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We investigate spatial structures of turbulence and turbulent transport modulated by the geodesic
acoustic mode (GAM), from which excitation mechanism of the GAM is discussed. The GAM is
found to be predominantly excited through a localized Reynolds stress force, rather than the dynamic
shearing force. The evaluated growth rate is larger than the linear damping coefficients, and is in
the same order of magnitude as the effective growth rate evaluated from time evolution in the GAM
kinetic energy.
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Zonal flows in nature have attracted interest because of
their great impact on dynamics of the system [1]. Exam-
ples are seen in atmospheric circulation, solar dynamics,
and magnetically confined fusion plasmas. Zonal flows
in fusion plasmas are categorized into two branches, low
frequency zonal flows (LFZFs) [2] and geodesic acoustic
modes (GAMs) [3–18]. Both zonal flows are believed to
have a beneficial property for fusion plasma confinement,
that is, a turbulence transport regulation [10]. There-
fore they have been intensely studied over the last two
decades. Common features of the GAMs identified in
tokamaks are, the acoustic scaling of the GAM frequency,
toroidally and poloidally symmetric potential structure,
radial propagation, coupling with density perturbation,
and others. In particular, existence of nonlinear interac-
tion between the GAM and turbulence has been demon-
strated in many devices [3–12]. However, detailed exper-
imental investigations focusing on the excitation mech-
anism has not been performed. Two different turbulent
driving mechanisms have been proposed by theoreticians,
those are, the Reynolds stress [1] and the dynamic shear-
ing [13, 14]. To date, no experimental quantification has
been succeeded for these two driving forces. In order
to evaluate these driving forces, detailed measurement of
turbulent potential fluctuation with a high spatial reso-
lution must be performed, which is still challenging. De-
termination of the GAM excitation mechanism is highly
desirable to deepen understanding of turbulence struc-
ture formation that involves nonlinear interaction be-
tween flow and turbulence.

In this Letter, we investigate spatial structures of
turbulence and turbulent transport modulated by the
geodesic acoustic mode (GAM), based on a data set ob-
tained with the heavy ion beam probe (HIBP) [6, 7].
Focusing on the energy exchange channels between the
GAM and turbulence, the Reynolds stress force [1] and

the dynamic shearing force [13, 14] are quantified for
the first time. A localized energy input into the GAM
through the Reynolds stress force is found at 3 cm inside
the last closed flux surface (LCFS), approximately nor-
malized minor radius of 0.9. This location corresponds
to the amplitude peak of the GAM, but the characteris-
tic scale of the energy input is much smaller than that of
the eigen structure. The dynamic shearing force is less
dominant compared to the Reynolds stress force. Mag-
nitude of the energy input on the GAM is considered to
be sufficiently large to dominate linear damping terms.

JFT-2M is a medium size tokamak with a major ra-
dius R of 1.3 m and an averaged minor radius a of 0.3 m.
The co-directed neutral beam injection (NBI) is the main
auxiliary heating for the target plasma having the line
averaged electron density of 1.1 × 1019 m−3 in L-mode.
The power of NBI is 750 kW, which corresponds to the
threshold power for achieving the L-H transition. An up-
per single-null divertor configuration (∇B drift directed
toward the X-point) is employed with the toroidal mag-
netic field Bt of 1.17 T, the plasma current Ip of 190 kA,
and the safety factor at the flux surface enclosing 95% of
the total poloidal flux q95 of 2.9.

A schematic of the HIBP on JFT-2M [6, 7] is shown
in Fig. 1 (a). A singly ionized thallium beam is injected
from the top side, which is charged doubly inside the
plasma. From the beam energy and the beam current,
local electrostatic potential ϕ and local electron density
n are determined with a sampling time of 1 µs. Four
sample volumes radially and poloidally separated are si-
multaneously diagnosed. The angle between the row of
the sample volumes and the normal vector of the mag-
netic surface can be altered by changing the operating
parameters of the HIBP, from which the poloidal and ra-
dial spatial structures of fluctuations can be obtained.
The peripheral region (−5 cm < r−a < 0 cm) of the top
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FIG. 1: (a) Schematic of the heavy ion beam probe and (b)
time evolution of potential fluctuation spectrum at r − a ∼
−3 cm.

side of the torus is covered in a shot-to-shot manner.

