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Turbulence Diagnostic Simulator is an assembly of simulation codes to clarify the formation mechanism of
turbulent structures by numerical diagnostics in magnetically confined plasmas. Global simulations are carried
out using a reduced MHD model of drift-interchange mode in helical plasmas, and time series data of 3-D
fluctuation fields are produced. It includes localized modes in their rational surfaces, and broad modes spread
in the radial direction. Magnitudes of nonlinear couplings from the convective derivative are evaluated in the
nonlinear saturated states. The radial profile shows that there exist strong mode excitation near the center, various
modes and nonlinear couplings with higher m modes in the middle radius, small number of propagating modes
near the edge, which contribute to the pressure profile modification. For the detection of the different features,
combination of several diagnostics is necessary.
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1. Introduction
It is important to clarify the role of turbulence on

anomalous transport in toroidal plasmas [1]. Progress in
experimental techniques enables to make quantitative es-
timation of turbulence transport with high resolution mea-
surements of fluctuations [2]. Global simulations give long
time series of three-dimensional turbulent fields, and anal-
yses simulating experimental diagnostics on the fields can
show how the characteristic feature is observed with con-
sideration of physical mechanism and spatio-temporal res-
olution of the diagnostics [3]. This numerical diagnostic
or synthetic analysis [4, 5] is useful for cross-validation
between experiments and simulations. For that purpose,
we have been developing Turbulence Diagnostic Simulator
(TDS), which is the combination of fluid turbulence codes,
measurement modules and analysis routines, to carry out
numerical experiments of turbulent structural formation
[6]. We have carried out analyses for a linear device, and
clarified elementary processes by comparing with the ex-
perimental results [7, 8]. In this paper, drift-interchange
modes with a simplified helical plasma model are ana-
lyzed, using the TDS. Nonlinear energy transfer rate is
evaluated to show multiple interactions of excited modes
in the case with radially-spread modes, and the way for
detection of the characteristic mechanism is discussed.
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2. Model
To provide turbulence data, a simulation code has

been developed to calculate the drift-interchange turbu-
lence in helical plasmas with a circular cross-section [3].
The set of model equations consists of charge conserva-
tion, parallel component of induction equation and sum of
pressure evolution equations:

�∇ · �J = 0, (1)
∂A
∂t
+ E// = �B · �∇u, (2)

∂P
∂t
+

∑
s=i,e

[(�vs · �∇)Ps + γPs
�∇ ·�vs] = 0, (3)

where �J is the current, �B is the magnetic field, u is the
stream function, A and E// is the parallel component of
the vector potential and electric field, respectively, and γ is
the specific heat ratio. Ps and �vs are the pressure and ve-
locity of each component, where s = i and e corresponds
to a quantity of ions and electrons, respectively and P
is the sum of the pressure of ions and electrons. Here,
�vi⊥ = �ve⊥ = �v⊥ = �E × �B/B2 ∼ �E × ζ̂/B0 is assumed
for simplicity, and �v⊥ = �∇u × ζ̂ leads u = -φ/B0, where
�ζ denotes the unit vector in the toroidal direction and B0 is
the toroidal magnetic field of the leading order. Heat flux
term is neglected in Eq. (3) for simplicity. The ordering
and averaging method with the stellarator expansion [9]
is applied to give a set of model equations for u, A and P.
Noted that orderings ve// = O(ε) and ∇//ve// =O(ε) are used
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to include the parallel dynamics of electrons, where ε is the
inverse aspect ratio. In that case, the flow can be compress-
ible, so the third term in the left hand side of Eq. (3) is kept
in the model. Currents

�J⊥ = −
(
nimi

d�vi
dt
+ �∇⊥P

)
× �B

B2
, (4)

which is given from one-fluid equation of motion

nimi
d�v
dt
= −�∇P + �J × �B, (5)

and

�J// = σ�B, (6)

are substituted into Eq. (1) to give

−nimi

B0

d
dt
∇2
⊥u = �B · �∇σ +

�∇B2 × �∇P
B4

· �B, (7)

where μ0σ = −∇2⊥A/B0, μ0 is the permeability, ni and mi

is the density and mass of ions, respectively. The parallel
component of the electron equation of motion (Ohm’s law)
with charge neutrality condition ni = ne = N

