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Focusing on ring-shaped ion velocity distributions with a finite width formed in magnetic
reconnection in the presence of a guide magnetic field, intriguing properties such as the
formation mechanism, a significant change in the shape, and necessary conditions for the
change are investigated by means of theory and simulations. The width of a ring velocity
distribution predominantly originates from velocity variations of seed particles for the
pickup-like process. A function exactly representing a ring with a width is analytically
formulated, assuming a steady supply of seed particles satisfying a Maxwellian velocity
distribution and a mixing of gyration phases. The formulated function indicates that when
the ring width is larger than a criterion, the local minimum of the ring’s center is changed
into the maximum, and the shape is transformed into a mountain shape. Such a mountain-
like distribution is defined as “a pseudo-Maxwellian distribution,” because it is almost
indistinguishable in shape from a genuine Maxwellian distribution. Actually, particle
simulations demonstrate that mountain-shaped ion velocity distributions are formed
during magnetic reconnection with a guide magnetic field, and it is nearly concluded
that they are pseudo-Maxwellian distributions. Moreover, two types of evidence for
pseudo-Maxwellian distributions are shown by simulations. One is to analyze the
dependence of the distribution shape on the guide magnetic field, which is explored
by the particle simulation. In cases of slightly different values of the guide field, vague
shapes of rings with a width are observed as ion velocity distributions. The other is to
observe velocity distributions under a hypothetical condition of an artificial zero
temperature in the upstream by utilizing a test particle simulation. In the test particle
simulation, ring-shaped distributions with a width are clearly seen, because the velocity
variations in the upstream are reduced. From the two types of evidence, it is definitely
confirmed that the mountain-shaped distributions found in the particle simulations are
pseudo-Maxwellian distribution. These results imply that pseudo-Maxwellian distributions
would be created for various cases of guide field magnetic reconnection.
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1 INTRODUCTION

Magnetic reconnection is a fundamental process in a plasma
through which stored magnetic energy is rapidly released to
plasma kinetic and thermal energies (Yamada, 2007). Magnetic
reconnection is thought to be involved with various active
phenomena in astrophysical and laboratory plasmas (Yamada
et al., 2014; Burch et al., 2016) such as solar flares, substorms in
the geomagnetosphere, and tokamak disruptions, and it is
utilized as one of the initial heating methods in spherical
tokamaks (Tanabe et al., 2017; Inomoto et al., 2019; Ono
et al., 2019; Tanabe et al., 2021). In addition, magnetic
reconnection has attracted the extensive attention and has
been explored by many researchers for long periods of
history, mainly because it contains a wide variety of research
topics, such as topology change on global scale, acceleration,
heating, and chaotic motions (Zenitani et al., 2017; Yoon and
Bellan, 2021). In order to investigate physical processes
associated with magnetic reconnection, particle velocity
distributions are analyzed in many cases of satellite
observations and simulation studies (Ishizawa and Horiuchi,
2005; Cheng et al., 2015; Bessho et al., 2016; Burch et al., 2016;
Zenitani and Nagai, 2016; Zenitani et al., 2017; Hesse et al., 2018;
Pucci et al., 2018; Horiuchi et al., 2019). In plasma physics, in
particular, in cases of collisionless plasmas, velocity
distributions have large amounts of information to enable us
to grasp the mechanism of energy conversion and kinetic effects
containing individual particle behaviors. It can be said that
velocity distributions play a remarkable role in bridging
macroscopic dynamics and individual particle motions.

The analysis of velocity distributions is utilized as a powerful
tool, in particular, to elucidate the mechanism of plasma heating
during magnetic reconnection, including effective heating (Drake
et al., 2009; Drake and Swisdak, 2014; Usami et al., 2017; Usami
et al., 2019a; Usami et al., 2019b). Non-Maxwellian velocity
distributions themselves are the smoking gun demonstrating
effective heating based on kinetic effects. In 2009, Drake et al.
showed that only heavy ions as minor ion components behave
nonadiabatically and are effectively heated in magnetic
reconnection, presuming that the proton is the main ion
component (Drake et al., 2009; Drake and Swisdak, 2014). In
2017, we have demonstrated that a large part of protons as the
main ion component behave nonadiabatically and have
discovered ring-shaped velocity distributions of protons in
particle simulations (Usami et al., 2017; Usami et al., 2019a;
Usami et al., 2019b). Although Drake et al. called the above
process “the pickup,” it is different from the classic pickup, which
was directly discovered by Möbius et al. (Möbius et al., 1985). In
the classical pickup, newly ionized particles create a ring velocity
distribution, while in the “novel” pickup of Drake et al., heavy
ions (not newly ionized) are nonadiabatic upon crossing the
separatrix and they are equivalent to the freshly ionized particles
in the aspect of behaviors. In this paper, let us call our process “the
pickup-like process.” The relationship among the classical
pickup, the novel pickup, and the pickup-like process is so
complicated that more details have been summarized in Ref.
(Usami et al., 2019b).

On the other hand, from a different perspective, ring-shaped
velocity distributions have been investigated by theories and
numerical analysis, since a ring-shaped velocity distribution is
unstable and generates various waves. Wu and Davidson derived
the dispersion relation and the growth rate of an excited wave in
the presence of a ring velocity distribution, assuming a negligible
spread in velocities (Wu and Davidson, 1972). This case
corresponds to a ring-shaped distribution with no width. As a
general case of rings, many researchers, for instance, Ashour-
Abdalla et al., Thorne et al., and Wu et al., addressed a ring-
shaped distribution with a finite width (Ashour-Abdalla and
Kennel, 1978; Thorne and Summers, 1989; Wu et al., 1989).
After that, Mithaiwala et al. discussed a ring velocity distribution
in a multi-ion component plasma (Mithaiwala et al., 2010), and
Winske et al. explored a ring distribution not only from theories
but also by using simulations (Winske and Daughton, 2012).
Because they focused on the nature of instabilities generated from
ring distributions, they assumed specific shapes of a ring with a
width and invented model functions to fit the assumed shape; the
formation mechanism of the model functions was not up for
discussion. As model functions of a ring with a width, Ashour-
Abdalla et al. chose “the subtracted Maxwellian” exp(−v2⊥/a2⊥) −
exp(−v2⊥/(βa⊥)2) (Ashour-Abdalla and Kennel, 1978), Thorne
et al. adopted a function of (v⊥/a⊥)2l exp(−v2⊥/a2⊥) (Thorne and
Summers, 1989), and Wu et al. employed a function of
exp(−(v⊥ − v0)2/a2⊥) (Wu et al., 1989). These model functions
would be sufficiently accurate, under the condition that the ring’s
radius is much larger than the width.

