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ABSTRACT

Expressions of polarization and magnetization in magnetically confined plasmas are derived, which include full expansions in the gyroradius
to treat effects of both equilibrium and microscopic electromagnetic turbulence. Using the obtained expressions, densities and flows of
particles are related to those of gyrocenters. To the first order in the normalized gyroradius expansion, the mean part of the particle flow is
given by the sum of the gyrocenter flow and the magnetization flow, which corresponds to the so-called magnetization law in drift kinetics,
while the turbulent part contains the polarization flow as well. Collisions make an additional contribution to the second-order particle flow.
The mean particle flux across the magnetic surface is of the second-order, and it contains classical, neoclassical, and turbulent transport pro-
cesses. The Lagrangian variational principle is used to derive the gyrokinetic Poisson and Ampère equations, which properly include mean
and turbulent parts so as to be useful for full-f global electromagnetic gyrokinetic simulations. It is found that the second-order Lagrangian
term given by the inner product of the turbulent vector potential and the drift velocity consisting of the curvature drift and the rB drift
should be retained in order for the derived Ampère equation to correctly include the diamagnetic current, which is necessary especially for
the full-f high-beta plasma simulations. The turbulent parts of these gyrokinetic Poisson and Ampère equations are confirmed to agree with
the results derived from the WKB representation in earlier works.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080636

I. INTRODUCTION

Global simulations of collisional and turbulent plasma trans-
port1–9 are now vigorously conducted based on gyrokinetic equations
using the gyrocenter coordinates that are derived from the Lie trans-
formation method.10,11 Conservation properties possessed by such
gyrokinetic equations are suitable for global and long-time transport
simulations, and they have been extensively investigated based on
Lagrangian and Hamiltonian formulations.11–22 It is well known that
the finite gyroradius representing the distance between particle and
gyrocenter positions generates so-called polarization and magnetiza-
tion,11,12 in terms of which the relations of the density and mean veloc-
ity of particles to those of gyrocenters are expressed. These relations
are important for using gyrokinetic simulation results to correctly eval-
uate particle transport, as well as to accurately calculate the charge
density and the electric current in Poisson and Ampère equations,
which are required to self-consistently determine electromagnetic
fields in the simulation.

In a general framework of macroscopic electromagnetism for
material media consisting of molecules, polarization and magnetiza-
tion are formulated for evaluating the macroscopic charge density and
current by spatially averaging the microscopic density and current of
the point charge around the center of mass of the molecule.23 Then,
the resultant expressions of the macroscopic charge density and cur-
rent are given by the series expansion associated with multipole
moments due to the finite distance of each point charge from the cen-
ter of mass of the molecule. The local spatial average and the finite dis-
tance described above for the system of molecules are replaced by the
phase-space integral including the distribution function and the finite
gyroradius of the particle motion around the gyrocenter, respectively,
for formulating the polarization and magnetization in the gyrokinetic
system considered in the present study. In the drift kinetic system
without microturbulence, the particle flow is represented by the sum
of the gyrocenter flow and the magnetization flow, which is called the
magnetization law.24 In this work, we use the gyrocenter phase-space
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coordinates obtained from the particle phase-space coordinates using
the Lie transformation, by which the effects of turbulent electromag-
netic fields are included in definitions of the gyrocenter position and
the gyroradius vector. This gyroradius vector is used for infinite series
expansion to express the polarization and magnetization in magneti-
cally confined plasmas with gyroradius scale fluctuations.

The polarization and magnetization are also derived from taking
the variational derivative of the field–particle interaction part of the
Lagrangian for the system with respect to the electric and magnetic
fields, respectively.11 This derivation is not commonly used in conven-
tional gyrokinetic studies25–27 where scalar and vector potentials are
used instead of electromagnetic fields to formulate basic equations
describing plasma microturbulence. In some recent studies,22,28 the
Lagrangian of the gyrokinetic system is expressed in terms of per-
turbed electromagnetic fields instead of perturbed scalar and vector
potentials, so that the gyrokinetic polarization and magnetization can
be obtained by the derivative of the Lagrangian. The scalar and vector
potentials are used in our study where conventional studies’ results on
gyrokinetic Poisson and Ampère equations with the polarization and
magnetization effects due to turbulent fields are consistently incorpo-
rated. In addition, the magnetization law in drift kinetics is reproduced
from taking the ensemble average of the expression for the particle
flow obtained in this paper. To the second order in the normalized
gyroradius, the effect of the collision term, which is not described in
the magnetization law, appears as the classical transport29–31 in the
ensemble-averaged particle flow. Then it is confirmed that in toroidal
confinement systems, the average particle flux across the magnetic sur-
face is given by the second-order flows in which the classical, neoclas-
sical,29–31 and turbulent transport32 are included.

The rest of this paper is organized as follows. In Sec. II, the densi-
ties and flows of the particles and gyrocenters are defined using
velocity–space integrals of the distribution functions in the particle
and gyrocenter phase-space coordinates. Then, the gyrocenter and
particle transport equations derived from the Boltzmann kinetic equa-
tions in the two coordinate systems are used to obtain the relation
between the particle and gyrocenter flows, in which effects of polariza-
tion, magnetization, and collisions are included. The detailed expres-
sions of the polarization and magnetization are presented in Sec. III.
In Sec. IV, the particle flows due to gyrocenter motion, polarization,
magnetization, and collisions are separately treated using expansion in
the normalized gyroradius parameter and decomposition into the
ensemble average and turbulent parts. There it is shown that the
first-order ensemble-averaged particle flow obeys the so-called magne-
tization law in drift kinetics, while the mean particle flux across the
magnetic surface is of the second order and contains classical, neoclas-
sical, and turbulent transport processes. The Lagrangian for variational
derivation of the gyrokinetic Vlasov equation, Poisson’s equation, and
Ampère’s law is presented in Sec. V, where the linear polarization-
magnetization approximation12 is employed. Finally, conclusions are
given in Sec. VI. In addition, Appendix A presents the transformation
formulas from the particle coordinates to the gyrocenter coordinates,
and the gyrocenter Lagrangian, from which the gyrocenter equations of
motion are derived. In Appendix B, the gyrocenter velocity and the time
derivative of the gyroradius vector are expanded in the normalized gyro-
radius parameter to obtain useful formulas for derivation of the results
given in Sec. IV. The zeroth and first-order distribution functions and
the conditions satisfied by them are described in Appendix C. It is

verified in Appendix D that the turbulent parts of Poisson and Ampère
equations obtained in the present work agree with the results derived in
earlier works using the WKB representation.25,26

II. DENSITIES AND FLOWS OF PARTICLES
AND GYROCENTERS

The gyrokinetic Boltzmann equation for the gyrocenter distribu-
tion function faðZ; tÞ of the particle species a is given by

dfa

dt
� @

@t
þ dZ

dt
� @
@Z

� �
fa ¼ CðgÞa ; (1)

where the gyrocenter phase-space coordinates Z � ðX;U ;l; nÞ are
defined in terms of the particle phase-space coordinates z � ðx; vk;
l0; n0Þ as shown in Appendix A [see Eqs. (A6)–(A9)]. In Eq. (1),
dZ=dt is regarded as a function of ðZ; tÞ, which is given by the gyro-

center motion equations, Eqs. (A26)–(A30). The collision term CðgÞa in
the gyrocenter coordinates is written as33,34

CðgÞa �
X

b

CðgÞab fa; fb½ � �
X

b

T �1�
a CðpÞab T �a fa;T

�
b fb

� �
; (2)

where the subscripts a and b represent species of colliding particles

and CðpÞab ½ f
ðpÞ

a ; f ðpÞb � is the Landau collision operator29–31 for the distri-

bution functions f ðpÞa ¼ T �a fa and f ðpÞb ¼ T �
b fb in the particle coordi-

nates, which are obtained by the pull-back operators T �
a and T �

b
acting on the gyrocenter distribution functions fa and fb, respectively.
It is noted that, for the function faðZÞ of the gyrocenter coordinates
Z; T �a fa is defined by ðT �a faÞðzÞ � faðT aðzÞÞ, where Z ¼ T aðzÞ
represents the transformation from the particle coordinates to the
gyrocenter coordinates. The detailed expressions of the coordinate
transformation are shown in Appendix A. The push-forward operator
T �1�

a is used to obtain the expression of the collision term in the gyro-
center coordinates from that in the particle coordinates. For the

function CðpÞa ðzÞ of the particle coordinates z, T �1�
a CðpÞa is defined by

ðT �1�
a CðpÞa ÞðZÞ � CðpÞa ðT �1

a ðZÞÞ where z ¼ T �1
a ðZÞ represents the

transformation from the gyrocenter coordinates to the particle
coordinates.