E// = ηJ// − ∇//Pe

Ne
, (8)

is substituted into Eq. (2) to give

∂A
∂t
+ ηJ// = �B · �∇

(
u +

Pe

NeB0

)
, (9)

where η is the resistivity. Equation (3) is reduced to

∂P
∂t
+

(
�∇u × ζ̂

)
· �∇⊥P + γP�∇⊥ ·

(
�∇u × ζ̂

)

−γPe∇// ∇
2⊥A

μ0Ne
= 0. (10)

In the helical plasmas, the external helical magnetic
field produces the short-wavelength variation comparable
to the helical pitch length, but a tractable model can be ob-
tained by averaging the variation for the analysis of insta-
bility. The averaging procedure [9] is applied on Eqs. (7),
(9) and (10) to give the following set of model equations:

∂∇2⊥u

∂t
=

[
u,∇2

⊥u
]
+ ∇//∇2

⊥A + [Ω, P] + μ∇4
⊥u, (11)

∂A
∂t
= ∇// (u + αP) + η∇2

⊥A, (12)

∂P
∂t
= [u, P] −C(α∇//∇2

⊥A + [Ω, u]) + χ∇2
⊥P + S ,

(13)

where ∇// = ∂/∂ζ̄ + [ ,Ψ ], Ψ = A − Ψ0, Ψ0 =

−(1/2)∇〈Φ〉 × ∇Φ, Φ is the magnetic potential, α =
VA/(2Ωcia), C = γβ, β = P0 / (B2

0/2μ0), S is the pressure
source, VA = B0/

√
μ0nimi is the Alfvén velocity, Ωci is the

ion cyclotron frequency, a is the minor radius, μ is viscos-
ity, χ is thermal conductivity, F is the average of F over

the helical pitch length, 〈F〉 is the integral of F with re-
spect to ζ whose integral constant is given by the condition
〈 〉 = 0, and [ ] is the Poisson bracket. In this model,
the helical magnetic field produced by the helical wind-
ings is given with Bh = ∇Φ. The total magnetic curvature
Ω = 2r cos θ+(∇Φ)2 is composed of the toroidal (1st term)
and helical (2nd term) curvatures. The toroidal magnetic
field is inversely proportional to the major radius, so the
toroidal curvature can be approximated to be proportional
to the minor radius r. The helical field has the order of
ε1/2 in the stellarator expansion, so its square appears in
this order. The following normalizations are used in the
model equations: u/ (εaVA) → u, A/ (εaB0) → A, P/
(εB2

0/μ0) → P, t/tA → t, and r/a → a, where tA = a/εVA

is the Alfvén time. The model is extended from that in
Ref. [9] to include the parallel dynamics of electrons, and
the magnetic curvature term in the pressure evolution equa-
tion to satisfy the energy conservation as

∂

∂t
(Eϕ + EA + Ep)

= −
∫ [
μ(∇2

⊥u)2 + η(∇2
⊥A)2 + χ(∇⊥P)2

]
dr3

+

∫
PS dr3, (14)

where Eϕ =
∫

dr3(∇⊥u)2/2, EA =
∫

dr3(∇⊥A)2/2 and
Ep =

∫
dr3P2/(2C). Coefficient C has dependency on the

pressure, so P2 / C can be considered to be the quantity
related to the energy.

By setting parameters α and C to be zero, the model
reproduces the resistive interchange mode, which is local-
ized in the rational surface. For nonlinear simulations in
this paper, the magnetic curvature term in the pressure evo-
lution equation is omitted to obtain more dynamical satu-
rated states, whose time series data is used as target data for
numerical diagnostics. Nonlinear terms that include α or C
are also omitted for simplicity. This model is used as the
fundamental one not for electrostatic turbulence, but for
including MHD modes, oscillatory modes and their non-
linear coupling.

Equations (11-13) are solved in the toroidal coor-
dinates with the spectral expansion in the poloidal and
toroidal directions. The boundary conditions in the radial
direction are set to F = 0 at r = 0, 1 when m � 0, and
∂F/∂r = 0 at r = 0, F = 0 at r = 1 when m = 0, where F
implies {u, A, P}, m is the poloidal mode number, and r =
1 gives the outer boundary of the plasma.

3. Dynamical Saturation
A nonlinear simulation is performed, using the follow-

ing parameters: magnetic field B0 = 2.0 [T], density N =
1 × 1019 [m−3], beta ration β = 0.03, minor radius a =
0.6 [m], major radius R0 = 3.75 [m] and specific heat ratio
γ = 5/3. These parameters gives α = 0.06 and C = 0.05.
The pressure source is fixed to be
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Fig. 1 Time evolutions of the energy of Fourier modes. The
mean and fluctuating internal energies are shown.

