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Abstract

Selection rule of the radial propagation direction of geodesic acoustic modes
(GAMs) is investigated. Here, we study the influence of nonlinear coupling with
drift wave turbulence on propagation direction of GAMs. Based on wave-kinetic
equation for the turbulence, the phase-space dynamics is numerically solved and
the nonlinear saturated states are obtained, where the phase-space consists of the
real space and the wavenumber space. A wave pattern of the GAM in a nonlinear
saturated state varies to form a standing wave, outward and inward propagating
waves, depending on the peak radial wavenumber of the turbulence. The impact
of nonlinear coupling with turbulence is discussed by deriving the GAM dispersion
relation that includes the effect of the turbulence.

Keywords: zonal flows, GAMs, propagation, dispersion relation, turbulence trapping,
drift wave

1 Introduction

Investigation of characteristics of macro-scale flows generated by micro-scale turbulence
is one of important subjects in the studies of magnetically confined plasmas. There are
several kinds of the flow driven by the turbulence such as the poloidal mean flow, toroidal
rotation, and the zonal flows [1, 2]. In toroidal plasmas, zonal flow has oscillatory branch,
geodesic acoustic mods (GAMs) [3]. The GAMs play important roles for improving the
plasma confinement, such as turbulence suppression [4], ion heating [5], and the toroidal
rotation drive [6]. Recently, a new role of the GAM for the turbulence propagation
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has been proposed: the GAM traps clumps of turbulence and the trapped turbulence
propagates radially with the phase velocity of the GAM [7]. A possibility has been
discussed that the trapped turbulence, carried by the GAM, deteriorates the transport
barrier [8]. Thus, the effect of the GAMs on bulk plasmas differs, depending on the
propagation direction. Therefore, it is necessary to understand theoretically how the
radial propagation direction of the GAM is determined.

Radial propagation of the GAMs has been observed experimentally in several devices
[9]-[21]. Unidirectional outward propagating GAMs have been observed in JFT-2M [9],
TEXTOR [11], DIII-D [13], HL-2A [14], JET [15], and COMPASS [16]. Inward propaga-
tion of the GAMs has been observed in FT-2 [17], and ASDEX-Upgrade [18]. Standing
wave or coexistence of the inward and outward propagation has been observed in HT-7
[19], ISTTOK [20], TUMAN-3M [21], and ASDEX Upgrade [18]. The standing wave
patterns has been observed near the separatrix due to the boundary effect has been ob-
served in JFT-2M [9, 10, 12]. In turbulence simulations, the coexistence of the inward and
outward propagating GAMs [4, 22], and outgoing propagation [23] have been observed.
The linear dispersion relation of the GAMs, which includes the plasma geometrical effect
[24, 25], and the temperature gradient effect [26, 27, 28], has been investigated. The
turbulence effects on the frequency shift has been studied [29, 30]. However, a sign asym-
metry of the radial wavenumber for the nonlinear drive by the turbulence has not been
studied, which is important for the selection rule for the radial propagation direction of
the GAMs.

In this study, we investigate the selection rule for the propagation direction of the
GAMs, focusing on the impact of the turbulence. The wave-kinetic equation for the
turbulence and the fluid equation for the GAM are numerically solved, keeping the phase-
space dynamics of the turbulence (turbulence trapping effect), where the phase-space
consists of the real space and the wavenumber space. A wave pattern of the GAM in a
nonlinear saturated state varies to form a standing wave, outward and inward propagating
waves, depending on the peak radial wavenumber of the turbulence. We derive the GAM
dispersion relation with the effect of the turbulence in order to discuss the turbulence
effect. The rest of the paper is organized as follows. The model equations are introduced
in section 2. The simulation results on the nonlinear evolution of the GAM and turbulence,
and the GAM propagation properties in nonlinear saturated states are shown in section
3. The nonlinear dispersion relation of the GAM that includes the turbulence effect is
shown in section 4. The summary is given in section 5.

2 Model

We consider a high aspect ratio, circular cross-section toroidal plasma with a high safety
factor and a weak magnetic shear. The toroidal coordinate (r, θ, ζ) is adopted, where
∇r,∇θ and ∇ζ are the radial, poloidal and toroidal directions, respectively. For the
simplicity, we use the slab coordinate x instead of r only for the radial direction. The
governing equation for the coupling of the drift wave turbulence with the GAM is as

2



follows [2, 7].