The gyrophase average of an arbitrary function Q of the gyrocen-
ter phase-space coordinates Z � ðX;U; l; nÞ is represented by

hQin �
1

2p

þ
Q dn (3)

and the gyrophase-dependent part of Q is written aseQ � Q� hQin: (4)

From Eq. (1), we obtain

dh fain
dt
� @

@t
þ dZ

dt
� @
@Z

� �
h fain ¼ hCðgÞa in (5)

and

def a

dt
� @

@t
þ dZ

dt
� @
@Z

� �ef a ¼ eCðgÞa : (6)

Noting that the pull-back T �
a fa included in the definition of the gyro-

center collision operator CðgÞ has a gyrophase dependence different
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from what fa has, we find that the gyrocenter collision term depends

on the gyrophase angle n even when the operator CðgÞa acts on the

gyrocenter distributions which are independent of n. Therefore, eC ðgÞa
does not vanish generally, and Eq. (6) yields the nonzero gyrophase-

dependent part ef of the gyrocenter distribution function. Using the

gyrofrequency Xa � eaB=ðmacÞ to approximately write defa=dt

’ Xa@ef a=@n, we have

efa ’
1
Xa

ðneC ðgÞa dn ¼ Oðe2fa0Þ; (7)

where eCðgÞa ½ fa�’ eCðgÞa ½ fa1�¼Oð�aefa0Þ and �a=Xa¼ e�a=xTa¼OðeÞ
are used. Here, fa0 and fa1 are the zeroth and first-order distribution
functions [see Eq. (29)] in the expansion with respect to the normalized
gyroradius parameter e given by the ratio of the gyroradius qa to the
equilibrium scale length L. As for the ratio �a=xTa of the collision fre-

quency �a to the transit frequency xTa� L=vTa [vTa�ð2Ta=maÞ1=2:
the thermal velocity], we do not consider a subsidiary ordering such as
those used in the Pfirsh-Schl€uter, plateau, and banana regimes.29–31

The Boltzmann equation for the distribution function f ðpÞa of the
particle species a in the particle coordinates z � ðx; vk; l0; n0Þ is writ-
ten as

df ðpÞa

dt
� @

@t
þ dz

dt
� @
@z

� �
f ðpÞa ¼ CðpÞa : (8)

The particle density nðpÞa and the particle flow CðpÞa are defined as func-
tions of the position x and the time t by

nðpÞa ðx; tÞ ¼
ð

d6z0 d3ðx0 � xÞDðpÞa ðx0; tÞf ðpÞa ðz0; tÞ (9)

and

CðpÞa ðx; tÞ ¼
ð

d6z0 d3ðx0 � xÞDðpÞa ðx0; tÞf ðpÞa ðz0; tÞv0; (10)

respectively, where the Jacobian DðpÞa ðx; tÞ � Bðx; tÞ=ma is used.
Multiplying Eq. (8) by DðpÞa and integrating it with respect to the

velocity space variables vk; l0 � mav2
?=ð2BÞ, and n0, we obtain the

continuity equation

@nðpÞa ðx; tÞ
@t

þr � CðpÞa ðx; tÞ ¼ 0; (11)

where the particle number conservation in collisions,
Ð

d6z0 dðx � x0Þ
�DðpÞa ðx0; tÞCp

aðz0; tÞ ¼ 0, is used. Similarly, multiplying Eq. (1) by
DaðZ; tÞ � B�akðZ; tÞ=ma [see Eq. (A31) for the definition of B�ak] and
integrating it with respect to the velocity space variables U, l, and n,
we obtain

@nðgÞa ðx; tÞ
@t

þr � CðgÞa ðx; tÞ ¼
ð

d6Z0 d3ðX0 � xÞDaðZ0; tÞCðgÞa ðZ0; tÞ

¼ �r � CC
a ðx; tÞ; (12)

where the gyrocenter density nðgÞa and the gyrocenter flow CðgÞa

� nðgÞa uðgÞa are defined by

nðgÞa ðx; tÞ ¼
ð

d6Z DaðZ; tÞfaðZ; tÞd3ðX � xÞ (13)

and

CðgÞa ðx; tÞ � nðgÞa uðgÞa ðx; tÞ

�
ð

d6Z DaðZ; tÞfaðZ; tÞd3ðX � xÞ dX
dt
; (14)

respectively. The gyrocenter velocity dX=dt which enters the integrand
in Eq. (14) is regarded as a function of ðZ; tÞ using Eq. (A27). As
shown in Ref. 34, CC

a on the right-hand side of Eq. (12) is given by

CC
a ðx; tÞ �

X1
l¼0

ð�1Þl

ðl þ 1Þ!
@ l

@xj1 � � � @xjl

ð
d6z0 d3ðx0 � xÞ

�
�DðpÞa

X
b

CðpÞab T �
a fa;T

�
b fb

� �
Dxa Dxj1

a � � �Dxjl
a

�
; (15)

where Dxa � X � x is defined as a function of z using Eq. (A6) and
Dxj

a is its jth component. As seen later in Eq. (60), the classical particle
transport is derived from CC

a .
The particle density nðpÞa and the gyrocenter density nðgÞa are

related to each other by

ea nðpÞa ¼ ea nðgÞa �r � Pa; (16)

where Pa is the polarization vector due to the particle species a, and its
detailed expression is presented later in Eq. (22). The polarization cur-
rent due to the particle species a is given by

Jpol
a � ea Cpol

a �
@Pa

@t
; (17)

where Cpol
a represents the polarization particle flow of the species a.

It is shown in Sec. III that the particle flow CðpÞa is written as

CðpÞa ¼ CðgÞa þ Cpol
a þ Cmag

a þ CC�
a ; (18)

where CC�
a is defined later in Eq. (25) and it satisfies r � CC�

a
¼ r � CC

a . Here, Cmag
a represents the particle flow due to the magneti-

zation which is defined by

Jmag
a � ea Cmag

a � cr�Ma; (19)

where Ma and Jmag
a are the magnetization vector and the magnetiza-

tion current density due to the particle species a, respectively. The
detailed expression of Ma is shown later in Eq. (28). Subtracting Eq.
(12) from Eq. (11), we have

@ðnðpÞa � nðgÞa Þ
@t

þr � ðCðpÞa � CðgÞa Þ ¼ r � CC
a : (20)

We can easily verify that Eq. (20) is satisfied by Eqs. (16)–(19).

III. POLARIZATION AND MAGNETIZATION FLOWS

Performing the transformation from the particle coordinates to
the gyrocenter coordinates for the integration in Eq. (9), we obtain

nðpÞa ðx; tÞ ¼
ð

d6Z DaðZ; tÞfaðZ; tÞd3 X þ qaðZ; tÞ � x½ �

¼ nðgÞa ðx; tÞ � r � e�1
a Paðx; tÞ

� �
; (21)

where the gyroradius vector qa is defined by Eqs. (A10)–(A17) in
Appendix A and the polarization vector Paðx; tÞ is given by
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1
ea

Paðx; tÞ ¼
X1
l¼0

ð�1Þl

ðl þ 1Þ!
@ l

@xj1 � � � @xjl

ð
d6Z d3ðX � xÞ

�
�DaðZ; tÞfaðZ; tÞqa qj1

a � � �qjl
a

�
: (22)

The jth components of the vectors x and qa are denoted by xj and qj
a,

respectively. Here and hereafter, we employ the summation conven-
tion that the same symbol used for a pair of indices in upper and lower
positions within a term [such as in Eq. (22)] indicates summation over
the range {1, 2, 3} of the symbol index. In deriving Eqs. (21) and (22),
the Taylor expansion

d3ðX þ qa � xÞ ¼
X1
l¼0

ð�1Þl

l!
qj1

a � � � qjl
a
@ ld3ðX � xÞ
@xj1 � � � @xjl

(23)

is used and partial integrations are performed. Taking the partial time
derivative of Eq. (22) and using Eq. (1), we find that the polarization
flow Cpol

a due to the particle species a is given by

Cpol
a �

1
ea

@Paðx; tÞ
@t

¼
X1
l¼0

ð�1Þl

ðl þ 1Þ!
@ l

@xj1 � � � @xjl

ð
d6Z d3ðX � xÞ

�

� Dafa
dqa

dt
qj1

a � � �qjl
a þ l qa

dqj1
a

dt
qj2

a � � �qjl
a

� ��
� @

@X
� Dafa

dX
dt

qa qj1
a � � �qjl

a

� ��	
� CC�

a ; (24)

where CC�
a is defined by

CC�
a ðx; tÞ �

X1
l¼0

ð�1Þlþ1

ðl þ 1Þ!
@ l

@xj1 � � � @xjl

ð
d6Z0 d3ðX0 � xÞ

�
�Da

X
b

CðgÞab fa; fb½ � qa qj1
a � � � qjl

a

�
: (25)

It can be shown from Eqs. (15) and (25) that r � CC�
a �r � CC

a

¼
Ð

d6z0d3ðx0 � xÞDðpÞa CðpÞa ¼ 0 and accordingly r � CC�
a ¼ r � CC

a .
In addition, as seen in Sec. IV, both CC�

a and CC
a are of Oðe2Þ and their

ensemble averages coincide with each other and represent the classical
particle transport.

The particle flow CðpÞa defined in Eq. (10) is also given by the inte-
gration in the gyrocenter coordinates as

CðpÞa ðx;tÞ�nðpÞa uðpÞa ðx;tÞ

�
ð

d6Z DaðZ;tÞfaðZ;tÞd3ðXþqa�xÞ dX
dt
þdqa

dt

� �
; (26)

where the particle velocity is represented by dX=dt þ dqa=dt, which
is regarded as a function of ðZ; tÞ, using Eq. (A27) in Appendix A and
Eqs. (B6)–(B9) in Appendix B. Then we can use Eqs. (14), (15), and
(22)–(24) to derive Eq. (18) which is written here as

CðpÞa ðx; tÞ ¼ CðgÞa ðx; tÞ þ
1
ea

@Paðx; tÞ
@t

þ c
ea
r�Maðx; tÞ þ CC�

a ðx; tÞ;

(27)

where Cmag
a � ðc=eaÞr �Maðx; tÞ is the particle flow due to the mag-

netization vector Ma defined by

c
ea

Maðx; tÞ �
X1
l¼0

ð�1Þl

l!
@ l

@xj1 � � � @xjl

ð
d6Z Dafad

3ðX � xÞ
�

�qj1
a � � �qjl

aqa �
1

ðl þ 2Þ
dqa

dt
þ 1
ðl þ 1Þ

dX
dt

� �	
: (28)

IV. EXPANSION OF PARTICLE FLOWS
IN THE NORMALIZED GYRORADIUS PARAMETER e

We here first expand the gyrocenter distribution function in the
normalized gyroradius parameter e as

faðZ; tÞ ¼ fa0ðZ; tÞ þ fa1ðZ; tÞ þ fa2ðZ; tÞ þ � � � ; (29)

where the subscripts n ¼ 0; 1; 2;… represent the terms of OðenÞ.
More precisely speaking, fan ¼ OðenÞ implies that the magnitude of fn
is represented by fan ¼ Oðenfa0Þ.