S (r) =
4S 0χ

L2
N

⎡⎢⎢⎢⎢⎢⎣1 −
(

r
LN

)2⎤⎥⎥⎥⎥⎥⎦ exp

⎡⎢⎢⎢⎢⎢⎣−
(

r
LN

)2⎤⎥⎥⎥⎥⎥⎦ , (15)

with S 0 = 0.15, LN = 0.6 [m], which forms the profile
peaked at r = 0. The magnetic potential is given by

Φ = 2ΦlIl(hr) sin(lθ + hζ), (16)

where Il is the modified Bessel function, l is the pole num-
ber of the helical winding, h = M/R0, M is the pitch num-
ber and Φl is a constant coefficient. In this case, l = 2, M
= 10 and Φl = 0.71 are used, which give rotational trans-
form ι to be a monotonically increasing function with the
radius from ι (0) = 0.51 to ι (a) = 1.5, so rational surfaces
with m/n = 1/1 and 3/2 are included, but 2/1 is not in the
plasma, for example, where m and n are the poloidal and
toroidal mode number, respectively. Coefficients μ, η and
χ are set to 1 × 10−4 as numerical viscosities. The differen-
tial equations in the radial direction are solved with 1024
radial grids, and Fourier modes −32 ≤ m ≤ 32, −8 ≤ n ≤ 8
are taken.

Spatio-temporal data of turbulent fields are gener-
ated by this global simulation. Figure 1 shows the time
evolutions of the fluctuating internal energy Ep mn =∫

dr3P2
mn/(2C). The simulation begins with a flat pressure

profile in the initial state, and the flux-surface averaged
pressure ((m, n) = (0, 0) component) increases by the pres-
sure source. At t ∼ 200, nonlinear terms drive the growth
of n = 1 modes. Low m, n modes whose rational surfaces
exist in the plasma become unstable after t ∼ 300, and non-
linear saturation is obtained in t ∼ 800. In the saturated
state, mode structures of low m, n modes, such as (m, n) =
(1, 1) and (2, 1), spread broadly in the radial direction, and
those of medium m, n modes, such as (3, 2) and (5, 5), are
localized near their rational surfaces, as shown in Fig. 2.
With the existence of these localized modes, flattening of
the mean profile occurs at the rational surfaces as shown
in Fig. 2 (c). The snapshot of the pressure fluctuation is
shown in Fig. 3. There exist various sizes of vortexes in
the poloidal cross-section, which rotate in the poloidal di-
rection and are mixed with each other. Figure 4 shows the
radial profile of the poloidal mode number spectrum and
the frequency spectrum. There are low m modes spread

Fig. 2 Snapshots of eigenfunction of (a) the (2, 1) mode and
(b) (5, 5) mode of the pressure at t = 6000, where solid
and dashed lines represent the real and imaginary part, re-
spectively. The vertical line in (b) represents the position
where the rational surface 1/1 exists. (c) Mean pressure
profile at t = 6000 and rotational transform profile.

Fig. 3 Snapshots of 3-D structure of the pressure fluctuation at t
= 6000.

Fig. 4 Radial profile of (a) the poloidal mode number spectrum
and (b) frequency spectrum of P.
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in the radial direction, so mutual couplings with several
modes are possible, due to the overlapping of the modes,
though these modes have no characteristic frequency.

The φ00 component, whose radial variation gives a
mean poloidal flow, is also produced in the saturated state.
The φ00 component has a characteristic frequency f ∼
0.02, and its radial structure is rather global, though there
exists perturbations with radial mode number Kr = 3 - 9 in
some moments.

4. Nonlinear Energy Transfer
The contributions to energy evolutions from nonlin-

ear couplings are evaluated in the saturated states to under-
stand the spatial variation of the structural formation mech-
anism.