In contrast, in this work we theoretically derive a function
which exactly expresses ring-shaped velocity distributions with a
finite width created through the pickup-like process, assuming a
steady feeding of Maxwellian populations and a mixing of
gyration phases. Moreover, the most remarkable conclusion to
emerge from this work is that when the width of a ring, which is
defined as the standard deviation of the fed Maxwellian
populations, is larger than a criterion, the distribution shape
changes from a ring into a mountain. We name such a mountain-
shaped distribution “a pseudo-Maxwellian velocity distribution,”
because the mountain shape is so similar to the shape of a
Maxwellian distribution that the two shapes are almost
indistinguishable from each other.

The organization of this paper is as follows. In Section 2, we
analytically obtain a function which exactly expresses a ring-
shaped velocity distribution with a finite width. It is shown that
under a certain condition, the local minimum of a ring’s center is
changed to be the maximum, that is, the peak of a mountain-like
structure. Consequently a pseudo-Maxwellian velocity
distribution is formed. In Section 3, we introduce our particle
simulationmodel in an open system for magnetic reconnection in
the presence of a guide magnetic field. In Section 4, as results of
the particle simulation, we show ion velocity distributions and the
dependence of the distribution shape on the guide magnetic field.
Furthermore, we discuss physics contributing to the formation of
a ring’s width. In Section 5, we carry out test particle simulations,
in which the motions of ions are calculated in an electromagnetic
field given by a particle simulation run. It is confirmed in Section
4.2 and in Section 5 that the ion velocity distributions found in
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the above particle simulation are surely pseudo-Maxwellian
distributions. As discussion and suggestion, in Section 6, we
explain an unsolved issue in the formation of pseudo-Maxwellian
distributions. In addition, we suggest that our findings have a
potential to affect existing knowledge based on simulation or
observation data and to be applicable to other phenomena.
Section 7 provides a summary of this work.

2 THEORY

Before describing this work, we review the formation theory of
circle-shaped and circular-arc-shaped velocity distributions in
magnetic reconnection, which is the foundation for the theory of
pseudo-Maxwellian velocity distributions. Recently, by particle
simulation we have discovered a circle-shaped velocity
distribution of ions as shown in Figure 1A for Bg = 2.0 and
an arc-shaped distribution as shown in Figure 1B for Bg = 3.0
(Usami et al., 2017; Usami et al., 2019b), where Bg is the ratio of
the guide magnetic field to the antiparallel magnetic field in the
far upstream. We have found a basic understanding of the
formation process of such velocity distributions. A large part
of ions enter the downstream from the upstream across the
separatrix not passing through regions near the reconnection
point. The width of the separatrix is thin for ions, and hence the
ion behavior is nonadiabatic when crossing the separatrix. When
the ions enter the downstream, their velocities are much less than
the reconnection outflow speed uout (in the x-direction), because
the ions, whose velocities are quite small in the upstream, are not
sufficiently accelerated in the separatrix. Thus we regard the entry
velocity as zero in an ideal case. For simplification, we assume that
in the downstream, the guide magnetic field in the z direction Bz
and the convective electric field in the y direction Ey are uniform,
and we ignore the other components of the electromagnetic field.
Under this situation, uout is expressed as uout = cEy/Bz, where c is
the speed of light. Considering an initial state that ions with the

zero velocity are located in the above simplified downstream, we
can easily grasp the motion of the ions. The ions move in the x
direction owing to the Ey × Bz drift while in gyromotion around
the guide magnetic field in the downstream. The drift speed is
equal to uout, and the gyration speed is also equal to uout. The
above explanation is based on the Lagrangian point of view. From
the Eulerian point of view, there exist particles having various
gyration phases in the downstream at some instant. Hence as a
velocity distribution inside a small area, we can observe a circle (It
is noted that the general shape is a circular-arc as shown in
Figure 1B (Usami et al., 2019b)).

Here in short we compare our previous works and this work,
and clearly state the difference. In the previous works (Usami
et al., 2017; Usami et al., 2019a; Usami et al., 2019b), we have
ignored a ring’s width as drawn in Figure 2A. In this work, we
consider a ring-shaped velocity distribution with a finite width, as
illustrated in Figure 2B.

FIGURE 1 | Ion velocity distributions obtained by particle simulations in previous works (A): a circle -shaped structure is formed in aBg = 2.0 case (B): a circular-arc-
shaped structure is formed in a Bg = 3.0 case.