The gyrocenter distribution function is also written as the sum of
the ensemble average part and the fluctuation part

fa ¼ h faiens þ bf a: (30)

We denote the average and fluctuation parts of the magnetic field by
B ¼ r� A and bB ¼ r� bA, respectively. The ensemble average is
used as the basic method of statistical mechanics to obtain the macro-
scopic mean values of physical valuables. For the case of gyrokinetic
turbulence simulation, an ensemble literally corresponds to a group of
a large number of simulations performed using many different sets of
randomly given initial perturbations while being done for the same
macroscopic state (characterized by the same conditions for back-
ground profiles of densities, temperatures, and electromagnetic fields),
and the ensemble average of some variable is defined by the average of
its values obtained from the repeatedly performed simulations.
However, assuming that a single typical nonlinear gyrokinetic simula-
tion shows ergodic behavior wandering among a large number of
microscopic turbulent states which will be produced by the ensemble of
simulations, the ensemble average is considered to equal the local
space–time average obtained in the single simulation. This local space–
time averaging of the distribution and other field functions in gyroki-
netic systems is in detail described in Ref. 35, which shows the same
results as given in Ref. 36 using the notation of the ensemble average.

We note here that the gyrophase average should be clearly distin-
guished from the local space average related to the ensemble average.
The ensemble average can be replaced by the space–time average over
scales, which are much smaller than macroscopic scales but sufficiently
larger than microscopic fluctuation scales.35 For example, for the fluc-
tuation potential /ðxÞ ¼ /k? exp ðik? � xÞ with the perpendicular
wavenumber vector k?ðk? � q�1Þ, the local space average of /ðxÞ
over the scale l ðq	 l	 LÞ in the plane perpendicular to the back-
ground magnetic field vanishes. On the other hand, the gyrophase
average h� � �in of the fluctuating potential is given by h/ðX þ qÞin
¼ J0ðk?qÞ/k expðik? � XÞ which shows that the gyrophase average
does not completely remove the fluctuation but weakens it by the fac-
tor J0ðk?qÞ ¼ h exp ðik? � qÞin [which is derived from the formula,
ð2pÞ�1 Þ exp ðix sin hÞdh ¼ J0ðxÞ].
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As seen in Eq. (30), the fluctuation part of the distribution func-
tion is given as the deviation from the ensemble average. We now
recall that, in the present work using the modern gyrokinetic formula-
tion, the gyrocenter coordinates Z in fa ¼ faðZ; tÞ are defined from
the particle coordinates z with effects of the electromagnetic fluctua-
tions taken into account [see Eqs. (A6)–(A9)]. On the other hand, in
the classical gyrokinetic formulation25–27 using the WKB representa-
tion (see Appendix C) for the fluctuating parts of the distribution
function and electromagnetic fields, the particle phase-space coordi-
nates used as independent variables of the distribution function are
defined without including effects of the fluctuations. Then, due to the
difference between the two sets of the phase-space coordinates, the
fluctuation part of the distribution function in the modern gyrokinetic
formulation differs from that in the classical formulation [see Eq.
(C23) in Appendix C wherebf ðpÞa1 andbf a1 correspond to the fluctuation
parts of the distribution functions in the classical and modern formu-
lations, respectively].

In the rest of this section, the expansion in e [Eq. (29)] and the
decomposition into the average and fluctuation parts [Eq. (30)] are
employed to analyze various components, which compose the particle
flow [Eq. (27)]. It is noted that, even in the case without microscopic
fluctuations, the expansion of the distribution function in Eq. (29) is
used in the drift kinetic theory29–31 where the neoclassical transport
fluxes are calculated from the first-order distribution function given as
the solution of the drift kinetic equation [see Eq. (C5)]. In the gyroki-
netic theory, small amplitudes of fluctuations of OðeÞ are assumed so
that the fluctuation parts appear from the first order as seen below.

A. Zeroth-order flows

The zeroth-order part fa0 of the distribution function fa in e is
considered to represent the equilibrium part which contains no fluctu-
ations, and we accordingly write

fa0 ¼ hfa0iens;
bf a0 ¼ 0: (31)

The zeroth-order density nðgÞa0 is given by

nðgÞa0 ðx; tÞ �
ð

d6Z Da0ðX; tÞfa0ðZ; tÞd3ðX � xÞ; (32)

where Da0 represents the zeroth-order Jacobian given by

Da0ðX; tÞ ¼ BðX; tÞ
ma

: (33)

The zeroth-order part ðdX=dtÞ0 of the gyrocenter velocity dX=dt is
given by Eq. (B1), and it has only the component parallel to the back-
ground magnetic field.

Noting that fa0 is independent of the gyrophase angle n and using
Eqs. (24), (28), (B1), and (B6), we have

1
ea

@Paðx; tÞ
@t

� �
0
¼
ð

d6Z Da0fa0d
3ðX � xÞ dqa

dt

� �
0
¼ 0; (34)

and

c
ea

Maðx; tÞ
� �

0

¼ 0: (35)

Thus, the polarization and magnetization never produce particle flows
of Oðna0vTaÞ. From Eqs. (15) and (25), we also have

CC
a0ðx; tÞ ¼ CC�

a0 ðx; tÞ ¼ 0: (36)

In the present work, we use the low-flow ordering in which the lowest-
order flow velocity is on the order of OðevTaÞ. This means that the
zeroth-order particle flow vanishes

CðpÞa0 ðx; tÞ ¼ 0 (37)

and the zeroth-order gyrocenter flow given by fa0 also vanishes

CðgÞa0 ðx; tÞ � nðgÞa0 uðgÞa0 ðx; tÞ

�
ð

d6Z Da0ðZ; tÞfa0ðZ; tÞd3ðX � xÞ dX
dt

� �
0
¼ 0: (38)

B. First-order flows

In the first-order in e, the gyrocenter distribution function gener-
ally consists of ensemble average and fluctuation parts

fa1 ¼ hfa1iens þbf a1: (39)

In the same way, the first-order particle and gyrocenter flows are writ-
ten as

CðpÞa1 ðx; tÞ ¼ hCðpÞa1 ðx; tÞiens þ bCðpÞa1 ðx; tÞ (40)

and

CðgÞa1 ðx; tÞ ¼ hCðgÞa1 ðx; tÞiens þ bCðgÞa1 ðx; tÞ; (41)

respectively. As explained in Appendix C, the collision term vanishes
to the zeroth order in e, and it is regarded as of the first order. Then
we see from Eqs. (15) and (25) that CC

a and CC�
a are of Oðe2na0vTaÞ

(na0: the background particle density) and

CC
a1 ¼ CC�

a1 ¼ 0: (42)

1. Ensemble-averaged part

The first-order ensemble-averaged gyrocenter flow is written as

hCðgÞa1 ðx; tÞiens ¼
ð

d6Z d3ðX � xÞ Da0fa0
dX
dt

� �
1

* +
ens

24
þðDa0hfa1iens þ Da1fa0Þ

dX
dt

� �
0

#
; (43)

where ðdX=dtÞ0 and hðdX=dtÞ1iens are given as functions of ðZ; tÞ as
shown in by Eqs. (B1) and (B3), respectively. It is found from Eq. (22)
that the first-order polarization flow vanishes

hCpol
a1 ðx; tÞiens �

1
ea

@Paðx; tÞ
@t

� �
1

* +
ens

¼ 0: (44)

From Eq. (28), we obtain

c
ea

Maðx; tÞ
� �

1

* +
ens

¼ � c
eaB
ðPa?Þ0b (45)

and the first-order magnetization flow
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hCmag
a1 ðx; tÞiens � r�

c
ea

Ma

� �
1

* +
ens

¼ �r� c
eaB
ðPa?Þ0b

� �
;

(46)

where

ðPa?Þ0 �
ð

d6Z d3ðX � xÞDa0fa0 lB: (47)

Using Eqs. (27), (42)–(44), and (46), the total first-order ensemble-
averaged particle flow is written as

hCðpÞa1 ðx; tÞiens ¼ hC
ðgÞ
a1 iens þ hC

mag
a1 iens

¼
ð

d6Z d3ðX � xÞDa0hfa1iensUbþ na0

B
hE1iens � b

þ c
eaB

b�rðPa?Þ0 þ fðPakÞ0 � ðPa?Þ0g r � bð Þ
� �

¼ b
ð

d6Z d3ðX � xÞDa0hfa1iensU

�
þ c

eaB
ðPakÞ0�ðPa?Þ0

 �

b � r � bð Þ
	

þ c
eaB

na0eahE1iens�r � ðPakÞ0bb

�

þðPa?Þ0ðI� bbÞ
��
� b; (48)

where

ðPakÞ0 �
ð

d6Z d3ðX � xÞDa0fa0
1
2

maU2: (49)

In a case where, as described in Appendix C1, fa0 takes the form of the
local Maxwellian distribution with no mean flow, the zeroth-order
pressure is isotropic so that we can write ðPakÞ0 ¼ ðPa?Þ0 ¼ Pa0.
Equation (48) agrees with the magnetization law in drift kinetics.24

Within accuracy up to Oðena0vTaÞ, Eq. (48) is rewritten more
compactly as

hCðpÞa1 ðx; tÞiens ¼
ð

d6Z d3ðX þ qa1 � xÞ

� Dahfaiensvc þ Da0fa0vda
� �

; (50)

where vc and vda are given by Eqs. (A13) and (B3), respectively, and
qa1 represents the lowest-order (or first-order) expression of the gyro-
radius vector shown in Eq. (A12). In the first term of the integrand on
the right-hand side of Eq. (50), we need to use Da ¼ Da0 þ Da1 and
fa ¼ fa0 þ fa1 in order to keep the validity up to Oðena0vTaÞ.