∂tNk +
∂ωk

∂kx
∂xNk − kθ∂xṼθ

∂Nk

∂kx
= γLNk −∆ωN2

k , (1)

∂2
t Ṽθ + ω2

GṼθ = ∂x∂t

∫

kxkθ

(1 + k2
x + k2

θ)
2
Nkd

2k + µG∂
2
x∂tṼθ. (2)

Here, time and space are normalized by ρ−1
s Vd and ρs, where ρs is the ion sound gyro-

radius and Vd is the diamagnetic drift velocity, respectively. The normalized action of the
turbulence is denoted by Nk, and ωk is the frequency of the turbulence, where Nk is a
function of x and the wavenumbers, kx and kθ, which are given as

Nk =
(

1 + k2
x + k2

θ

)2 |φk|2, (3)

ωk =
kθ

1 + k2
x + k2

θ

+ kθṼθ, (4)

where φk is the normalized turbulent electrostatic potential. The turbulence frequency ωk

includes the doppler shift due to the GAM velocity, Ṽθ. Here, the mean poloidal flow shear
is neglected, in order to focus on the dynamics of the GAM. The linear growth rate and
the nonlinear decorrelation rate of turbulence are denoted by γL and ∆ω, respectively.
The GAM frequency is given as ωG =

√
2Ln/R, which corresponds to

√
2cs/R in the

dimensional form, where Ln is the density scale length and R is the major radius. We
treat ωG as a constant parameter, assuming that the scale length of the temperature is
much larger than the system size we consider, and neglecting the linear dispersion effect
[31]-[33]. The viscosity for the GAM, µG, is introduced. In the derivation of the GAM
evolution equation, we ignore the dynamic shearing effect for the driving the GAM [36],
by assuming a weak magnetic shear [7]. It is noted that the dynamic shearing effect is
observed to be weaker than the Reynolds stress drive in the JFT-2M tokamak [12]. It
is noted that this model self-consistently includes the turbulence trapping effect, which
is analytically investigated in [34, 35], and the self-nonlinearity to generate the higher
harmonics [37]-[39].

We investigate the GAM propagation properties based on the coupling equations,
Eqs. (1) and (2). In this study, we focus on the effect of the turbulence spectrum on
the propagation of the GAM. The radial wavelength of the GAM is assumed to be much
smaller than the temperature gradient scale length to ignore the temperature gradient
effect, and the spatially homogeneous turbulence is considered. This condition can be
obtained by giving γL and ∆ω constant in space. Here, γL is given as

γL = γ0 exp

[

−
(

kx − k0
∆k

)2
]

. (5)

The poloidal wavenumber kθ is conserved in the interaction with the GAMs, so that the
kθ is given as a parameter. The parameters are chosen to be γ0 = 0.5,∆ω = 1.5,∆k =
1, kθ = 1, ωG = 0.1, µG = 0.1. The periodic boundary condition for the x-direction
is adopted. In the following sections, we study the radial propagation direction of the
GAMs by changing the peak wavenumber of the turbulence, k0.

The assumptions in this study can be summarized as follows,
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• geometry: a high aspect ratio, circular cross-section plasma, a high safety factor, a
weak magnetic shear,

• GAM, ωG(x) = const: homogeneous temperature, neglecting the linear dispersion
(polarization) effect,

• turbulence, γL(x) = const,∆ω = const: homogeneous turbulence.

Here, we discuss the each assumption more detail. For the non-circular plasma geometry
effect, the linear GAM frequency and the damping rate are affected [31]. However, the
essence of the dynamics of the GAMs and the turbulence through the turbulent force is
not changed. The safety factor should be high for the GAMs to be unstable, because
the Landau damping of the GAMs approximately scales as e−q2 [40]. The magnetic shear
determines the magnitude of the dynamic shearing [36], where the strength of the dynamic
shearing is proportional to the magnetic shear. In this study, we focus on the Reynolds
force as the dominant driving force, by considering the week magnetic shear. For the
linear GAM frequency, we adopt the simplest form (constant in space and no dispersion),
in order to focus on the turbulence effect on the GAM propagation. As is discussed in
section 4, the self-consistent treatment of the linear dispersion effect and the turbulence is
necessary when the temperature is inhomogeneous. The spatially homogeneous turbulence
is assumed for simplicity, which corresponds to the case that the scale length of the density
gradient is constant within the several period of the GAM wavelength. Under these
circumstances, the phase-space dynamics of the turbulence coupling with the GAMs are
numerically calculated.