The GAM oscillation is also detected by an in-vessel
magnetic probe signal at a fixed location. The radial
structure of the GAM is reconstructed with respect to
the magnetic fluctuation signal that has a very good re-
producibility (less than 5 % difference in the mean ampli-
tude). Moreover, in order to improve the signal to noise
ratio, we perform a conditional averaging of the HIBP
signals as a function of a relative time τ . This is de-
fined as N−1

∑N
i=1 Ψ(ti + τ) for an arbitrary variable Ψ,

where ti indicates the i-th time at which the phase of
the GAM in the magnetic fluctuation passes zero and N
is the total number of the zero passing. The use of the
conditional averaging is essential to evaluate modulation
patterns in the nonlinear terms, such as the Reynolds
stress or the turbulent particle flux. Note that analysis
methods based on Fourier decomposition were used to
investigate the energy exchange between flows and tur-
bulence [12, 19] or the energy cascade among turbulence
fluctuations that is stimulated by the GAM [8]. In this
study we use the conditional averaging in order to treat
quantities in the time domain following the theoretical
expressions [13, 14].

The GAM is observed in the beginning of the L-mode
phase for ∼ 200 − 300 ms, after which the limit-cycle
oscillation emerges and the GAM oscillation is strongly
damped. A typical time evolution of the electrostatic po-
tential fluctuation spectrum from 10 ms after the NBI
turn-on is shown in Fig. 1 (b). Preceding study re-
vealed basic properties of the GAM, including the m = 0
poloidal structure of the potential oscillation, the radial
eigen mode structure, the modulation of the ambient tur-
bulence and turbulent transport, and others [6, 7]. Fig-
ure 2 (a) shows the radial profile of the frequency depen-
dent potential power spectrum during the L-mode. The
black dots show a theoretical prediction of the GAM fre-
quency cs/R, where cs shows the sound speed. A coher-
ent spectral peak of the GAM appears at fGAM = 15 kHz
with a spectral width of δfGAM ∼ 5 kHz. Although cs/R
varies with the radius, the GAM frequency remains al-
most constant, being referred to as the eigen mode GAM
[15]. Three quantities that have different time scales are
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FIG. 2: Radial profiles of (a) frequency dependent potential
power spectrum density, (b) GAM amplitude and phase, (c)
skewness of GAM amplitude, and (d) time evolution of GAM
potential fluctuation and its envelope at r − a ∼ −1 cm.

defined: a mean quantity Ψ̄, an oscillation quantity in
the GAM frequency range Ψ̂ (13 kHz ≤ f ≤ 18 kHz),
and a turbulent fluctuation Ψ̃ (40 kHz ≤ f ≤ 110 kHz),
where Ψ is an arbitrary variable. The frequency ranges
for the GAM and the turbulence are shown in Fig. 2 (a).
Figure 2 (b) shows the radial profiles of amplitude and

phase of the conditional averaged ϕ̂ signal. A peak ap-
pears at r−a ∼ −3 cm, at which the slope of the phase is
positive, showing the outward propagation of the GAM.
Towards the edge, the slope of the phase is gradually flat-
tened and reverses at r−a ∼ −1 cm, possibly due to the
reflection of the GAM at the boundary [20]. Figure 2