2. Turbulent part

The first-order turbulent gyrocenter flow is given from Eq. (14)
as

bCðgÞa1 ðx; tÞ ¼
ð

d6Z D0d
3ðX � xÞðbf a1Ubþ fa0bvgaÞ; (51)

where the first-order turbulent gyrocenter velocity bv ga is given by Eq.
(B4). The first-order turbulent polarization flow is derived from Eq.
(24) as

bCpol

a1 ðx; tÞ ¼
X1
l¼0

ð�1Þlþ1

ðl þ 1Þ!
@l

@xj1 � � � @xjl

ð
d6Z d3ðX � xÞDa0

�
� qj1

a1 � � � q
jl
a1fa0

ea

mac
bA? þ c

B
b�rbwa

� ��
�qj1

a1 � � �q
jl�1
a1

ea

B
ebwa
@fa0

@l
qjl

a1vc? þ lðvc?Þjl qa1

� 
�	
;

(52)

where qj
a1 is the jth component of qa1. On the right-hand side of

Eq. (52),
ebwa � bwa � hbwain is the gyrophase-dependent part of bwa

� wa � hwaiens � b/ � c�1vc � bA where b/ and bA should be evaluated
at X þ qa1. The first-order turbulent magnetization flow is derived
from Eq. (28) as

bCmag

a1 ðx; tÞ ¼ c
ea
r�Ma

� �
1

¼
X1
l¼1

ð�1Þl

l!
@ l

@xj1 � � � @xjl

ð
d6Z d3ðX � xÞDa0

�
� qj1

a1 � � �q
jl
a1
bf a1 vc � fa0

ea

mac
bAkbþ l

ðl þ 1Þ
bA?� ���

þ 1
ðl þ 1Þ fa0

c
B

b�rbwa

�
þ qj1

a1 � � �q
jl�1
a1

ea

B
ebw a
@fa0

@l

� qjl
a1Ubþ l

l þ 1
qjl

a1vc? � ðvc?Þjl qa1

� 
� �	�
: (53)

Then, using Eqs. (51)–(53), the first-order turbulent particle flux is
written as

bCðpÞa1 ðx; tÞ � bCðgÞa1 þ bCpol

a1 þ bCmag

a1

¼
X1
l¼0

ð�1Þl

l!
@ l

@xj1 � � �@xjl

ð
d6Z d3ðX� xÞDa0

�

�qj1
a1 � � �q

jl
a1
bf a1vcþ �fa0

ea

mac
bAþ ea

ebw a

B
@fa0

@l
vc

 !( )35
¼
ð

d6Z d3ðXþqa1� xÞDa0

� bf a1vcþ �fa0
ea

mac
bAþ ea

ebw a

B
@fa0

@l
vc

 !" #
þOðe2na0vTaÞ:

(54)

Summing up Eqs. (50) and (54), we obtain the expression of the first-
order particle flow, which is valid up to Oðena0vTaÞ, as

CðpÞa ðx; tÞ ¼ hCðpÞa ðx; tÞiens þ bCðpÞa ðx; tÞ

¼
ð

d6Z d3ðX þ qa1 � xÞ DaðZ; tÞfaðZ; tÞvc

"

þDa0 fa0 vBa �
ea

mac
bA� �
þ ea

ewa

B
@fa0

@l
vc

( )#
; (55)

where vBa is defined by Eq. (A25). In the same way as in Eq. (50),
Da ¼ Da0 þ Da1 and fa ¼ fa0 þ fa1 should be used in the first term of
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the integrand on the right-hand side of Eq. (55), in order to keep the
validity up to Oðena0vTaÞ.

C. Second-order flows

When considering particle confinement of magnetically confined
plasmas on the transport time scale of ðe2xTaÞ�1, it is important to
evaluate the ensemble-averaged or mean particle flux across the sur-
face formed by field lines. We find from Eq. (22) that the second-order
ensemble-averaged polarization flow vanishes

Cpol
a2 ðx; tÞ

D E
ens
� 1

ea

@Pa

@t

� �
2

* +
ens

¼ 0 (56)

as well as the zeroth- and first-order parts shown in Eqs. (34) and (44).
For plasmas confined in the toroidal magnetic configuration

where the zeroth-order equilibrium distribution function Fa0 is given
by the Maxwellian with no mean flow, we see from Eq. (28) that the
second-order ensemble-averaged magnetization flow is given by

Cmag
a2 ðx; tÞ

� �
ens �

c
ea
r�Ma

� �
2

* +
ens

¼ �r� c
eaB
ðP?Þa1b

� �
;

(57)

where ðP?Þa1 �
Ð

d6Z d3ðX � xÞDa0hfa1ienslB. For this Maxwellian
equilibrium distribution function fa0, we have the scalar equilibrium
pressure Pa0 ¼ ðPakÞ0 ¼ ðPa?Þ0 and the average electrostatic potential
h/iens, which are given as flux surface functions, as explained after Eq.
(C4) in Appendix C. Then the first-order ensemble-averaged particle
flow in Eq. (50) is rewritten as

hCðpÞa1 ðx; tÞiens ¼
ð

d6Z d3ðX � xÞDa0hfa1iensUb

þ c
eaB
ðna0eahE1iens �rPa0Þ � b; (58)

which has no component in the radial direction perpendicular to the
magnetic flux surface, because hE1iens ¼ �rh/iens and rPa0 are
both perpendicular to the surface. Therefore, the mean radial particle
flow is of Oðe2na0vTaÞ, which is consistent with the ordering of the
transport timescale given by ðe2xTaÞ�1.

The second-order ensemble-averaged gyrocenter flow is obtained
from Eq. (14) as

hCðgÞa2 ðx; tÞiens ¼
ð

d6Z d3ðX � xÞDa0 fa0vda2 þ hfa1iensvda

�
þhbf a1 bvgaiens þ fa2 þ

Da1

Da0
fa1

� �
ens

Ub

	
; (59)

where vda, bv ga, and vda2 are given by Eqs. (B3), (B4), and (B5),
respectively.

The remaining part of the second-order ensemble-averaged parti-
cle flow is derived using Eqs. (15) and (25) as

hCC
a2ðx; tÞiens ¼ hCC�

a2 ðx; tÞiens

¼
ð

d6z0DðpÞa hðeC ðpÞa Þ1iensd
3ðx0 � xÞv

0 �b
Xa

¼ c
eaB

Fa1�b¼
ð

d6z0DðpÞa hef a2iens d
3ðx0 � xÞv0?; (60)

where hðeC ðpÞa Þ1iens is defined by

hðeCðpÞa Þ1iens �
X

b

CðpÞab
ef ðpÞa1

D E
ens
; fb0

� 	
þ CðpÞab fa0; ef ðpÞb1

D E
ens

� 	� �
:

(61)

Fa1 is the collisional friction force defined by

Fa1 �
ð

d6z0 DðpÞa d3ðx0 � xÞhðCðpÞa Þ1iens mav0 (62)

and ef a2 is obtained using Eq. (7). It is verified from Eq. (60) that
hCC

a2iens ¼ hCC�
a2 iens represents the classical collisional particle

flow.29–31

As seen from Eqs. (18) and (56), the total second-order particle
flow is given by the sum of the gyrocenter, magnetization, and classical
particle flows

hCðpÞa2 ðx; tÞiens ¼ hC
ðgÞ
a2 iens þ hC

mag
a2 iens þ hCC

a2iens: (63)

It is recalled here that the tangential component of the mean particle
flow to the magnetic flux surface is dominated by the first-order flow
hCðpÞa1 iens given in Eq. (48) although the normal component is of the
second order. Now using Eqs. (28), (59), (60), and (63), the compo-
nent of the second-order particle flow hCðpÞa2 iens perpendicular to the
background magnetic field line is given by

hCðpÞa?2ðx; tÞiens

¼ hCðgÞa?a2iens þ hC
mag
a?2iens þ hCC

a2iens

¼
ð

d6Z d3ðX � xÞDa0 hfa1iensvda þ hbf a1 ðbvgaÞ?iens

h i
� r� c

eB
ðPa?Þ1b

� �� 	
?
þ c

eaB
na0ehE2iens þ Fa1
� �

� b

¼ c
eaB
�r � ðPakÞ1bbþ ðPa?Þ1ðI� bbÞ


 ��
þ na1eahE1iens þ na0ehE2iens þ Fa1

� c
B

ð
d6Z d3ðX � xÞDa0hbf a1rhbwainiens� � b; (64)

where na1 �
Ð

d6Z d3ðX � xÞDa0hfa1iens, ðPakÞ1 �
Ð

d6Z d3ðX � xÞ
�Da0hfa1iensmaU2, hE1iens ¼ �rh/1iens, and hE2iens ¼ �rh/2iens
�c�1@A=@t are used. In toroidal confinement systems, the lowest-
order ensemble-averaged electrostatic potential h/1iens is considered
to be uniform over the magnetic flux surface. On the right-hand side
of Eq. (64), the part including the anisotropic pressure tensor repre-
sents the neoclassical particle transport29–31 while the turbulent parti-
cle transport is given by the last term including the correlation
between the fluctuating distribution function and the gradient of the
gyrophase-averaged fluctuating potential field.37

V. LAGRANGIAN FOR VARIATIONAL DERIVATION
OF POISSON’S EQUATION AND AMP�ERE’S LAW

The action integral for the gyrokinetic Vlasov–Poisson–Ampère
system is given by

I �
ðt2

t1

dt LGKF �
ðt2

t1

dt ðLGK þ LFÞ; (65)
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where the Lagrangian LGK is written as

LGK � LGK0 þ LGK1 þ LGK2: (66)