FIGURE 2 | Schematic diagrams of (A): a circle, i.e., a ring with no width
and (B): an annulus, i.e., a ring with a finite width. Here, the radius of the dotted
circle is conventionally regarded as the radius of the annulus.
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For the purpose of use in the following theory and simulation,
we extend the concept of thermal velocity and temperature to be
applicable to non-Maxwellian distributions as effective thermal
velocity and effective temperature. We define the effective
thermal velocity of j-component vTeff,j as the standard
deviation of particle velocities,

v2Teff ,j �
∫ vj − 〈vj〉( )2fd3v∫fd3v

, (1)

where f is a velocity distribution function, vj represents the j-
component of a particle velocity, and 〈vj〉 is the j-component of
the averaged velocity. A ring (no matter if it has a width or not) is
a two-dimensional structure. Thus, taking, for example, the x-
and y-components as the two components in two dimensions, we
define the effective thermal velocity of a ring velocity
distribution as

v2Teff �
1
2

v2Teff ,x + v2Teff ,y( ). (2)

Also, the effective ion temperature is defined as Ti � miv2Teff ,
where mi is the ion mass. In the case of a circle, i.e., a ring with
no width as illustrated in Figure 2A, the effective temperature
is 1/2miu2out, where say the radius is uout. In the case of an
annulus, i.e., a ring with a width, as drawn in Figure 2B, the
effective temperature is clearly larger than 1/2miu2out, Here, it is
noted that the width has the same length on the both sides of
the dotted circle and conventionally the annulus’s radius uout is
defined to be the averaged value of the outer circle’s and the
inner circle’s radii.

The width of a ring is caused predominantly by velocity
variations of ions entering the downstream, which will be
discussed in Section 4.3. In the theories of the previous works,
Refs. (Usami et al., 2017), (Usami et al., 2019a), and (Usami et al.,
2019b), we have ignored the velocity variations and have
supposed that all the ions have the same entry velocity (0, 0).
In this work in contrast, we incorporate velocity variations of the
entry velocity around (0, 0) into the theory. Here, let us point out
an important key point in treatment of the width of a circle.

Assuming again the uniform Bz and Ey, the orbits of the ions are
circles whose center is (uout, 0) in the velocity space (uout = cEy/
Bz). The key point is that the ions have the same gyroperiod, not
depending on each ion velocity, while the circle size in the velocity
space depends on each ion velocity. It is obvious that as an ion has
higher speed perpendicular to the magnetic field, the
circumference along which the ion traces is larger. This means
that the density in the velocity space is inverse-proportional to the
distance from (uout, 0), if the same number of ions are assigned on
each circumference of various concentric circles. We need always
to take into account the so-called inverse-proportional effect.

Now we consider a specific case of a ring’s width, in which ions
satisfying a Maxwellian velocity distribution exp[−(v2x +
v2y)/(2v2width)] continuously enter the downstream and rotate
around the center (uout, 0) as illustrated in Figure 3A. The
velocity distribution newly created in the downstream is a ring
with a width, as shown in Figure 3B. The effective thermal speed
vTeff in this case is analytically derived as

v2Teff �
1
2
u2
out + v2width. (3)

(In Appendix of Ref. (Usami et al., 2019b), we have analyzed a
case of a one-dimensional Maxwellian distribution
exp[−v2x/(2v2width)], where v2Teff � 1/2u2out + 1/2v2width has been
derived).

Next, we calculate the new velocity distribution G (vx, vy)
created as a result of the process that particles satisfying a
Maxwellian distribution exp[−(v2x + v2y)/(2v2width)] are
continuously supplied and the particles are rotated once
around the point (uout, 0). The function G (vx, vy) is obtained
by integrating exp[−(v2x + v2y)/(2v2width)] on each circumference

whose radius is V �
��������������
(vx − uout)2 + v2y

√
and dividing the value

by each circumferential length, because we can interpret the
above situation to be equivalent to the following one. Initially
a part of the ions were located non-uniformly on a circumference,
whose radius is taken to be V. Let these ions be the Group V. If we
distribute the ions of the Group V uniformly on the
circumference whose radius is V for each value of V (0 < V <

FIGURE 3 | Schematic diagrams showing that (A): an initial Maxwellian distribution begins to rotate around the center (uout, 0) and that (B): a ring-shaped
distribution with a width is newly created as a result of the rotation of the initial Maxwellian distribution.
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∞), we obtain a new function depending only on V. The new
function is G (vx, vy) to be derived. Hence, the following equation
holds:

G vx, vy( ) � 1
2πV

∫2π

0

1
2πv2width

exp −v
2
x + v2y
2v2width

[ ]Vdθ. (4)

By using the polar representation with the center (uout, 0), vx =
uout + V cos θ and vy = V sin θ,

G vx, vy( ) � 1

2πvwidth( )2 exp −V
2 + u2

out

2v2width
[ ]∫2π

0
exp −uoutV

v2width
cos θ[ ]dθ,

(5)
� 1

2πv2width
exp −V

2 + u2
out

2v2width
[ ]I0 uoutV

v2width
( ), (6)

is derived, where In is the modified Bessel function of the first
kind. It is noted that G (vx, vy) is dependent only on V, but G (vx,
vy) is a probability density function of the velocity vector (vx, vy),
i.e., G (vx, vy) is a distribution function on two-dimensional space
(vx, vy). On the other hand, by virtue of the axisymmetric
structure of G (vx, vy), the cross-sections of G (vx, vy) have the
same profile for any line crossing the center (uout, 0). In the
following discussion, thus, we use the cross-section function of
the newly formed distribution

F v( ) � 1
2πv2width

exp −v
2 + u2

out

2v2width
[ ]I0 uoutv

v2width
( ), (7)

where − ∞ < v < ∞.
By analyzing Eq. 7, we show that the shape of the newly

formed velocity distribution significantly changes depending on
uout and vwidth and derive necessary conditions for the
distribution to be a pseudo-Maxwellian distribution. For this
purpose, we investigate whether the profile has a dip1, in other
words, a local minimum in the center. It can be said that if F(v)
has a dip in the center, it is not a pseudo-Maxwellian distribution,
while if F(v) does not have a dip, it is a pseudo-Maxwellian one.
We treat F(v) only for v > 0, because F(v) is an even function. We
can find that F → 0 for v → ∞ and F monotonically decreases in
the regime of v ≫ vwidth. Hence, whether F has a dip or not
depends on the sign of dF/dv in the vicinity of v = 0. If dF/dv is
positive at v ≃ 0, F has a dip. Differentiating Fwith respect to v, we
have

dF

dv
� exp −v

2 + u2
out

2v2width
[ ] − v

v2width
I0

uoutv

v2width
( ) + dI0

dv

uoutv

v2width
( )[ ]. (8)