3 Nonlinear simulation of GAMs and turbulence

The coupling equations, Eqs. (1) and (2), are calculated numerically. The GAM prop-
agation properties and the spatial relation between the GAM and the turbulence are
described in this section.

3.1 Propagation properties of GAMs

A small perturbation is introduced to the turbulence and the GAM as the initial condition,
and the time evolution of the turbulence and the GAM are investigated. A snapshot for
the initial condition of the turbulence in the phase-space for the case of k0 = 0.8 is shown
in Fig. 1 (a), and those in the nonlinear saturated states are illustrated in Figs. 1(b)-(c)
in the cases of k0 = 0, 0.3 and 0.8, respectively. The initial small perturbation evolves
to form the GAM structure. Here, the statistical properties of the nonlinear saturated
states are independent on the initial conditions. The white line in Fig. 1 corresponds
to the contour of ωk, and the island structure due to the GAM velocity appears in the
nonlinear saturated states. The turbulence trapping can be seen in the cases with k0 = 0
and 0.3, where the turbulence is accumulated in the island of ωk (which corresponds to the
region with the negative curvature of the GAM velocity field) [7]. The spatio- temporal
patterns of the GAM velocity and the turbulence energy at the saturated state are shown
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Fig. 1: Snapshots of action of turbulence, Nk, in the phase space. (a) Initial condition
of Nk, and the snapshots for the nonlinear saturated states in cases of (b) k0 = 0, (c)
k0 = 0.3, and (d) k0 = 0.8 are shown, where the white line indicates the contour of ωk.
The island structure of the ωk corresponds to the doppler shift due to the GAMs.

in Fig. 2, where the turbulence energy, Iturb, is calculated from Iturb =
∫

Nk(1 + k2
⊥
)2dk,

where k2
⊥

= k2
x + k2

θ . The standing wave pattern is obtained in the case with k0 = 0,
and the unidirectional propagating cases are observed in the cases of k0 = 0.3 and 0.8.
The wave propagates in the negative/positive radial direction in the case of k0 = 0.3/0.8,
respectively. In this way, the propagation direction reverses, depending on the peak
turbulence wavenumber k0.

In order to show the details of the change of the propagation direction of the GAMs,
dependences of the GAM energy with the negative and positive phase velocity compo-
nents on k0 are shown in Fig. 3 (a). Here the energy of the GAM is calculated from
EGAM =

∫

Ṽ 2
θ dx. At k0 = 0, the energies of the GAM components with the positive

and negative phase velocity are comparable, so that the GAM forms the standing wave.
The negative phase velocity component is dominant in the region 0 < k0 < 0.6, and
the positive phase velocity component becomes significant at k0 > 0.6. The reversal of
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Fig. 2: Spatio-temporal behaviors of GAMs, Ṽθ, and turbulence energy. The cases with
k0 = 0, 0.3, 0.8 are shown. Here, the turbulence energy is calculated by Iturb =

∫

Nk(1 +
k2
⊥
)2dk.

the propagation direction is obtained. It should be noted that the negative propagating
direction corresponds to the direction of the turbulence group velocity, which is given as
vg = −2kxkθ/(1 + k2

⊥
)2. We consider the spatially homogenous turbulence, so that only

the turbulence propagating direction violates the symmetry for the radial direction. Of
course, the propagating properties of the GAM becomes opposite when k0 < 0, compared
to those when k0 > 0.

3.2 Spatial patterns of GAMs and turbulence: trapping effect

The spatial phase relation between the GAM and turbulence and the energy relation
between them are described here. The nonlinear saturated amplitude of the GAM also
changes, depending on k0. Here, the GAMs and turbulence saturate by generating the
higher harmonics through the self-nonlinearity [39, 41], which stems from the third term
in the left hand side of Eq. (1). Due to the change of the amplitude of the GAM, the
turbulence becomes trapped in the case with the large amplitude GAM, and the turbulence
is not trapped when the amplitude of the GAM is small. Whether the turbulence is
trapped or not significantly affects the spatial relation of the GAM with the turbulence,
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as shown in Fig. 3 (b). The spatial phase difference, Ψ, is evaluated from

Ψ = arccos

[

∫

ṼθĨturbdx
√

∫

Ṽ 2
θ dx

√

∫

Ĩ2turbdx

]