As for the pressure fluctuations, the evolution equa-
tion of the internal energy includes the contributions from
the linear term (LT, 1st term in the right hand side of the
following equation) and nonlinear terms from the convec-
tive derivative (NT1, 2nd term):

∂EPm n

∂t
=

1
2C

∫
dr3P∗

×
{(
∂u0

∂r
∂P
r∂θ
− ∂P0

∂r
∂u
r∂θ
− αC

∂∇2⊥A

∂ζ
+ αC

∂Ψ0

∂r

∂∇2⊥A

r∂θ

)
mn

+[u, P]mn + S mn}. (17)

Figure 5 shows the radial profile of the nonlinear contribu-
tion to formation of the (m, n) = (0, 0) component of the
pressure (P00), where NT1 is decomposed into one with
each poloidal mode number. In red regions, the P00 com-
ponent gets the energy from modes with poloidal mode
number m, and in blue regions, vice versa. The radial pro-
file of NT1 indicates the characteristic regions; r/a < 0.3:
strong mode excitation, 0.4 - 0.7: existence of various
modes, > 0.8: existence of small number of dominant
modes, corresponding to the different features shown in the
spectrums in Fig. 4 (a). The dominant mode to contribute
to the P00 component changes according to the radial po-
sition, as indicated by the marks in Fig. 5 (a). There are
low m modes (1 ≤ m ≤ 3) widely spreading in the radial
direction (Fig. 5 (b) 1)), which contributes to the nonlinear
structural formation, especially in r/a < 0.3. In addition,
there is a radial region where nonlinear couplings with
higher m modes contribute to the pressure profile modi-
fication in r/a = 0.5 - 0.7 (Fig. 5 (b) 2)). The profile mod-
ification arises in this region, and propagates to the other
regions.

As for the flow generation, the evolution equation of
the electrostatic potential energy includes the contributions
from the linear term (LT, 1st term in the right hand side of
the following equation), ballooning term to give a linear
coupling with neighboring modes (TC, 2nd term), nonlin-
ear terms from the convective derivative (NT1, 3rd term)

Fig. 5 Radial profile of the nonlinear contribution to the P00

evolution, which is decomposed into each poloidal mode
number component. (a) Mode numbers of the main con-
tributors on each peak and (b) characteristic regions of
the nonlinear couplings are also shown.

the parallel derivative (NT2, 4th term):

∂Eϕm n

∂t
= −

∫
dr3u∗

×
{(
∂u0

∂r

∂∇2⊥u

r∂θ
− ∂∇

2⊥u0

∂r
∂u
r∂θ
+
∂∇2⊥A

∂ζ
− ∂Ψ0

∂r

∂∇2⊥A

r∂θ
+
∂Ω0

∂r
∂P
r∂θ

)
mn

+

(
2 cos θ

∂P
r∂θ
+ 2 sin θ

∂P
∂r

)
mn

+
[
u,∇2

⊥u
]
mn
+

[
∇2
⊥A, A

]
mn

}
.

(18)

NT2 comes from electromagnetic fluctuations in the ∇//J
term. The volume integration of each term shows that TC
is the largest, so the main cause of the φ00 oscillation is the
coupling between φ00 and P±10.

For P10, competition between negative LT and pos-
itive NT1 determines the evolution, so both the profile
modification, which contributes to the variation of LT, and
the nonlinear couplings, which contribute to NT1, must be
taken into account. As is shown in Fig. 6, there is a region
where the contributions from modes with higher m mode
numbers are strong in r/a = 0.5 - 0.8. The region is not
the same with Fig. 5 (a), depending on the effective 3-wave
couplings.

For φ32, which has large amplitude, LT+TC and
NT1+NT2 are comparable. Among the nonlinear contri-
butions, NT2 is larger than NT1, and bursts of NT2 affect
the evolution. Term NT2 is the contribution from A varia-
tions, whose energy evolution equation includes the contri-
butions from the linear term (LT, 1st term in the right hand
side of the following equation) and nonlinear terms from
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Fig. 6 Radial profile of the nonlinear contribution to the P10 evo-
lution.

the convective derivative (NT1, 2nd term):

∂EAm n

∂t
= −

∫
dr3∇2

⊥A∗

×
{(
∂(u0 + αP0)
∂r

∂A
r∂θ
+
∂(u + αP)
∂ζ

− ∂Ψ0

∂r
∂(u + αP)

r∂θ

)
mn

+ [u, A]mn

}
. (19)

5. Summary and Discussion
Here we analyze the spatial variation of nonlinear

coupling to evaluate the non-local behavior in a turbulent
plasma. Global simulations are carried out using a reduced
MHD model of drift-interchange mode in helical plasmas.
Time series data of 3-D fluctuation fields are obtained, and
the nonlinear mechanism with existence both of localized
modes and radially-spread modes is analyzed by calcu-
lating the nonlinear contributions to the energy evolution.
The dominant mode changes according to the radial posi-
tion. It is shown that low m modes widely spreading in
the radial direction contributes to the structural formation
near the center, and the nonlinear couplings with higher m
modes in the middle radius contribute to the pressure pro-
file modification. As for the flow generation, the toroidal
coupling induces the potential oscillation.