By using formulas of the modified Bessel function of the first
kind, dI0(x)/dx = I1(x), and the following approximation
by Taylor expansion in the vicinity of x = 0, I0(x) = 1 +
(dI0/dx) (0)x +/ ≃ 1 and I1(x) = 0 + (dI1/dx) (0)x +/ ≃ 1/2x,
we obtain

dF

dv
≃ − exp −v

2 + u2
out

2v2width
[ ] v

v4width
( ) v2width −

1
2
u2
out( ). (9)

This equation clearly indicates that if the condition

vwidth >
uout�
2

√ , (10)

is satisfied, dF/dv is negative in the vicinity of v = 0, that is, F does
not have a dip in the center. Accordingly, we can expect that the
newly created distribution is a pseudo-Maxwellian distribution.
In contrast, when vwidth < uout/

�
2

√
, dF/dv is positive in the vicinity

of v = 0. The velocity distribution has a dip, and hence a pseudo-
Maxwellian distribution is not formed.

In Figure 4, we depict a bird’s eye view of the distribution
functionG (vx, vy) in the left panels and the cross-section function
F(v) in the right panels. We set vwidth = 0.5, 0.7, and 1.0, for cases

FIGURE 4 | The left panels depict a bird’s eye view of the function G
(vx, vy) and the right panels plot graphs of the function F(v) expressing the
cross-section of G (vx, vy) (A): vwidth = 0.5 (B): vwidth = 0.7, and (C): vwidth =
1.0 are assigned, while keeping uout = 1.0.

1If vwidth = 0, F = 0 at v = 0, and the ring center is “a hole.” In genera cases of vwidth ≠
0, F > 0 at v = 0, and thus we call the ring center “a dip.”
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of Figures 4A–C, respectively, while we assign uout = 1.0 for all
the cases. In each right panel, the solid line represents F(v), and
the dotted line indicates a Maxwellian distribution function
which has the standard deviation equal to the one of F(v). In
Figure 4A, we can find that the profile has a dip, and thus a ring-
shaped distribution holds. In Figure 4B, there is not a dip, but
there is a plateau in the center of the profile. This is because vwidth
is nearly equal to uout/

�
2

√
and hence the gradient in the vicinity of

the center is nearly equal to zero, as predicted by Eq. 9. In the case
of Figure 4C, we can see that the shape becomes a mountain-like
structure, which almost fits with a Maxwellian distribution. In
what follows, we call such distributions with no dip for
vwidth > uout/

�
2

√
pseudo-Maxwellian velocity distributions. One

likely can not distinguish a pseudo-Maxwellian distribution and a
genuine-Maxwellian distribution, alone by observing the shapes.

Lastly in this section, we excuse a slight lack of precision in the
discussion of the newly created velocity distribution. This is
responsible for complexity in explaining the bridge of the
Lagrangian point of view (the individual particle motion) and
the Eulerian point of view (the velocity distribution). From the
Lagrangian viewpoint, the particle motion is E × B drift while in
gyromotion, and the orbits in the velocity space (vx, vy) are circles.
From the Eulerian viewpoint, we focus on a small local area whose
size is much smaller than the Larmor radius of particles whose
gyration speed is uout. Thus, not the entire trajectory of a certain
particle is contained inside the small area. We have stated as if the
newly formed distribution is composed of the entire orbits of
particles, but this physical picture is not correct in a precise sense.
The exact physical picture is that the velocity distribution is
composed of particles inside a local area at a certain moment,
which particles have various gyration phases, because of a mixing
of gyration phases. For the sake of convenience, we have
described the formation process of a velocity distribution from
the Lagrangian point of view, but the essential part of the theory
has been maintained.

3 PARTICLE SIMULATION METHOD

We search for pseudo-Maxwellian velocity distributions in
collisionless driven magnetic reconnection in the presence of a
guide magnetic field by means of two-dimensional
electromagnetic particle-in-cell (PIC) simulations, using
“PASMO” (Horiuchi and Sato, 1997; Pei et al., 2001a; Pei
et al., 2001b; Ohtani and Horiuchi, 2009).

In PASMO, an open boundary condition is employed. At the
upstream boundary (y = ±yb), in order to generate plasma inflows
and magnetic fluxes, an external driving electric field Ed is
imposed in the direction perpendicular to the magnetic field
(The terms of “perpendicular” and “parallel” indicate
perpendicular and parallel to the magnetic field at each
position, not to the averaged or initial magnetic field.) The
driving electric field Ed is set to zero at the initial time and
begins to grow first near the center of the upstream boundary (x =
0, y = ±yb). The inflow region where Ed is imposed expands in the
± x directions with a speed of 1.2vA,up, where vA,up is the Alfvén
speed for the antiparallel magnetic field at the upstream

boundary. Eventually Ed develops to reach Edz = −0.04Bx0 in
the entire upstream boundary, where Edz is the z-component of
Ed. As Ed grows, the magnetic field at the upstream boundary rises
according to Faraday’s law. In addition, Ex = 0 and zEy/zy = 0 are
applied at the upstream boundary. At the upstream boundary,
every time step, all the particles are removed and particles are
freshly set which satisfy a shifted Maxwellian velocity
distribution, whose averaged velocity is equal to the E × B
drift velocity. The plasma density at the upstream boundary is
adjusted to be proportional to the magnetic field strength so that
the frozen-in constraint holds at the upstream boundary. By this
procedure, particles are continuously supplied from the upstream

FIGURE 5 | Spatial profiles of (A): Bz and the magnetic field lines (B): the
ion bulk velocity vectors and Ey (C) and (D): the ion temperature perpendicular
to the magnetic field. The panels (A)–(C) display results at ωpit = 775, and the
panel (D) shows a result at the initial time.
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boundary into the simulation domain. In contrast, the
downstream boundary (x = ±xb) is taken to be free, across
which particles can freely go in and out. Some technical
methods are implemented into PASMO in order for particles
with a distribution to continuously and smoothly cross the
downstream [for detail, see (Ohtani and Horiuchi, 2009)]. On
the following components of the electromagnetic field, the
conditions zEx/zx = zBy/zx = zBz/zx = 0 are imposed. The
other components of the electromagnetic field are derived by
solving Maxwell’s equations at the downstream boundary.