, (6)

where Ĩturb is the deviation from the time average. The phase difference is small at
k0 < 0.6, which corresponds to the turbulence trapping states. This is because, due
to the turbulence trapping, the turbulence is enhanced and suppressed in the region
where Ṽθ > 0 and Ṽθ < 0, respectively, so that the phase difference between Ṽθ and Iturb
becomes small. Here, the trapped turbulence in the GAM shows the bounce motion with
the frequency, ωb, which satisfies the condition, ωb ≫ ωG, so that the trapping motion is
clearly observed in these cases. The phase difference suddenly increases above k0 > 0.6,
which corresponds to the state without the turbulence trapping. The boundary for the
trapping-untrapping region can be determined by the relation between the island width
kisland [34] and the turbulence peak position k0, as

kisland =

√

2VG(1 + k2
θ)

2

1− 2VG(1 + k2
θ)

> k0 (7)

for the turbulence trapping condition. Here, VG is the amplitude of the GAM velocity.
By using the simulation parameters, the boundary for k0 can be estimated as k0 = 0.9,
which is close to the simulation result.

The energy relation between the GAM and turbulence, shown in Fig. 3 (a), can be
organized by using the shearing rate of the GAM as shown Fig. 3 (c). Here the shearing
rate is evaluated from the time average of (2a)−1

∫ x=a

x=−a
(∂xṼθ)

2dx. All cases are roughly
in the same trend, regardless of the cases where the turbulence is trapped in the GAM
velocity field or not.

4 Dispersion relation of GAMs coupling with turbu-

lence

In order to understand the simulation results on the GAM propagation shown in the
previous section, we investigate the GAM dispersion relation with the inclusion of the
turbulence effect.

We divide Nk into the mean and the linear response to the GAM as Nk =
〈

Nk

〉

+ Ñk,
where the mean turbulence is given as

〈

Nk

〉

= γL/∆ω. By replacing the time and the
spatial derivatives with −iω and iqx, the linear response of the turbulence is obtained as

Ñk = − kθqx
ω − qxvg + iγL

∂
〈

Nk

〉

∂kx
VG. (8)

Using this expression, the GAM dispersion relation can be written as

ω2 − ω2
G + iωq2xµG − q2xω

∫

kxk
2
θ

(1 + k2
⊥
)
2

(ω − qxvg)− iγL
(ω − qxvg)2 + γ2

L

∂

∂kx

( γL
∆ω

)

dkx = 0. (9)
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Fig. 3: (a) Dependences of energies of GAMs and turbulence on peak turbulence wavenum-
ber, k0. (b) Spatial phase difference between GAM and turbulence energy. (c) Relation
between turbulence energy and mean shearing rate by the GAMs.

The fourth term in the left hand side of Eq. (9) is the turbulence effect, which causes the
nonlinear frequency shift and the growth of the GAMs. Here, we consider the spatially
homogeneous turbulence, the term with vg is the only term to violate the symmetry for
the sign of qx. The growth rate for the positive and negative phase velocity components,
γGAM,±, is approximately given as

γGAM,± ≈ q2xk
2
θγ

2
0

2∆ω∆k2

∫ kx(kx − k0) exp
[

− 2
(

kx−k0
∆k

)2
]

(1 + k2
⊥
)2
{

(ωG ∓ |qx|vg(kx))2 + γL(kx)2
}dkx. (10)

By looking at Eq. (10), one can see that the driving force comes from the region kx <
0, kx > k0, and the damping appears from 0 < kx < k0. Summation of these effects
determines the growth rate of the GAMs. The positive propagating component enhances
the driving force from kx < 0, and reduces the effect from kx > 0 due to the denominator
of Eq. (10), which comes from the GAM propagation effect. The negative propagating
component enhances the contribution from k0 > 0 (both the damping and the driving),
and suppresses the effect from kx < 0. Thus, the negative propagating wave becomes
important, γGAM,− > γGAM,+, when ∆k/2 > k0, and the positive propagating wave
becomes important, γGAM,+ > γGAM,−, when ∆k/2 < k0.