The phenomena described in this simulation is the
case with dynamical coupling of modes excited at each ra-
tional surface, and widely spread in the radial direction,
which gives large correlation between separated radial po-
sitions. The radial profiles of nonlinear contribution, as
shown in Figs. 5 and 6, are instructive for the experimen-
tal detection of this kind of phenomena. For the detection,
combination of several diagnostics is necessary. There are
three characteristic regions as shown in Fig. 5 (b). In the
region 1, there exists widely spread low m mode, which
connects the core and edge, so the measurement covering
wide range of radius, such as the electron cyclotron emis-
sion measurement is suitable [10]. In the region 2 in the
middle radius, couplings in wide range of wave number
are important, so 2-D fine structure measurement, such as
beam emission spectroscopy and multi-channel heavy ion

beam probe [11], is necessary. In region 3, there are propa-
gating modes, and reflectometor or electrostatic probes can
be applied for this region near the edge [12]. Therefore,
measurements covering the wide spatial range and local-
ized measurements with high resolution can identify the
nonlinear mechanism. We also carried out simulations of
diagnostics, such as the heavy ion beam probe [3] and the
beam emission spectroscopy [13]. In these simulations, ef-
fects of the finite spatial resolution are estimated to deepen
our knowledge on what is observed with the experimental
diagnostics.

Response to active control with additional modula-
tion, such as by pellet injection [14] and electron cyclotron
heating [10], is studied in experiments to clarify the non-
local effect in plasma transport. Motivated by these exper-
iments, we carried out the simulation to show the response
to the pressure source modulation to clarify the role of each
mode. By adding the periodic source modulation near the
center, and extract the typical response with conditional
averaging, the nonlinear dynamics described in this paper
can be illuminated. The result will be reported in the sepa-
rated article.

In this way, turbulence analysis using simulation data
can give the insight for the physical mechanisms in plas-
mas. Common methods can be applied to various simula-
tion data for the cross-validation using the TDS.

Acknowledgments
Authors acknowledge discussions with Prof. A. Fuji-

sawa, Prof. K. Ida, Prof. A. Fukuyama, and Dr. Y. Na-
gashima. This work is supported by the Grant-in-Aid for
Young Scientists (24760704) and for Scientific Research
(23244113, 21224014) of JSPS, by the collaboration pro-
gram of NIFS (NIFS11KNST013, NIFS12KNTT012) and
of RIAM of Kyushu University.

[1] See reviews, e.g. P.H. Diamond et al., Plasma Phys. Con-
trol. Fusion 47, R35 (2005).

[2] See reviews, e.g. A. Fujisawa, Nucl. Fusion 49, 013001
(2009).

[3] N. Kasuya et al., Plasma Sci. Technol. 13, 326 (2011).
[4] C. Holland et al., Phys. Plasmas 16, 052301 (2009).
[5] L. Lin et al., Phys. Plasmas 16, 012502 (2009).
[6] N. Kasuya et al., Proc. 23rd IAEA Fusion Energy Confer-

ence, Daejeon, Korea (2010) THC/P4-15.
[7] T. Yamada et al., Nature Phys. 4, 721 (2008).
[8] N. Kasuya, M. Yagi, S.-I. Itoh and K. Itoh, Phys. Plasmas

15, 052302 (2008).
[9] M. Wakatani, Stellarator and Heliotron Devices (Oxford

University Press, Oxford 1998).
[10] S. Inagaki et al., Phys. Rev. Lett. 107, 115001 (2011).
[11] A. Fujisawa et al., Phys. Rev. Lett. 93, 165002 (2004).
[12] Y. Nagashima et al., Phys. Rev. Lett. 95, 095002 (2005).
[13] N. Kasuya et al., Proc. 38th EPS Conf. on Plasma Phys.,

Strasbourg, 2011, P4.113.
[14] N. Tamura et al., Nucl. Fusion 47, 449 (2007).

2403070-5