As the initial condition, we take a one-dimensional Harris-
type equilibrium with an antiparallel magnetic field in the x
direction Bx and a uniform guide magnetic field in the z direction
Bz. Thus, the initial state is expressed as

Bx y( ) � Bx0 tanh y/L( ), (11)
Bz y( ) � Bz0, (12)

P y( ) � P0 + B2
x0/ 8π( )sech2 y/L( ), (13)

where P represents the plasma pressure. The quantities Bx0, Bz0,
and P0 are constants, and L is a spatial scale in the y-axis. The
initial particle velocity distribution is a shifted Maxwellian
distribution with spatially uniform temperature. The initial ion
temperature is taken to be equal to the initial electron
temperature.

The simulation parameters are as follows. The simulation
domain size is 2xb × 2yb = (15.81 × 2.63)c/ωpi, where ωpi is
the ion plasma frequency. The plasma frequency is defined by the
use of the initial number density at the neutral line y = 0, n0. The
initial number of electrons and the initial number of ions are
28 182 528, respectively. The ion-to-electron mass ratio is taken
to bemi/me = 100, i.e., a reduced mass ratio is used (The influence
of the mass ratio on the pickup-like process has been discussed in
Ref. (Usami et al., 2019b). In a short conclusion, it is theoretically
predicted that the pickup-like process works better under the real
mass ratio.) The ratio of the electron plasma frequency to the
electron gyrofrequency is ωpe/ωce = 6.0, where we define ωce =
eBx0/(mec). The Alfvén speed for Bx0 and n0 is vA0/c = 0.017. The
time step is ωpiΔt = 0.0052, and the grid spacing is Δg/(c/ωpi)
= 0.010.

4 PARTICLE SIMULATION RESULT

4.1 Pseudo-Maxwellian Velocity
Distribution
We perform a particle simulation run under the conditions of Bg
= Bz0/Bx0 = 1.0, L/(c/ωpi) = 0.66, and P0/(B2

x0/8π) � 0.35. In
Figures 5A–C, we display simulation results in the region of
−5.27 < x/(c/ωpi) < 5.27 at ωpit = 775 and in Figure 5D we show a
simulation result at the initial time, where the electromagnetic
field, the velocity, and the temperature are normalized to Bx0, c,
and mec

2, respectively. By ωpit = 775 the reconnection electric
field is balanced with the driving electric field Edz imposed at the
upstream boundary, and the reconnection system is in a quasi-
steady state. Figure 5A shows the spatial profile of the out-of-
plane component of the magnetic field Bz as color contours and

magnetic field lines. Magnetic reconnection is driven by plasma
inflows and magnetic fluxes supplied from the upstream
boundary, and the reconnection point, the X-point, is located
at the center of the simulation domain (0, 0). The out-of-plane
component of the magnetic field consists of the initial guide field
Bz0 and the quadrupole magnetic field generated by the Hall
current. As a result, Bz is positive in the main part of the
downstream, although Bz is negative in small parts. Figure 5B
shows the ion bulk velocity vectors as arrows and the y-
component of the electric field Ey as color contours. From the
velocity vectors, we can see that bipolar reconnection outflows
emanate from the X-point, and from the Ey profile, we can find
that Ey is produced in the entire downstream as the dominant
component of the convective electric field. Figures 5C,D depict
the spatial profiles of the ion temperature perpendicular to the
magnetic field Ti⊥ at ωpit = 775 and at ωpit = 0, respectively. It is
clearly seen that the ion temperature rises mainly in the
downstream at ωpit = 775, comparing Figure 5C with Figure 5D.

In Figures 6A,B, we show ion velocity distributions taken at
the boxed areas (d1) and (d2) designated in Figure 5C,
respectively. Unlike the cases of Bg = 2.0 and 3.0 introduced in
Figure 1, we can see that instead of a circle-shaped or an arc-
shaped structure, mountain-shaped velocity distributions, which
are the central part near (vx, vy) = (0, 0), are formed. These
velocity distributions are too similar to a Maxwellian distribution
to be distinguishable in shape, and thus we interpret them to be
pseudo-Maxwellian distributions as described in Section 2. Here,
Figure 6 indicates that an additional structure is attached to the
right part of each pseudo-Maxwellian distribution. It is a horn-
shaped distribution discussed in Ref. (Usami et al., 2019a), which
is a kind of circular-arc-shaped velocity distribution. The
formation process of horn-shaped velocity distributions is
explained by an extended theory of the pickup-like process.
For details, refer to Ref. (Usami et al., 2019a).

We almost conclude that the mountain-like distributions
shown in Figure 6 are pseudo-Maxwellian distributions, i,e.,
ring-shaped distributions with an extremely large width, based
on the existing of an additional horn-shaped structure, which
also is created by the pickup-like process. However, an
intriguing property of the pseudo-Maxwellian distributions,
that the shape is quite similar to the genuine-Maxwellian
shape, acts as a negative aspect, when rigorously
determining whether a mountain-like distribution is a
pseudo-Maxwellian or a genuine-Maxwellian distribution in
particle simulations. Although pseudo-Maxwellian and
genuine-Maxwellian distributions are theoretically expressed
by obviously different functions, it is practically impossible for
particle simulations to directly detect the deference so as to
distinguish the two. In particle (particle-in-cell) simulations,
including PASMO, employing the super-particle method
(Birdsall and Langdon, 1991), the number of particles are
much less than that in actual plasmas. Thus, statistical
fluctuations are inevitably contained in velocity
distributions. In addition, other physical effects could affect
the shape of velocity distributions for this case, which will be
shortly described in Section 6. Accordingly, alone by using the
simulation results shown in Section 4.1, we can not completely
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deny that the distributions shown in Figure 6 might be
genuine-Maxwellian distributions. In Section 4.2 and in
Section 5, we demonstrate two kinds of evidence to
conclude that the distributions in Figure 6 are pseudo-
Maxwellian distributions, and furthermore to lead to
implication that pseudo-Maxwellian distributions would be
frequently formed in some cases of magnetic reconnection
with a guide field.