Here, we use the gyrocenter distribution function fa to define LGK0 and
LGK1 by

LGK0

LGK1

" #
�
X

a

ð
d6Z0 DaðZ0; t0Þ faðZ0; t0Þ

�
LGYa0ðZaðtÞ; _ZaðtÞ; tÞ

LGYa1ðZaðtÞ; tÞ

" #

�
X

a

ð
d6Z DaðZ; tÞ faðZ; tÞ

LGYa0ðZ; _Z; tÞ

LGYa1ðZ; tÞ

" #
; (67)

where the gyrocenter phase-space orbit for the particle species a is rep-
resented by ZaðtÞ, which satisfies the initial condition Zaðt0Þ ¼ Z0.
The gyrocenter Lagrangian LGYa0 appearing in Eq. (67) is defined by

LGYa0ðZ; _Z; tÞ � ea

c
A�aðX;U ; tÞ � _X þmac

ea
l _n

� 1
2

maU2 þ lBðX; tÞ
� �

; (68)

which describes the gyrocenter motion for the case where the electro-
static potential / and the vector potential fluctuation bA vanish. In this
section, we use the modified vector potential A�aðX;U ; tÞ � AðX; tÞ
þ ðmac=eaÞUbðX; tÞ, which is obtained from Eq. (A21) with the
second-order small term neglected. The gyrocenter Lagrangian LGYa1

is the part, which linearly depends on / and bA
LGYa1ðZ; tÞ � �eahwaðZ; tÞin

� �ea /ðX þ qa1; tÞ � vc

c
� bAðX þ qa1; tÞ

� �
n

: (69)

The second-order Lagrangian LGK2 is given by

LGK2 �
X

a

ð
d6Z Da0ðZ; tÞ fa0ðZ; tÞLGYa2ðZ; tÞ; (70)

where fa0 is the zeroth-order part of the gyrocenter distribution func-
tion and LGYa2 is the second-order gyrocenter Lagrangian defined by

LGYa2ðZ; tÞ � ea

c
vBa � hbAðX þ qa1; tÞin

� e2
a

2mac2
hjbAðX þ qa1; tÞj2in þ

e2
a

2B
@

@l
hðewaÞ

2in: (71)

We note here that LGYa1 þ LGYa2 corresponds to the opposite sign of

eaWa defined by Eq. (A24). The term ðe2
a=2BÞð@hðewaÞ

2in=@lÞ in Eq.

(71) is a part of 1
2 ea
�
eSa; ewa

��
n in Eq. (A24), while the remaining

part of 1
2 ea
�
eSa; ewa

��
n is removed in LGYa2 because, when it is

retained, its contribution to LGK2 is of higher order in e than that of the
terms included in Eq. (71). As noted after Eq. (A25) in Appendix A,

one of the second-order terms, ðea=cÞvBa � hbAin, is often neglected in
conventional studies although this term is kept here to accurately
derive the gyrokinetic Ampère’s law later.

The Lagrangian LF is defined by12

LF �
1

8p

ð
V

d3x jELðx;tÞj2�jBðx;tÞþ bBðx;tÞj2þ2
c
kðx;tÞr� bAðx;tÞ� 	

;

(72)

where the longitudinal (or irrotational) part EL of the electric field is
written in terms of the electrostatic potential / as

EL � �r/ (73)

and k plays the role of the Lagrange undetermined multiplier to derive
the Coulomb gauge condition

r � bA ¼ 0 (74)

from dI=dk ¼ 0 (or dLGKF=dk ¼ dLF=dk ¼ 0). Equation (72) is used
for making the Darwin approximation to remove electromagnetic
waves propagating at light speed.

From the condition that dI ¼ 0 holds for the variation of ZaðtÞ
which is fixed at t ¼ t1, t2, we can derive the gyrocenter motion equa-
tions for ZaðtÞ and accordingly the gyrokinetic Vlasov equation for
the distribution function fa, which is constant along the gyrocenter
phase-space orbit represented by ZaðtÞ. This is a variational derivation
of the gyrokinetic Vlasov equation based on the Lagrangian picture of
the gyrocenter phase-space motion.12 The resultant gyrokinetic Vlasov
equation is given by removing the collision term from Eq. (1). In the
Eulerian picture (or the Euler–Poincar�e formulation),17–19,38–41 we use
the expression in the last line of Eq. (67) and consider the variations of
fa and _Z as functions of ðZ; tÞ to derive the gyrokinetic Vlasov equa-
tion from dI ¼ 0. Effects of the collision term, if included, on the local
energy and momentum balance equations can be clarified following
the same procedure as shown in Refs. 17 and 18.

In the present case, Eq. (70) is used for the second-order
Lagrangian to make the linear polarization-magnetization approxima-
tion, in which the deviation of fa from fa0 does not enter the polariza-
tion and magnetization terms proportional to / and bA in the
gyrokinetic Poisson and Ampère equations as shown later.12 It also
should be noted that in the gyrokinetic equation derived in this
approximation, quadratic terms with respect to / and bA are removed
from the gyrocenter phase-space velocity dZ=dt.

The gyrokinetic Poisson’s equation is derived from the varia-
tional derivative of the action integral I with respect to the electrostatic
potential /. Since the time derivative of / never appears in the
Lagrangian density LGKF, the above-mentioned condition can be
replaced by dLGKF=d/ ¼ 0, which leads to

r�EL¼4p
X

a

ea

ð
d6Zd3ðXþqa1�xÞ DafaþDa0

ea
ewa

B
@fa0

@l

 !
: (75)

In Oðen0Þ and Oðeen0Þ, the ensemble-averaged part of Eq. (75) gives
the quasineutrality conditions

0 ¼
X

a

eana0 �
X

a

ea

ð
d6Z Da0 fa0d

3ðX � xÞ (76)

and

0 ¼
X

a

eahnðgÞa1 iens �
X

a

ea

ð
d6Z Da0h fa1iensd

3ðX � xÞ; (77)

respectively. The fluctuation part of Eq. (74) is written as
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r � bEL ¼ 4p
X

a

ea

ð
d6Z Da0d

3ðX þ qa1 � xÞ

� bf a þ
ea
ebw a

B
@fa0

@l

 !
; (78)

which is valid up to the lowest order, Oðeen0Þ. Here and hereafter,
we do not consider the particle species dependence in using the
ordering parameter e � qa=L and Oðeana0Þ. Such dependence may
occur due to large mass and charge differences although they
should be treated using subsidiary parameters other than e. We can
confirm that Eqs. (75)–(78) are consistent with the results derived
from using Eqs. (21), (22), and (A11) for Poisson’s equation
r � EL ¼ 4p

P
a eanðpÞa .

The gyrokinetic Ampère’s law is derived from the variational
derivative of the action integral I with respect to the fluctuation
part bA of the vector potential. Since the time derivative of bA never
appears in the Lagrangian density LGKF, we can use dLGKF=dbA ¼ 0
to obtain

r� ðBþ bBÞ ¼ 4p
c

j� 1
c
rk; (79)

where the electric current density is given by

j ¼
X

a

ea

ð
d6Z d3ðX þ qa1 � xÞ DaðZ; tÞfaðZ; tÞvc½

þDa0 fa0 vBa �
ea

mac
bA� �
þ ea

ewa

B
@fa0

@l
vc

( )#
: (80)

We see that Eq. (80) agrees with the result shown in Eq. (55). The lon-
gitudinal (or irrotational) part of Eq. (79) gives

rk ¼ 4pjL: (81)

From the transverse (or solenoidal) part of Eq. (79), the gyrokinetic
Ampère’s law is written as

r� ðBþ bBÞ ¼ 4p
c

jT : (82)

In Eqs. (81) and (82), jL and jT represent the longitudinal and trans-
verse parts of j, respectively. It is noted here that an arbitrary
vector field a is written as a ¼ aL þ aT where the longitudinal and
transverse parts of a are given by aLðxÞ ¼ �ð4pÞ�1r

Ð
d3x0

ðr0 � aðx0ÞÞ=jx� x0j and aTðxÞ ¼ ð4pÞ�1r� ðr�
Ð

d3x0 aðx0Þ=
jx� x0jÞ, respectively.23

The ensemble-averaged part and the fluctuation part of Eq. (82)
are written as

r� B ¼ 4p
c
hjiensT ; (83)

and

r� bB ¼ 4p
c
bjT ; (84)

respectively, where the ensemble-averaged part and fluctuation part of
the current density are given by

hjiens ¼
X

a

ea

ð
d6Z d3ðX þ qa1 � xÞ Da0hfa1iensvc

�
þðDa0 þ Da1Þfa0vc þ Da0fa0vda�

¼
X

a

ea

ð
d6Z d3ðX � xÞDa0hfa1iensU

(

þ c
B
ðPkÞ0 � ðP?Þ0
� �

b � r � bð Þ
)

b

þ c
B

b�r � ðPkÞ0bbþ ðP?Þ0ðI� bbÞ

 �

(85)

and

bj ¼X
a

ea

ð
d6Z d3ðX þ qa1 � xÞDa0

� bf avc � fa0
ea

mac
bA þ ea

ebw a

B
@fa0

@l
vc

 !
; (86)

respectively. On the right-hand side of Eq. (85), ðP?Þ0 �
P

a ðPa?Þ0
and ðPkÞ0 �

P
a ðPakÞ0 are used and the definitions of ðPa?Þ0 and

ðPakÞ0 are found in Eqs. (47) and (49), respectively. When fa0 takes the
form of the local Maxwellian distribution with no mean flow, we have
the isotropic equilibrium pressure ðP?Þ0 ¼ ðPkÞ0 ¼ P0. It should be
noted that Eqs. (80), (85), and (86) are valid up to the lowest in e. In
Appendix D, using the WKB representation, the turbulent parts of
Poisson and Ampère equations in Eqs. (78) and (84) are shown to
agree with the results derived in earlier works.25,26

VI. CONCLUSIONS

In this paper, effects of both equilibrium and gyroradius scale
electromagnetic turbulence are included to derive expressions of polar-
ization and magnetization in terms of the distribution function in the
gyrocenter phase-space coordinates. These expressions presented in
Eqs. (22) and (28) include infinite series expansion with respect to the
gyroradius vector, which is defined in the gyrocenter coordinates by
Eqs. (A11)–(A17), where effects of the turbulent fields are taken into
account.