The obtained dispersion relation, Eq. (9), is numerically solved. The eigenfrequency
and the growth rate for the cases of k0 = 0.3 and 0.8 are shown in Fig. 4. The asymmetry
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in the propagation direction for the eigenfrequency and the growth rate appears. The
growth rate of the negative phase velocity component is larger than that of the positive
phase velocity component in the case of k0 = 0.3, and only the positive phase velocity
component is unstable for k0 = 0.8. The frequency shift due to turbulence becomes
small at the GAM radial wavenumber where the growth rate becomes maximum. This
is because the growth rate becomes maximum when ω − qxvg = 0, where this condition
makes the frequency shift zero as seen in Eq. (9). Therefore, while the radial wavenumber,
including its sign, is determined by the turbulence effect, the frequency shift is presumed
to be dominated by the linear dispersion effect due to the higher poloidal mode couplings
[31]-[33]. The growth rates for the positive and negative phase velocity components are
compared in Fig. 5. The dependence of the maximum growth rate for qx on the peak
turbulence wavenumber, k0, is shown in Fig. 5 (c). The negative propagating GAM has
a larger growth rate compared to the positive propagating GAM when k0 < 0.6, and the
growth rate of the positive propagating GAM exceeds that of the negative propagating
GAM when k0 > 0.6. This tendency is consistent with the simulation results shown in the
previous section. In this way, we obtain the selection rule for the propagation direction of
the GAM and the turbulence clumps, which was treated as a given parameter in [34, 35],
by considering the phase-space dynamics of the turbulence with the finite growth rate and
nonlinear damping rate for turbulence. As is shown above, the GAM propagation direction
could be closely related to the turbulence radial wavenumber spectrum. Therefore, it is
important to measure the turbulence radial wavenumber spectrum simultaneous with the
GAM propagations in experiments.

Finally, we discuss the global radial structure of the GAM coupling with the turbu-
lence. From the turbulence effect, we can determine the radial direction of the phase
velocity and the radial wavelength as qx ∼ ωG/vg(k0), which can be obtained from the
condition that the growth rate becomes maximum. Concerning to the dispersion (fre-
quency shift dependent on the radial wavenumber), the dispersion due to the turbulence
becomes small when the growth rate becomes maximum, so that the linear dispersion
effect such as the ion finite orbit effect [31, 32] is dominant. Thus, when the temperature
gradient effect is considered, the region where the GAM can propagate is determined
from the linear dispersion; the GAM can propagate where ωG(x) < ω is satisfied, and the
GAM is evanescent in the region of ωG(x) > ω [26, 27, 31]. Here, ω is the eigenfrequency.
It is noted that ωG(x) is the decreasing function of x in the case that the temperature
decreases radially. Therefore, when the outward propagating wave is selected from the
turbulence effect, the wave pattern is expected to be similar with the linear prediction.
When the inward propagating wave is selected from turbulence effect, the GAM is pre-
sumed to be localized where the GAM obtains energy from the turbulence. In this case,
the self-consistent treatment of the temperature inhomogeneity, turbulence effect and the
linear dispersion effect, is required.

For the further extension of the model, we discuss the turbulence penetration into
the transport barrier. The turbulence trapping by the GAM is predicted to affect the
transport barrier, as in the case of the energetic particle driven GAM [8]. When the
curvature of the GAM is comparable to the mean E×B flow, which is associated with the
transport barrier, the GAM can screen the mean flow. Thus, the turbulence can penetrate
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Fig. 4: Dispersion relations of GAMs coupling with drift wave turbulence. The eigenfre-
quencies, (a), (c), and the growth rates, (b), (d), are shown for the cases of k0 = 0.3 and
0.8, respectively.

into the barrier, and the turbulence penetration occurs with the GAM frequency. When
the curvature of the mean flow is larger than that of the GAM, the effect of the mean
flow is strong, so that the reduction of the turbulence due to the mean flow weakens
the GAMs, and the trapping effect changes. In order to have a quantitative discussion,
the self-consistent treatment between the turbulence, the GAM and the mean flow is
necessary, which is a future work.

5 Summary

Selection rule of the radial propagation direction of geodesic acoustic modes (GAMs) is
investigated, focusing on the effect of the nonlinear coupling with the drift wave turbu-
lence. The wave-kinetic equation for the turbulence and the fluid equation for the GAM
are numerically solved, keeping the phase-space dynamics of the turbulence (turbulence
trapping effect). The spatially homogeneous turbulence in a simple tokamak geometry is
considered. By changing the peak turbulence radial wavenumber, we obtain the change
of the propagation direction of the GAMs for the nonlinear saturated states. The wave
pattern of the GAM varies to form a standing wave, outward and inward propagating
waves, depending on the peak radial wavenumber of the turbulence. The impact of non-
linear coupling with turbulence is discussed by deriving the GAM dispersion relation that
includes the effect of the turbulence.
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