4.2 Guide Field Dependence (Evidence 1)
In order to more definitely demonstrate that the distributions
found in Figure 6 are pseudo-Maxwellian distributions, we carry
out a series of particle simulations and investigate the dependence
of the shape of ion velocity distributions on the guide magnetic
field. We show velocity distributions in the (vx, vy) plane and in
the (v~x, v~y) plane, where ~x and ~y are two directions which are
mutually perpendicular and are perpendicular to the magnetic

FIGURE 6 | Ion velocity distributions (A): in the boxed area (d1) and (B): in the boxed area (d2) indicated in Figure 5C. In both panels, pseudo-Maxwellian
distributions are seen at the central part near (vx, vy) = (0, 0).

FIGURE 7 | Ion velocity distributions for various values of the guide field ratio Bg (A): Bg = 1.2 (B): Bg = 1.4 (C): Bg = 1.6, and (D): Bg = 1.8. The upper panels are
taken in the (vx, vy) plane, and the lower panels are taken in the (v~x , v~y) plane.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 8463958

Usami and Horiuchi Pseudo-Maxwellian Distribution in Reconnection

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


field. The reason is as follows. If a ring-shaped velocity
distribution is formed, it is clearly observed in the (v~x, v~y)
plane, because a ring is created as a result of the gyration. If
the out-of-plane component of the magnetic field is dominant,
the (x, y) plane is nearly perpendicular to the magnetic field so
that the (vx, vy) plane is almost equal to the (v~x, v~y) plane. In Refs.
(Usami et al., 2017) and (Usami et al., 2019b), we have displayed
velocity distributions in the (vx, vy) plane for cases of high guide-
field such as Bg = 2–4. In this work, however, we show results
mainly for Bg = 1–2, and thus add velocity distributions in the
(v~x, v~y) plane. Let us define v~x � v · (E⊥ × B)/(E⊥B),
v~y � v · E⊥/E⊥, and v~z � v · B/B, where E⊥ is the perpendicular
component of E to B, i.e., E⊥ = E − [E·B/B]B/B.

Figures 7A–D show ion velocity distributions for cases of Bg =
1.2, 1.4, 1.6, and 1.8, respectively. The upper and lower panels
represent velocity distributions in the (vx, vy) plane and in the
(v~x, v~y) plane, respectively. The locations of the area for the
panels (A)-(D) are the same as the one for Figure 6B. It is found
from the panel (A) that a ring-shaped structure is not seen, but a
mountain-like structure is seen in the case of Bg = 1.2. In contrast,
according to the panels (B)-(D), as Bg is larger, we can observe a
clearer ring. To quantify the clearness of rings, we extract each
one-dimensional profile along the vy-axis crossing the center of a
mountain or a ring from the panels (A)-(D) and obtain each best-
fit Gaussian (Maxwellian distribution) curve based on regression
analysis. The values of the coefficient of determination R2 for the
panels (A)-(D) are 0.987, 0.952, 0.945, and 0.889, respectively,
which indicates that the shape is close to the Maxwellian function
in the order of (A) (B) (C), and (D). It can be said that the
clearness of rings is in the order of (D) (C) (B), and (A). Next, we
can find that the rings are clear in the (v~x, v~y) plane, compared
with in the (vx, vy) plane, as we predict. From the velocity
distributions seen in the (v~x, v~y) plane, we can surely grasp
that ring-shaped structures are formed only for Bg = 1.4, 1.6,
and 1.8. (Note that horn-shaped distributions overlap ring-
shaped or pseudo-Maxwellian structures. As a consequence,
the density is extensively increased only in the overlapping
part. If the upper limit of the color contours is taken to be the
maximum value for each panel as displayed in Figure 7, the ring
sharpness is no longer in the order of the panel (D) (C) and (B),
which leads to misunderstanding. We, therefore, use a common
upper limit among the upper panels and a common upper limit
among the lower panels, respectively.)

Described from the opposite viewpoint, as Bg is decreased, the
ring-shaped structure gradually becomes ambiguous. In other words,
it is not sudden that the ring disappears when Bg = 1.0. Hence, the
following interpretation is plausible. The pickup-like ion motion,
which forms a ring-shaped velocity distribution, does work for Bg =
1.0. In Figure 6, rings exist, but the width is so large that the dip of
the ring’s center is plugged and the peak of a mountain is formed in
the center. Therefore in conclusion, the velocity distributions in
Figure 6 are pseudo-Maxwellian distributions.

4.3 Physics of a Ring’s Width
We discuss what kind of process causes the width of ring-shaped
velocity distributions. The initial thermal velocity surely plays a
role, and in addition it is believed that compressional heating

inside the upstream predominantly contributes to the formation
of a ring’s width. In what follows, we demonstrate that vwidth
corresponds to (genuine) thermal velocity in the upstream vT,up,
which depends on the guide magnetic field. In the following
description, we use Eq. 10 substituting vT,up into vwidth.