To the leading (or first) order in the normalized gyroradius
parameter e, the polarization flow vanishes and the ensemble-averaged
(or non-turbulent) part of the particle flow consists of the gyrocenter
and magnetization flows, which agrees with the result called the
magnetization law in the drift kinetics.24 On the other hand, the
leading-order turbulent part of the particle flow is given by the sum of
the turbulent parts of the polarization, magnetization, and gyrocenter
flows. Thus, a practical extension of the drift kinetic magnetization law
is made to gyrokinetic systems with electromagnetic fluctuations and
collisions. The compact expression of the particle flow, including both
mean and turbulent parts, is given in Eq. (55), which is valid to the
leading order and useful for evaluating the total current density to self-
consistently determine the magnetic field in full-f global gyrokinetic
simulations.1–9

The effect of collisions appears as the classical transport in the
second-order mean particle flow. In toroidally confined plasmas, the
first-order mean (or ensemble-averaged) particle flow is tangential to
the magnetic surface, so that the mean particle transport flux across
the magnetic surface is of the second-order and it is verified to contain

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052509 (2022); doi: 10.1063/5.0080636 29, 052509-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


classical, neoclassical, and turbulent transport processes, which deter-
mine plasma particle confinement in a transport timescale.

The Lagrangian is presented for variational derivation of the
gyrokinetic Poisson and Ampère equations, which properly include
mean and turbulent parts. It is shown that the diamagnetic current
can be correctly included in the mean part of Ampère’s law derived
from the variational principle using the Lagrangian, which retains the
second-order term given by the inner product of the turbulent vector
potential and the drift velocity consisting of the curvature drift and the
rB drift. The resultant expressions of Ampère’s law [Eq. (82)] and the
current density [Eq. (80)] are useful especially for the full-f global
electromagnetic gyrokinetic simulations to accurately treat high-beta
plasmas. Properly taking account of the difference between the phase
space coordinates in the classical gyrokinetic formulation and the
modern formulation employed in the present work, the equivalence
between descriptions of electromagnetic gyrokinetic turbulent fluctua-
tions in the two formulations is clarified as shown in Appendixes C
and D. The turbulent parts of the gyrokinetic Poisson and Ampère
equations in Eqs. (75) and (82) are confirmed to agree with the results
derived from the classical gyrokinetic formulation using the WKB rep-
resentation in earlier works. Thus, these equations present a basic
model for global full-f gyrokinetic simulations which is also consistent
with the local turbulence model used in flux-tube gyrokinetic simula-
tions.42–46 Based on the presented Lagrangian, local energy and
momentum balance equations for the gyrokinetic system with electro-
magnetic turbulence and collisions can be derived following the same
formulation as given by our previous work in the case of electrostatic
turbulence.18 Details of the derivation will be reported in a future
work.
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APPENDIX A: GYROCENTER COORDINATES
AND EQUATIONS OF MOTION

We consider motion of a charged particle in a strong magnetic
field. The particle mass and charge are denoted by ma and ea,
respectively, where the subscript a represents the particle species.
The magnetic field is assumed to consist of the background part

B � r� A and the small fluctuation part bB � r� bA. The par-
ticle’s position and velocity are denoted by x and v, respectively.
The velocity v is written by the sum of the parallel and perpendicu-
lar components as

v � vkbþ v?; (A1)

where the unit vector b � B=B in the direction parallel to the mag-
netic field is evaluated at the particle’s position x. Using a right-
handed orthogonal triad of unit vectors ðe1; e2; bÞ which are
regarded as functions of ðx; tÞ, we represent the perpendicular
velocity as

v? � �v?ðsin n0 e1 þ cos n0 e2Þ; (A2)

where v? � jv?j. We now define the particle phase-space coordi-
nates z by

z � ðx; vk;l0; n0Þ; (A3)

where

l0 �
mav2

?
2Bðx; tÞ : (A4)

Using the Lie transformation technique, the gyrocenter phase-
space coordinates

Z � ðX;U ;l; nÞ (A5)

are obtained, such that the Lagrangian for the particle motion is
transformed into a function which is independent of the gyrophase
angle variable n, as shown later in Eq. (A20). The relations of the
gyrocenter coordinates Z � ðX;U ;l; nÞ to the particle coordinates
z � ðx; vk;l0; n0Þ are given by

X ¼ x � v?
Xa

aþ v?
X2

a

vkðb � r � bÞ � v?
2B
ða � rBÞ

� �
a

�
þ 2vkðb � rb � cÞ þ v?

8
ðc � rb � c� 5a � rb � aÞ

� �
b

	
þ 1

B
bA þ c

ea
reSa

� �
� bþ b

ð
dn0

fbAk" #
; (A6)

U ¼ vk �
v?
Xa

vkðb �rb � aÞþv?
4
ð3a �rb � c� c �rb �aÞ

� 	
þ ea

mac
bAk;
(A7)

l ¼ mav2
?

2B
þmav2

?
BXa

v2
k

v?
ðb � rb � aÞ

"

þ
vk
4
ð3a � rb � c� c � rb � aÞ þ v?

2B
ða � rBÞ

#

þ ea

B
1
c

v? � bA þ ewa

� �
; (A8)

and

n ¼ n0 þ
1
Xa

v2
k

v?
ðb � rb � cÞ þ

vk
4
ðc � rb � c� a � rb � aÞ

"

þv? c � rB
B
� a � rc � a

� �	
� ea

mac
@eSa

@l0
; (A9)

where Xa � eaBðx; tÞ=ðmacÞ, v? � ð2l0Bðx; tÞ=maÞ1=2, c � v?=v?,

a � b� c, bAk � bA � b, and the definitions of ewa and eSa are shown
later in Eqs. (A18) and (A19), respectively. Equation (A6) for the
gyrocenter position X is valid up to the second order in the
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normalized gyroradius parameter e, while Eqs. (A7)–(A9) are up to
the first order. When there are no fluctuation fields, the formulas in
Eqs. (A6)–(A9) agree with those given by Littlejohn,47 except that
Eq. (A7) is given here in a slightly different way, in order to remove
the OðeÞ term of the Hamiltonian in Ref. 47. The same procedure
as in Ref. 12 is used to include the effects of the fluctuation fields in
Eqs. (A6)–(A9).

We can inversely solve Eqs. (A6)–(A9) to represent the particle
position vector x by the function of the gyrocenter coordinates Z as

x ¼ X þ qaðZ; tÞ; (A10)

where the gyroradius vector qaðZ; tÞ is expanded in e as

qaðZ; tÞ ¼ qa1ðZ; tÞ þ qa2ðZ; tÞ þ � � � : (A11)

The lowest-order part of qa is given by

qa1ðZ; tÞ � bðX; tÞ � vcðZ; tÞ
XaðX; tÞ ; (A12)

where vc is defined by

vc � UbðX; tÞ �W sin n e1ðX; tÞ þ cos n e2ðX; tÞ½ � (A13)

and

W � 2lBðX; tÞ
ma

� �1=2

: (A14)

To the lowest order in e, the particle velocity v and the gyroradius
vector q � x � X are represented by vc and qa1, respectively. The
second-order part of qa is written as

qa2ðZ; tÞ � hqa2iens þ bqa2; (A15)

where the ensemble-average and fluctuation parts of qa2 are given
by

hqa2iens � b �W2

8X2
a

ð3a � rb � aþ c � rb � cÞ � 2UW

X2
a

ðb � rb � cÞ
" #

þa
c

XaB
ða � hE1iensÞ �

W2

2X2
a

ða � r ln BÞ
"

þUW

4X2
a

ða � rb � c� 3c � rb � aÞ�U2

X2
a

ðb � rb � aÞ
	

þc
c

XaB
ðc � hE1iensÞ �

W2

X2
a

ðc � r ln BÞ
"

þUW

4X2
a

ða � rb � a� c � rb � cÞ � U2

X2
a

ðb � rb � cÞ
	

(A16)

and

bqa2 ¼
b
B
� bA þ X þ qa1;

ebS a

n o
¼� c

BW
b/ � U

c
bAk � hbwain

� �
aþmacW

B2

@

@l

ð ebw a dn

� �
c

� 1
B
bA þ c

Xa
r
ð ebw a dn

� �� 	
� b� 1

B

ð ebA k dn

� �
b; (A17)

respectively. The definitions of h� � �in andeare given in Eqs. (3) and
(4), respectively, and bwa � wa � hwaiens is the fluctuation part of
wa, which is defined in terms of the electrostatic potential / and the
fluctuation part bA of the vector potential as

wa � /ðX þ qa1; tÞ � vc

c
� bAðX þ qa1; tÞ: (A18)

Here, we also define

eSa �
mac

B

ð ewadn; (A19)

where the integral constant is determined from the condition

heSain ¼ 0. We now note that ebA , ewa, and eSa are defined above as
functions of Z � ðX;U ; l; nÞ and t, although when they are
substituted into the formulas for the coordinate transformation
from z to Z [see Eqs. (A6)–(A9)], the independent variables

ðX;U ;l; nÞ for the functions ebA , ewa, and eSa should be replaced with
ðx � qa1ðz; tÞ; vk;l0; n0Þ to keep the validity of the formulas up to
the orders described after Eq. (A9). Here, the finite gyroradius qa1
cannot be neglected because fluctuations are considered to have
OðqaÞ wavelengths in directions perpendicular to B.