(d) shows the time evolution of ϕ̂ and its amplitude at
r − a ∼ −1 cm. The amplitude of the GAM fluctuates
in time and shows an intermittent property [4, 9, 11]. It
is worthwhile to investigate the higher-order moments of
the GAM amplitude to quantify the intermittency. Fig-
ure 2 (c) shows the radial profile of the skewness, which is
the third order moment of the GAM amplitude. Positive
(negative) value of the skewness indicates that the data is
characterized by positive (negative) spikes. Skewness is
around zero at r−a ∼ −3 cm, and increases towards the
edge. The variation in the skewness profile is discussed
below. Kurtosis, the fourth order moment, has relatively
large scatter of points and its behavior is not conclusive.
Modulations in the turbulence amplitude in the poten-

tial fluctuation Ŝ and the turbulence wavenumber k̂r are
induced by the GAM. Panels (a) and (b) of Fig. 3 show

amplitude and phase of Ŝ and k̂r with respect to the
magnetic field fluctuation in the GAM. The turbulence
wavenumbers derived from the potential fluctuation and
from the density fluctuation are approximately identical.
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FIG. 3: Amplitude and phase profiles of turbulence and tur-
bulent transport modulation at the GAM frequency: (a)
turbulence amplitude, (b) radial wavenumber, (c) Reynolds
stress, and (d) particle flux. Left and right vertical axes scale
amplitude and phase, respectively.

For the sake of better signal to noise ratio, the latter is
used here. The Reynolds stress, i.e., the turbulent mo-
mentum flux, in the magnetized plasmas is defined as
Π̄rθ ≡ −⟨ẼrẼθ⟩/B2 ∼ −k̄rk̄θS̄

2/2B2, where ⟨⟩ shows
a long time averaging. The Reynolds stress modulation

by the GAM is evaluated as Π̂rθ = Π̄rθ

(
k̂r/k̄r + 2Ŝ/S̄

)
,

which is shown in Fig. 3 (c). Here, modulation in the
poloidal wavenumber kθ by the modulational coupling is
negligibly small, as the case in Ref. [21]. In the present

case, |k̂r|/k̄r ≫ |Ŝ|/S̄ holds. At r − a ∼ −3 cm, there
is a jump in the phase profile of Π̂rθ, which produces
a large divergence of the Reynolds stress, i.e., Reynolds
stress force. The turbulence particle flux is defined as
Γ̄r ≡ ⟨Ẽθñ⟩/B ∼ −ik̄θ⟨ϕ̃ñ⟩/B, where i is the imaginary
unit. At the top side of the torus where the sample vol-
umes of the HIBP are present [Fig. 1 (a)], modulation of
the particle flux is expected to be maximum. Figure 3 (d)
shows the GAM modulation component of the turbulent
particle flux normalized by the mean density Γ̂r/n̄. The
phase jump exists at a different location, r−a ∼ −2.5 cm.

It should be mentioned that the LFZF is known to
have an enhanced inertia, which arises from the coupling
with the toroidal flow perturbation. It is estimated as 1+
1.6q2/

√
a/R ∼ 30 in the banana regime [22]. Therefore,

the GAM is allowed to be excited by 30 times smaller
force compared with the LFZF [21].

Here, the energy exchange between the GAM and tur-
bulence through the Reynolds stress [1] and the dynamic
shearing [13, 14] are discussed. The Reynolds stress force
can resonantly oscillate with the E×B flow of the GAM
via the modulational coupling, through which the turbu-
lence energy is transformed into the GAM energy. Mean-
while, the GAM can also gain energy from the particle
flux modulation that enhances the density perturbation
of the GAM, which is called the dynamic shearing pro-
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FIG. 4: Radial profiles of (a,b) modulation amplitude,
(c,d) modulation phase, and (e,f) expected growth rate for
Reynolds stress force and dynamic shearing force, respec-
tively. An effective growth rate evaluated from the time evo-
lution of the GAM kinetic energy is overplotted in (e).

cess. From the model equations [14], the rate of change
in the GAM kinetic energy (KGAM ≡ |V̂E×B|2) is de-
rived as K−1

GAM∂tKGAM = γRS + γDS − γL, where γRS

and γDS account for the Reynolds stress drive and the
dynamic shearing drive of the GAM, respectively. The
linear damping rate is denoted as γL. In general, an os-
cillatory force F̂ drives the GAM with a rate of γ =
2|F̂ ||V̂E×B|−1 cos(θF − θVE×B