Let us compare the spatial profiles of the ion temperature at
ωpit = 775 and at the initial time in Figures 5C,D. We can see that
at ωpit = 775, the ion temperature is increased not only in the
downstream but also in the upstream, although the temperature
increment in the upstream is much less than that in the
downstream. Figures 8A,B show ion velocity distributions at
ωpit = 775 and at the initial time, respectively, in the boxed area
(u1), which is in the upstream. In both cases, Maxwellian
distributions are satisfied, while the thermal speed is clearly
larger at ωpit = 775 than that at the initial time. This indicates
that in terms of fluid dynamics, compressional heating occurs in
the upstream, because plasmas and magnetic fluxes are
continuously injected from the upstream in our particle
simulations. Furthermore, in Figure 8C we depict an ion
velocity distribution at the same position at ωpit = 775 in a
case of Bg = 2.0. Comparing Figures 8A,C, we can find that the
ion thermal speed for Bg = 2.0 is smaller than that for Bg = 1.0. In
the upstream, the ion thermal speed is

������
Bup/B0

√
times larger than

the initial one, where Bup and B0 are the magnetic field at a certain
time and at the initial time, because the conservation of the
magnetic moment approximately holds. Thus, we infer that as the
initial magnetic field Bz0 is larger, that is, as the guide magnetic
field is larger, the compressional heating tends to be weaker.

In Figure 9, we plot the values of the ion thermal speed in the
upstream vT,up (the blue solid line) and the reconnection outflow
speed uout (the black solid line) observed in the particle
simulations for various values of Bg. In order to refer to
velocity distributions in the areas (d1) and (d2) of Figure 5C,
we observe the value of uout around the areas (d1) and (d2),
because the outflow speed depends to some extent on the position
in the downstream. Here, we regard that uout is the x-component
of the ion bulk velocity averaged over the region of 3.5 < x/(c/ωpi)
< 5.0 and 0.0 < y/(c/ωpi) < 0.5 inside the downstream, and as vT,up
we use the ion thermal velocity averaged over the region of |x/(c/
ωpi)| < 6.0 and |y/(c/ωpi)| > 1.0 inside the upstream. As Bg is larger,
vT,up becomes smaller. In contrast, as Bg is larger, uout become
larger, because the change in Bg affects the density and the
reconnection magnetic field in the upstream. For comparison,
we plot uout/

�
2

√
as the black dashed line. When Bg = 1.0, vT,up is

greater than uout/
�
2

√
, and when Bg = 1.2, vT,up is very close to

uout/
�
2

√
, although vT,up is slightly less than uout/

�
2

√
. Hence, as

shown in Figure 6 and Figure 7A, ring-shaped velocity
distributions are not seen. In contrast, because vT,up < uout/

�
2

√
is sufficiently satisfied for Bg > 1.4, we can see ring-shaped velocity
distributions, as shown in Figures 7B–D.

5 TEST PARTICLE SIMULATION
(EVIDENCE 2)

In order to further prove that the mountain structures shown in
Figure 6 are rings with a large width, i.e., pseudo-Maxwellian
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distributions, we perform a test particle simulation (Usami et al.,
2019a). The method of the test particle simulation is as follows.
Before the test particle simulation, we perform a particle
simulation run by using the above particle simulation model,
PASMO and obtain data of an electromagnetic field at some
instant, which corresponds to magnetic reconnection in a quasi-
steady state. In the test particle simulation, the equations of
motion for test particles are solved in the electromagnetic field
given by the particle simulation. In the following run of the test
particle simulation, as the given field, we use the electromagnetic
field at ωpit = 775 for Bg = 1.0, as displayed in Figures 5A,B.

We demonstrate the positions of the ion particles at various
times (A) ωpiτ = 0 (B) 90, and (C) 240 in Figure 10. For

distinguishing the time in the test particle simulation from
the time in the particle simulations, we use τ as the time in the
test particle simulation. The panel (A) shows that the test ions
are set in the area of 0 < x/(c/ωpi) < 7.91 on the upstream
boundary y/(c/ωpi) = ±1.31. The number of test ions is 60 000,
and we set 30 000 ions on the line y/(c/ωpi) = 1.31 and 30 000
ions on the line y/(c/ωpi) = −1.31. Initially, each test ion is set to
have a velocity equal to the ion fluid velocity at each position.
At ωpiτ = 90 (the panel (B)), the ions have entered the
downstream from the upper- and lower-sides of the

FIGURE 8 | Ion velocity distributions (A): in the boxed area (u1) designated in Figure 5C at ωpit = 775 for Bg = 1.0 (B): at the initial time, and (C): in the area (u1) at
ωpit = 775 for a different simulation run of Bg = 2.0.

FIGURE 9 | Reconnection outflow velocity uout (the black solid line) and
ion thermal velocity in the upstream vT,up (the blue solid line) for various values
of the guide field ratio Bg. For comparison, uout/

��
2

√
(the black dashed line)

is added.

FIGURE 10 | Positions of the ions calculated by a test particle simulation
(A): at ωpiτ = 0 (B): at ωpiτ = 90, and (C): at ωpiτ = 240.
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upstream boundary. After that, the ions move in the x
direction, and then at ωpiτ = 240 (the panel (C)), some ions
have already escaped from the simulation domain across the
downstream boundary x/(c/ωpi) = 7.91. The test particle
simulation run is terminated at ωpiτ = 300.

Under a steady state of reconnection, particles continuously
flow inward from the upstream with a constant flux. In the test
particle simulation, however, we do not assign new particles at
the upstream boundary after the initial time. Instead of a
continuous supply of particles, we accumulate the temporal
sequence data of the particles during ωpiτ = 0–300 in order to
mimic particles continuously supplied under a steady state.
Thus, when we plot the velocities of particles in Figure 11, we
display not only the particles which are in a certain area at the
instance of ωpiτ = 300, but the particles which were and are in
the area by ωpiτ = 300. We record the particle data every ωpiΔτ
= 3, and treat an identical particle at a past time as a different
particle. This means that some particles are displayed in
Figure 11 multiple times.

The fact that the test ions have initial velocities equal to the ion
fluid velocity means that ions with zero temperature are
hypothetically set. Consequently, we can significantly reduce
the ring’s width vwidth. In Figures 11A,B, we plot velocities
(v~x, v~y) of the ions inside the boxed areas (d1) and (d2)
designated in Figure 5C, where the velocity distributions in
Figure 6 are observed. In the both cases, we can clearly see a
ring-shaped structure (with an additional horn-shaped
structure), which can not be seen by means of particle
simulations.