In the gyrocenter coordinates, the Lagrangian for the charged
particle of motion is given by

LGYaðZ; _Z; tÞ � ea

c
A�a � _X þmac

ea
l _n � HGYaðZ; tÞ; (A20)

where the modified vector potential A�a is defined by

A�a � AðX; tÞ þmac
ea

UbðX; tÞ �mac2

e2
a

lWðX; tÞ (A21)

and

W � re1 � e2 þ
1
2
ðb � r � bÞb: (A22)

Here, the gyrocenter Hamiltonian HGYa is defined by

HGYa �
1
2

maU2 þ lBþ eaWa: (A23)

The fluctuations are included in the Hamiltonian HGY a through the
term eaWa defined by

eaWa � eahwain �
ea

c
vBa � hbAin þ e2

a

2mac2
hjbAj2in � ea

2

D eSa; ewa

n oE
n;

(A24)

where f�; �g represents the Poisson bracket, defined by Eqs.
(29)–(33) in Ref. 12, and

vBa �
c

eaB
b� maU2b � rbþ lrB

� �
(A25)

is the first-order drift velocity consisting of the curvature drift and
the rB drift. On the right-hand side of Eq. (A24), the first term is
of OðeÞ and the others are of Oðe2Þ. There the third and fourth
terms are quadratic in the fluctuations, while the second term

�ðea=cÞvBa � hbAin is given by the product of the average drift veloc-

ity and the fluctuation vector potential. The latter term �ðea=cÞvBa �
hbAin is often neglected in conventional studies, although it is
retained here for accuracy up to Oðe2Þ.
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The gyrocenter equations of motion are derived from the
Euler–Lagrange equations using the gyrocenter Lagrangian in Eq.
(A20). Using the Hamiltonian in Eq. (A23), they are given in the
form

dZ
dt
¼ Z;HGYaf g þ Z;Xf g � ea

c
@A�a
@t

; (A26)

which are rewritten as12

dX
dt
¼ 1

B�ak
U þ ea

ma

@Wa

@U

� �
B�a þ cb� l

ea
rBþrWa þ

1
c
@A�a
@t

� �� 	
;

(A27)

dU
dt
¼ � B�a

maB�ak
� lrBþ earWa þ

ea

c
@A�a
@t

� �
; (A28)

dl
dt
¼ 0; (A29)

and

dn
dt
¼ Xa þW � dX

dt
þ e2

a

mac
@Wa

@l
; (A30)

where B�a and B�ak are defined in terms of A�a in Eq. (A21) as

B�a � r� A�a; and B�ak � B�a � b; (A31)

respectively. Since the gyrocenter Lagrangian LGY is independent of
the gyrophase variable n, the time derivatives of the gyrocenter vari-
ables do not depend on n and the magnetic moment l ¼ ðea=macÞ
ð@LGY=@ _nÞ is conserved, as seen in Eqs. (A27)–(A30). The gyrocen-
ter motion given by Eqs. (A27)–(A30) satisfies Liouville’s theorem,
which is expressed as

@DaðZ; tÞ
@t

þ @

@Z
� DaðZ; tÞ dZ

dt

� �
¼ 0; (A32)

where the Jacobian DaðZ; tÞ is given by

DaðZ; tÞ ¼
B�ak
ma

: (A33)

APPENDIX B: EXPANSION OF dX=dt AND dqa=dt IN e

In this appendix, dX=dt and dqa=dt are expanded in the nor-
malized gyroradius parameter e. To begin with, the zeroth-order
gyrocenter velocity is parallel to the background magnetic field and
given by

dX
dt

� �
0
¼ UbðX; tÞ; (B1)

which contains no fluctuation part. The first-order gyrocenter
velocity is written as

dX
dt

� �
1
¼ dX

dt

� �
1

* +
ens

þ
ddX
dt

� �
1
; (B2)

where the ensemble-averaged part and the fluctuation part are given
by

dX
dt

� �
1

* +
ens

¼ c
eaB

b� maU2b � rbþ lrBþ earh/1iens

� �
� vda; (B3)

and

ddX
dt

� �
1
¼ � ea

mac
hbAkinbþ c

B
b�rhbwain � bv ga; (B4)

respectively. Regarding the second-order gyrocenter velocity, only
its ensemble-averaged part is given here as

dX
dt

� �
2

* +
ens

¼� U
Xa
ðb � r � bÞ vda þ

lB
maXa

ðr �WÞ?
� 	

þ c
B
�rh/2iens �

1
c
@A
@t

� �
� b

� vda2: (B5)

The zeroth-order part of dqa=dt is given by the perpendicular com-
ponent of the particle velocity as

dqa

dt

� �
0
¼ Xa

@qa1

@n
¼ ðvcÞ?

� � 2lB
ma

� �1=2

sin n e1 þ cos n e2½ �: (B6)

The first-order part of dqa=dt is written as

dqa

dt

� �
1
¼ dqa

dt

� �
1

* +
ens

þ
ddqa

dt

� �
1
; (B7)

where

dqa

dt

� �
1

* +
ens

¼ Ub � rqa1 þW
@qa1

@n

� �
þ Xa

@hqa2iens

@n
(B8)

and

ddqa

dt

� �
1
¼ � ea

mac
ðfbAkbþ bA?Þ � c

B
b�rhbwain þ ðvcÞ?;

ebS a

n o
:

(B9)

The second-order ensemble-averaged part of ðc=eaÞMa is
derived from Eqs. (28), (B1), (B3), (B6), and (B8) as

c
ea

Ma

� �
2

* +
ens

¼ c
ea

ð
d6Z d3ðX� xÞðDa0fa1 þDa1fa0Þð�lbÞ

þ 1
Xa

ð
d6Z d3ðX� xÞDa0fa0Uvda

�
�2

c
ea

ð
d6Z d3ðX� xÞDa0fa0Ulb� ðb � rÞb

þ c
2ea

b�r
ð

d6Z d3ðX� xÞDa0fa0Ul

� �	
; (B10)

where Da0 and Da1 are given by
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Da0 ¼
B

ma
; Da1 ¼

c
ea

Ub � ðr � bÞ: (B11)

APPENDIX C: ZEROTH AND FIRST-ORDER
DISTRIBUTION FUNCTIONS

We here consider the zeroth and first-order distribution func-
tions in the normalized gyroradius parameter e, and present the
kinetic equations satisfied by these distribution functions. As for the
zeroth-order distribution function, Maxwellian and non-
Maxwellian cases are treated.

1. Case of Maxwellian zeroth-order distribution

To the zeroth order in e, Eq. (1) is written as

_Z0 �
@fa0

@Z
¼
X

b

CðpÞab fa0; fb0½ �; (C1)

where _Z0 represents the zeroth-order part of _Z � dZ=dt. The colli-
sion terms appear on the right-hand side of Eq. (C1) because the
collision frequency is regarded here as of the same order as the tran-
sit frequency xTa.

In Ref. 29, it is shown using Eq. (C1) and the property of the
collision operator regarding the entropy production that, in the
magnetic confinement system with nested toroidal magnetic surfa-
ces, the collision term vanishes and fa0 is the Maxwellian equilib-
rium faM distribution function with no means flow, and satisfies

b � rfaMðX; E c; tÞ ¼ 0; (C2)

where E c represents the zeroth-order particle energy given by

E c ¼
1
2

maU2 þ lBþ eah/1iens: (C3)

It should be noted that, in Eq. (C2), r � @=@X acts on faM with E c

fixed. Then we can write

fa0 ¼ faMðX;E cÞ

¼ na0
ma

2pTa0

� �3=2

exp � E c � eah/1iens

Ta0

� �
; (C4)

where na0; Ta0 and h/1iens need to be flux surface functions because
of Eq. (C2).

Next we find from Eq. (1) that the first-order ensemble-aver-
aged gyrocenter distribution function hfa1iens satisfies

_Z0 �
@hfa1iens

@Z
þ h _Z1iens �

@faM

@Z

¼
X

b

ðCðpÞab Þ
L hfa1iens; hfb1iens

� �
�
X

b

�
CðpÞab hfa1iens; fb0

� �
þ CðpÞab fa0; hfb1iens

� ��
n; (C5)

where ðCðpÞab Þ
L represents the linearized collision operator. Equation

(C5) is the so-called linearized drift kinetic equation, which is used
as a basic equation for the neoclassical transport theory.29–31

From the fluctuation part of Eq. (C10), the governing equation
for the first-order fluctuation part of the gyrocenter distribution
function is obtained as

@

@t
bf a1 þ bf a1;E c

n o
þ faM þbf a1; ehbwain
n o

¼
D

CðgÞab

� 
L bf a1;
bf b1

h iE
n;

(C6)

where effects of gyroradius scale perpendicular wavelengths of bf a1

are taken into account in defining the collision operator ðCðgÞab Þ
L by

ðCðgÞab Þ
L bf a1;

bf b1

h i
� eqa1�r ðCðpÞab Þ

L e�qa1�r bf a1; e�qb1�rbf b1

h i
: (C7)

Here, bf a1 is given by the sum of adiabatic and nonadiabatic parts as

bf a1 ¼ �
eahbwain

Ta0
faM þ bha; (C8)

which is substituted into Eq. (C6) to derive the equation for bha

@

@t
bha þ bha;E c þ ehbwain

n o
�
X

b

D
ðCðgÞab Þ

L bf a1;
bf b1

h iE
n

¼ ea
@hbwain
@t

faM

Ta0
� X; eahbwain
n o

� faMðX;E cÞ
@X

:

(C9)