), where θF − θVE×B
is the

cross phase between F̂ and V̂E×B . The Reynolds stress
force and the dynamics shearing force are given as F̂RS =
−r−1∂rrΠ̂rθ and F̂DS = ic2s/(4π

2fGAMR)r−1∂rr(Γ̂r/n̄),
respectively. The equilibrium density gradient is ex-
pected to be weak enough in r−a < −1.5 cm for neglect-
ing the ∂rn̄ term. For estimating the dynamic shearing
force, the poloidal mode structure of the particle flux
modulation is essential, but it is unknown. Here, we
follow a theoretical assumption [14], in which the par-
ticle flux modulation is regarded to have the up-down
asymmetry, as synchronizing the density perturbation.
A finite phase difference between the particle flux modu-
lation and the density perturbation lessens the dynamic
shearing force. Therefore, the evaluation here gives the
largest possible evaluation of the dynamic shearing force.

Figure 4 shows amplitude and phase of the evaluated
force, as well as the expected growth rates induced by the
Reynolds stress force and the dynamic shearing force.
The present evaluations are given based on the condi-
tional averaged profiles of amplitude and phase that cor-
respond to saturation phase of the GAM activity. A local
maximum in |F̂RS| appears where the jump in the phase
profile of Π̂rθ exists, at r−a ∼ −3 cm. Around the peak,
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the phase difference between the force and the flow be-
comes zero. As a result, a local peak of γRS ∼ 3×104 s−1

emerges at r − a ∼ −3 cm in the profile. In the outer
radii of the peak, r − a > −3 cm, the growth rate be-
comes negative, i.e., a nonlinear damping of the GAM
is expected. Although the energy input into the GAM
is localized, the eigen mode has a wider radial struc-
ture. A similar observation, a localized energy input
that excites a global LFZF, was reported in a cylindrical
plasma column [23]. In contrast to γRS, γDS is insignif-
icant in the entire peripheral region. Note again that
the present value of γDS is given as the largest possible
evaluation. The collisionless damping (Landau damp-
ing) rate [16] and the collisional damping rate [18] are
given as γLandau ∼ 1×104 s−1 and γcol ∼ 50 s−1, respec-
tively. The linear damping rate is slightly smaller than
the expected growth rate. The evaluated growth rate is
therefore considered to be sufficiently large to account
for the GAM growth. Nonlinear saturation mechanism
of the GAM, which can be assessed based on the higher
harmonics of the GAM spectrum [17], will be the subject
of future study. An effective growth rate can be directly
evaluated from the time evolution of the GAM kinetic
energy KGAM. During the time frames in which KGAM

increases through a threshold value, γKGAM
is defined

as K−1
GAM∂tKGAM. Radial profile of ensemble averaged

γKGAM is overplotted in Fig. 4 (e). Since the GAM has a
wider eigen function, γKGAM shows a flat profile. Overall,
the effective growth rate of ∼ 3× 104 s−1 is in the same
order of γRS.

The growth rate induced by the Reynolds stress force
γRS in Fig. 4 (e) peaks at the radius where the skewness
is around zero [Fig. 2 (c)]. Beyond the models describing
the GAM spatial structure [15], we attempt to interpret
this coincidence. At the location where the net growth
rate is zero or negative, local growth of the GAM is pro-
hibited. Therefore, a finite GAM component in these
locations can be regarded as a portion spatially trans-
mitted by forming an eigen mode structure or by a radial
propagation. These portions can have a different statis-
tical property from the locally excited component. The
skewness profile implies that the local growth and decay
of the GAM follow Gaussian statistics, while the spatially
transmitted portion involves positive spikes. An analogy
can be found in models of the blob filament dynamics in
the SoL plasmas [24].

In summary, we investigated spatial structures of
turbulence and turbulent transport modulated by the
geodesic acoustic mode (GAM), from which nonlinear

interplays between the GAM and turbulence were dis-
cussed. The GAM was found to be predominantly ex-
cited through a localized Reynolds stress force, rather
than the dynamic shearing force. Magnitude of the en-
ergy input on the GAM was considered to be sufficiently
large, as to dominate linear damping terms.
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