On the basis of the result that in a test particle simulation run
for Bg = 1.0, ring-shaped structures are created at the positions
corresponding to Figure 6, we can derive a plausible
interpretation as follows. In the velocity distributions shown in
Figure 6, ring-shaped structures with a finite width surely exist,
but the width is so large that they are observed as pseudo-
Maxwellian distributions. Therefore, it is definitely confirmed
that the velocity distributions of Figure 6 are pseudo-Maxwellian
distributions.

6 DISCUSSION AND SUGGESTION

As we described in Section 5, we hypothetically treat cold ions
with zero temperature in the test particle simulation run, by
assigning the initial velocities equal to the ion fluid velocity at
each position. Nevertheless, the ring-shaped structures shown in
Figure 11 have a finite width. The fluid velocity slightly depends
on the position in the upstream boundary, and ions which exist in
a small area of the downstream are ones which have come from
different positions in the upstream. Hence, the ions in a small area
of the downstream have slightly different velocities, which
contribute to the width of a ring. In addition, if some
adiabatic ions, which are not responsible for the pickup-like
process, exist, they will affect the shape of a velocity
distribution. Furthermore, the electromagnetic field is not
completely uniform in the downstream. This non-uniformity
enhances variation of ion velocities. Chaotic motions of ions
might play a role in producing variations of their velocities
(Zenitani et al., 2017). These topics are beyond the current
work, and will be discussed as a future work.

Let us suggest that pseudo-Maxwellian distributions would
have been misidentified as genuine-Maxwellian distributions in
particle simulations and satellite observations, since the two kinds
of distributions are almost indistinguishable in shape from each
other. A pseudo-Maxwellian velocity distribution is a kind of ring-
shaped distribution, and it is an indicator showing that particles
behave as nonadiabatic and are effectively heated through the
pickup or the pickup-like process. Although effective heating
events by the pickup or the pickup-like process occur in various
situations more frequently or more universally than expected, they
would have been overlooked so far.

Though the motivation of the present work stems from
magnetic reconnection, the application of the theory of the
pseudo-Maxwellian distribution will not be limited to
magnetic reconnection. Let us generalize the situation as
follows. Seed charged particles satisfy shifted Maxwellian
distribution exp[−(v − vd)2/(2v2T0)], and the seed particles are
continuously supplied to a region where a magnetic field B and an

FIGURE 11 | Velocities (v~x , v~y) of the ions inside small areas whose locations are the same as (A): the boxed area (d1) and (B): the boxed area (d2) represented in
Figure 5C, respectively.
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electric field E are imposed. Under this generalized situation, uout
on the right-hand side of Eq. 10 should be the relative velocity
between the averaged velocity of the seed particles and the E × B
drift velocity in the region. We do not need the existence of a
plasma flow corresponding to the reconnection outflow, and all
we need is E and B causing E × B drift motion. Based on the above
arguments, we can derive the necessary condition to pseudo-
Maxwellian distributions as

vT0 >
1�
2

√ cE × B
B2

− vd⊥

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, (14)

where vd⊥ is the perpendicular component of vd to B, i.e., vd⊥ = vd
− [vd ·B/B]B/B. The effective thermal velocity for the newly
created velocity distribution is

v2Teff �
1
2

cE × B
B2

− vd⊥( )2

+ v2T0. (15)

7 SUMMARY

By means of theory and simulations, we have explored the feature
of a ring-shaped velocity distribution with a finite width, which is
newly formed as a result of the pickup-like process during
magnetic reconnection in the presence of a guide magnetic field.

On the basis of a steady feeding of particles which satisfy a
Maxwellian velocity distribution and a mixing of gyration phases,
we have analytically derived a function which exactly expresses
rings with a finite width. Moreover, the formulated function
indicates that if the width is larger than 1/

�
2

√
of the radius, the dip

of a ring’s center, i.e., the central local minimum is transformed
into the peak of a mountain shape, i.e., the maximum. The
mountain-like velocity distribution is almost indistinguishable
in shape from aMaxwellian velocity distribution. We have named
such a distribution a pseudo-Maxwellian distribution.

We have carried out particle simulations of magnetic
reconnection with a guide magnetic field, and demonstrated
that mountain-like velocity distributions of ions are formed in
the downstream. On the basis of the existing of additional horn-
shaped distributions, which is a signature showing that the
pickup-like process does work, we have almost concluded that
the mountain-like distributions are pseudo-Maxwellian velocity
distributions. Alone by the above results, however, we could not
completely disprove that they are genuine-Maxwellian, because
the pseudo-Maxwellian and genuine-Maxwellian distributions
are almost indistinguishable in shape from each other.

Hence, we have shown two types of evidence for pseudo-
Maxwellian distributions. First, we have clarified the
dependence of velocity distributions on the guide magnetic
field, by performing a series of particle simulation runs. It has
been found that as the guide field is larger, a ring-shaped
structure with a finite width gradually becomes clearer in
velocity distributions. It is because a ring’s width, which is
caused by velocity variations mainly due to the genuine

thermal speed in the upstream, and the ring’s radius, which
corresponds to the reconnection outflow speed, depend on the
guide field. Next, we have performed a test particle simulation,
in which the motions of test ion particles with an artificial zero
temperature are calculated in an electromagnetic field given by
a particle simulation run. The artificial zero temperature
considerably contributes to reducing the ring width. As the
given field, we have employed one which has formed
mountain-like velocity distributions in the particle
simulation run. In the test particle simulation, we have
observed clear structures of ring-shaped velocity
distributions, which have not been seen in the particle
simulation run. From the two types of evidence, it has been
confirmed that the mountain-like velocity distributions found
in the particle simulations are pseudo-Maxwellian
distributions. Furthermore, the findings suggest that
pseudo-Maxwellian distributions would be formed in
various cases of magnetic reconnection with a guide field.
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