2. Case of non-Maxwellian zeroth-order distribution

In the zeroth-order in e, Eq. (1) gives

_Z0 �
@fa0

@Z
¼ 0; (C10)

where the collision term is neglected by assuming the collision fre-
quency to be sufficiently small. It is seen from Eq. (C10) that the
zeroth-order distribution function f0 ¼ f0ðX;E c; lÞ satisfies

b � rfa0ðX;E c;lÞ ¼ 0; (C11)

where E c is defined in Eq. (C3) and r � @=@X acts on faM with E c

fixed in the same way as in Eq. (C2).
From the fluctuation part of Eq. (1), the governing equation

for the first-order fluctuation part of the gyrocenter distribution
function is obtained as

@

@t
bf a1þ bf a1;E c

n o
þ fa0þbf a1;eahbwain
n o

¼
X

b

D
ðCðgÞab Þ

L bf a1;
bf b1

h iE
n; (C12)

where the collision term is retained for including collisional effects
on gyrokinetic turbulence. Here, bf a1 is given by the sum of adiabatic
and nonadiabatic parts as

bf a1 ¼ eahbwain
@fa0ðX; E c;lÞ

@E c
þ bha; (C13)

which is substituted into Eq. (C12) to derive the equation for ha

@

@t
bhaþ bha;E cþeahbwain

n o
�
X

b

D
ðCðgÞab Þ

L bf a1;
bf b1

h iE
n

¼�ea
@hbwain
@t

@fa0ðX;E c;lÞ
@E c

� X;eahbwain
n o

�@fa0ðX;E c;lÞ
@X

: (C14)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052509 (2022); doi: 10.1063/5.0080636 29, 052509-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


It is found that the nonlinear gyrokinetic equation in Ref. 27 can be
reproduced from Eq. (C14) while neglecting the collision term and
using the WKB representation described in Appendix D.

Substituting Eq. (C13) into Eqs. (78) and (86), the gyrokinetic
Poisson and Ampère equations are written as

�r2b/ ¼ 4p
X

a

ea

ð
d3X dE c dl dn

X
r¼61

B
m2

ajUj

� d3ðX þ qa1 � xÞ ea
b/ @fa0

@E c
þ ea

b/ � U
c
bAk�hbwain

� ��
� 1

B
@fa0

@l
þ bha

	
(C15)

and

�r2bA ¼ 4p
c

X
a

ea

ð
d3X dE c dl dn

X
r¼61

B
m2

ajU j

� d3ðX þ qa1 � xÞ Ub ea
b/ � U

c
bAk � hbwain

� ���
� 1

B
@fa0

@l
þ bha

�
þ ðvcÞ? �hbwain

1
B
@fa0

@l
þ bha

� �	
; (C16)

respectively, where r � U=jU j and jU j � ½ð2=maÞðE c � lB
�eah/1iensÞ�

1=2 are used and the integration in E c and l are done
over the region defined by 0 
 lB 
 E c � eah/1iens.

It is useful to consider a case in which the distribution function
f ðpÞa in the particle coordinates is used instead of the distribution
function fa in the gyrocenter coordinates. These functions are
related to each other by

f ðpÞa ðx;E ; l0; n0; tÞ ¼ faðX;E c; l; n; tÞ; (C17)

where E and E c are used as independent variables instead of vk and
U, respectively. Here, following Ref. 25, E is defined by:

E � 1
2

mav2 þ eaU; (C18)

where U is the equilibrium electrostatic potential and corresponds
to h/iens in our notation. The relation between E c and E is written
as

E c ¼ E þ DE : (C19)

Then, using Eqs. (A7), (A8), (C3), and (C18), the fluctuation part
DbE of DE is obtained up to the leading order in e as

DbE ¼ ea
1
c

v � bA þ ebw a

� �
¼ ea

b/ � hbwain
� 


: (C20)

Equation (A8) is rewritten as

l ¼ l0 þ Dl (C21)

and the fluctuation part Dbl of Dl is given up to the leading order
in e as

Dbl ¼ ea

B
1
c

v? � bA þ ebw a

� �
¼ ea

B
b/ � 1

c
vkbAk � hbwain

� �
: (C22)

Noting that the zeroth-order parts of fa and f ðpÞa are both given by
the same function fa0, and using Eqs. (C13), (C20), and (C22), the

first-order fluctuation part bf ðpÞa1 of f ðpÞa is written as

bf ðpÞa1 ðx; E ; l0; tÞ

¼ bf a1ðx � qa1;E ;l0; tÞ þ DbE @

@E
þ Dbl @

@l0

� �
fa0ðx;E ;l0; tÞ

¼ ea
b/ @fa0

@E
þ ea

b/ � vk
c
bAk � hbwain

� �
1
B
@fa0

@l

þbhaðx � qa1; E ; l0; tÞ: (C23)

We find from using Eq. (C23) that Eqs. (C15) and (C16) are rewritten

in the well-known forms as �r2b/ ¼Pa ea
Ð

d6z0 d3ðx0 � xÞ bf ðpÞðz0Þ
andr� bB ¼ ð4p=cÞ

P
a ea
Ð

d6z0 d3ðx0 � xÞbf ðpÞðz0Þv0, respectively.

APPENDIX D: WKB REPRESENTATION

Here, we consider any variable Q, the fluctuation part bQ
of which has small wavelengths of the order of the gyroradius q in
directions perpendicular to the background magnetic field. Then,

we use the WKB (or ballooning) representation25–27 for bQ
bQðx; tÞ ¼

X
k?

bQk?ðx; tÞ exp iSk?ðx; tÞ
� �

; (D1)

where bQk?ðx; tÞ has the same gradient scale length L as that of the
equilibrium field, while the eikonal Sk?ðx; tÞ represents the rapid
variation with the wave number vector k? � rSk?ð� q�1Þ which
satisfies k? � b ¼ 0.

The first-order fluctuation part bf ðpÞa1 ðz; tÞ of the distribution func-
tion in the particle coordinates is given by the WKB representation as

bf ðpÞa1 ðz; tÞ ¼
X

k?

bf ðpÞa1k?
ðz; tÞ exp iSk?ðx; tÞ

� �
: (D2)

The first-order fluctuation part bf a1ðZ; tÞ of the gyrocenter distribu-

tion function and its nonadiabatic part bhaðZ; tÞ are given by the
WKB representation as

bf a1ðZ; tÞbhaðZ; tÞ

24 35 ¼X
k?

bf a1k?
ðZ; tÞbhak?ðZ; tÞ

24 35 exp iSk?ðX; tÞ
� �

; (D3)

where the gyrocenter position vector X is used in the eikonal
Sk?ðX; tÞ instead of the particle position vector x. From Eqs. (C13)
and (C23), we have

bf a1k?
¼ eahbwaink?

@fa0ðX;E c;lÞ
@E c

þ bhak? (D4)

and

bf ðpÞa1k? ¼ ea
b/k?

@fa0

@E c
þ ea

b/k? �
U
c
bAkk?�hbwaink?e�ik?�qa1

� �
� 1

B
@fa0

@l
þ bhak?e�ik?�qa1 ; (D5)
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respectively, and Eq. (C14) is rewritten as

@

@t
þ Ub � r þ k? � vda

� �bhak?

�
X

b

eik?�qa1

D
ðCðpÞab Þ

L bhae�ik?�qa1 ;bhbe�ik?�qb1

h iE
n

¼ �ea
@fa0

@E c

@

@t
þ i

c
B
ðb� k?Þ � rfa0

� �
hbwaink?

þ c
B

X
k0?þk00?¼k?

b � ðk0? � k00?Þ
� �

hbwaink0?
bhk00?

; (D6)

where

hbwaink? ¼ J0
k?W
Xa

� � b/k? �
U
c
bAkk?� �

þ J1
k?W
Xa

� �
W
c

bBkk?
k?

: (D7)

Here, J0 and J1 are the first and second-order Bessel functions,
respectively.

In the WKB representation, the fluctuation part of the gyroki-
netic Poisson’s equation in Eq. (C15) and that of the gyrokinetic
Ampère’s law in Eq. (C16) are given by

k2
?
b/k? ¼ 4p

X
a

ea

ð
dE c dl

X
r¼61

2pB
m2

ajU j
ea
b/k?

@fa0

@E c

�
þ ea

b/k? �
U
c
bAkk? � J0ðk?W=XaÞhbwaink?

� �
1
B
@fa0

@l

þ J0ðk?W=XaÞbhak?

	
(D8)

and

k2
?
bAk? ¼

4p
c

X
a

ea

ð
dE c dl

X
r¼61

2pB
m2

ajU j

� Ub ea
b/k? �

U
c
bAkk? � J0ðk?W=XaÞhbwaink?

� ���
� 1

B
@fa0

@l
þ J0ðk?W=XaÞbhak?

�
þ i

b� k?
k?

�WJ1ðk?W=XaÞ �eahbwaink?

1
B
@fa0

@l
þ bhak?

� �	
; (D9)

respectively. The component of Eq. (D9) in the direction parallel to
the background magnetic field is written as

k2
?
bAkk? ¼ 4p

c

X
a

ea

ð
dE c dl

X
r¼61

2pB
m2

ajU j
U

� ea
b/k? �

U
c
bAkk? � J0ðk?W=XaÞhbwaink?

� �
1
B
@fa0

@l

"

þ J0ðk?W=XaÞbhk?

#
; (D10)

where bAkk? � bAk? � b. Taking the inner product of Eq. (D9) and
�ib� k?=k? gives

�k?bBkk? ¼ 4p
c

X
a

ea

ð
dE c dl

X
r¼61

2pB
m2

ajUj

�WJ1ðk?W=XaÞ �eahbwaink?

1
B
@fa0

@l
þ bhak?

� �
; (D11)

where bBkk? � iðk? � bAk?Þ � b. It is found from the inner product
of Eq. (D9) and k? that the Coulomb gauge condition,
k? � bAk? ¼ 0, holds. Equations (D8), (D10), and (D11) agree with
the gyrokinetic Poisson and Ampère equations derived in earlier
works25,26 using the WKB representation.
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