 indicate that the unstable region in the (k, θ) space becomes

narrow as ν∗/Ωci and R0 increase. Although the total collision frequency contributes

to the instability in the typical fusion torus case as mentioned in Sec. 5.1, the opposite

tendency is shown in the NAGDIS-II linear device case. If ν∗/Ωci and R0 increase,

not only the ion perpendicular motion in the recombination region but also the density

reduction by the recombination are enhanced. In the NAGDIS-II linear device case, the

density reduction term in Eq. (2) is thought to influence the instability more effectively

than the Pedersen term in Eq. (6). This difference between the typical fusion device

and the NAGDIS-II is thought to arise from the upstream plasma temperature TP
s and

the upstream plasma length Lz. T
P
s and Lz for the typical fusion device are larger than

those for the NAGDIS-II. Thus, total perturbed perpendicular current in the upstream

plasma in the typical fusion device can also become larger than that in the NAGDIS-II.

Therefore, in the typical fusion device case, the instability is kept in order to close the
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Figure 11. Dependences of the growth rate γ of the unstable mode on the wave

number k and the propagation direction θ for ∂nP
0 /∂x = −4 × 1020 [m−4] (a) and

−1.6× 1021 [m−4] (b) for the NAGDIS-II linear device case. The hatched area inside

the red contour line which represents γ = 0 designates the unstable region.

current circuit even if ν∗/Ωci and R0 increases.

On the other hand, the density gradient in the direction perpendicular to the

magnetic flux surface also contributes to the instability in the NAGDIS-II linear device

case as shown in Fig. 11, which represents the γ distributions of the unstable mode in

the (k, θ) space for ∂nP
0 /∂x = −4× 1020 [m−4] and −1.6× 1021 [m−4]. This figure also

indicates that the strong gradient induces unstable waves in the shorter wave length

region.

6. Summary

The linear dispersion relation for the detached plasma has been derived with the coupling

model between the magnetized plasmas characterized by different current mechanisms in

the simple configuration. The unstable mode, that is, the feedback instability mode, has

been found from the dispersion relation under a certain condition for both the typical

fusion device case and the NAGDIS-II linear device case. The heat flux density reduction

and the heat flux width expansion have been estimated from the group velocity of the

unstable waves for the typical fusion device case. The theoretical result has been also

compared with the linear device NAGDIS-II experiment. This comparison indicates that
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the feedback instability model might be able to explain the radial transport observed

in linear device experiments. Furthermore, the dependence of the feedback instability

mode on the total collision frequency and the recombination coefficient and the density

gradient has been investigated. Although the dependency on the total collision frequency

and the recombination coefficient for the typical fusion torus device case is opposite

to that for the NAGDIS-II case, the represented dependencies show the reasonable

tendency in each case. In future works, we plan to consider the situations including

the temperature fluctuation and the spatial variations in the magnetic field direction.

Furthermore, the time variation of the parallel flux provided by the recycling process

and the neutral dynamics will be included. The non-linear simulation on the basis of

the model will be also performed.
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