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Nonlinear evolution of the tilting instability in a field-reversed configuration (FRC) is
investigated by means of a three-dimensional full magnetohydrodynamic simulation. Three
types of plasma model are considered, i.e., case (a) where the plasma is confined by a uniform
external field, case (b) where the plasma is confined by a mirror external field, and case (¢)
where the plasma rotates around the major axis. For the prolate FRC, the internal tilt mode
cannot stay at a low amplitude but keeps growing irrespective of whether the mirror field exists
or not. When the initial configuration is substantially deformed, the instability triggers an
external mode at the plasma-vacuum boundary because of the pressure imbalance. The
outgoing flow driven by the external mode tears the plasma into two pieces, and the torn pieces
move away toward the axial edges. The growth time is nearly equal to the transit time for the
Alfvén wave to propagate over the plasma length. When the plasma is driven to spin with the

Mach number of M = 1.5, the growth rate is halved compared to the nonrotating case. The
spin stabilization is expected to be complete for M > 2.5. It is also found that the oblate FRC
plasma is linearly unstable against the external tilt mode.

I. INTRODUCTION

The field-reversed configuration (FRC) is attractive in
the sense that a high-beta plasma can be confined by a simple
magnetic geometry. Linear analysis!= predicts that an elon-
gated prolate FRC becomes unstable against the internal tilt
mode. However, no experimental evidence* has so far been
reported on the tilt disruption in the magnetohydrodynamic
(MHD) time scale predicted by the linear analysis. The ex-
planation proposed by Barnes et al.® and Ishida e a/.% is that
the ion kinetic effect stabilizes the internal tilt mode when
the spatial scale of the FRC plasma is comparable to the ion
Larmor radius. If we extend the present device to reactor
size, the device scale would be several hundred times larger
than the ion Larmor radius.” Then, the ion kinetic effect
would be greatly reduced and the tilting instability would
increase in power. One hope is that some nonlinear satura-
tion mechanism could protect the FRC plasma from the de-
structive growth of the tilt mode.

In order to examine the nonlinear saturation effect, it
would be best at present to investigate the nonlinear evolu-
tion of the tilt mode by means of a full MHD simulation.
Moreover, the investigation may provide us with some infor-
mation on a minimum energy state of the high-beta plasma.

There are two difficulties to be overcome in carrying out
the simulation of the FRC plasma. The first difficulty is that
one must deal with a system that contains both the plasma
and the vacuum. The second one is how to treat a numerical
singular point originating from the character of the chosen
coordinate system. For example, the cylindrical coordinates
(r,¢,2), which will be used in this paper, have a singular
point at the central axis 7 = 0. In order to overcome these
difficulties we developed a new simulation code with fourth-
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order accuracy both in space and time, which is superior to
the previously used code® in clarifying the nonlinear evolu-
tion of the tilting instability.

The purpose of this paper is to investigate the nonlinear
evolution of the tilt mode in a field-reversed configuration
and clarify the mechanism leading to the tilting instability.
In Sec. IT we describe the fourth-order-accuracy simulation
code and three types of simulation models. The results ob-
tained from the simulation are discussed separately for each
model in Sec. II1. Finally we give a brief discussion in Sec.
Iv.

Il. NUMERICAL SCHEME AND SIMULATION MODEL

Let us describe the numerical scheme that relies on the
explicit finite-difference method with fourth-order accuracy
both in space and time. The spatial derivative of a variable
F(x) is expressed in the central differencing form as

dF(x)) 1 . .
= =—[—F(j+2)+8F 1
( oy N 12Ax[ (j+2)+8F(j+1)

=8F(j -1 +F(j-2)], (hH

based on the Taylor expansion up to the fourth order of the
grid separation Ax, where j denotes the grid address along
the spatial coordinate x. If we rewrite the spatial derivatives
to the central differencing form by using the relation (1), we
can deal with a set of partial differential equations as simul-
taneous ordinary differential equations in respect to time ¢.
Then, we apply the fourth-order Runge-Kutta-Gill
(RKG) method® in order to solve the equations and obtain
the temporal evolution. The numerical error of this scheme
can be estimated using a set of two linearized equations with
plane wave solutions as f;, (x,2) = f, exp(ikx — iwt) and
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h,(x,t) = — k /of, (x,t). If f(x,t) and h(x,?) satisfy the ex-
actsolutions f, (x,t) and /1, (x,2) at z = #,, the value of f (x,t)
at the next time step t = 7, + At is given by

f(xJo + At) =g(a’0)f(x;to), (2)
where
H? H?® H*
A =14+H+4— 4+ —+—,
g(@f) =1+H+=—+ =+

H= —i(a/3)(4 — cos 28)sin 26,
a=wAt/kAx, G=kAXx/2.

Setting g(a,0) equal to |g|exp( — 2iaf — i AD), we can es-
timate the amplification factor |g| and phase error A®. Fig-
ure 1 shows the a dependence of |g| for 8 = 7/4 (top) and
the 8 dependence of AP for a=0.8 (bottom) at
t =ty + 8k Ax/w, where the results of the two-step Lax—
Wendroff (LW) method'® are also shown for comparison.
The fourth-order RKG scheme is more appropriate for nu-
merical simulation for the following reasons. In order to ob-
tain a physically reliable result it is necessary to carry out the
simulation run under the condition that the amplification

factor is always a little smaller than 1. Figure 1 shows that -

the condition is satisfied in the wide range of « for the fourth-
order RKG scheme while it is satisfied only in narrow re-
gions for the two-step LW method, ie., 0 <a <0.1 and
0.9 <a < 1.0 (these regions are somewhat variable depen-
dent on the wavelength we pay attention to). The operation
of 0.9 < a < 1.0 is not appropriate to describe the nonlinear
evolution because the system condition will change both in
space and time and hence may happen to step in the numeri-
cally unstable region of @ >1 (Courant-Friedrichs-Lewy
condition’"). For practical use the operation at 0 < <0.1is
needed for the two-step LW method. On the other hand, it is
possible to carry out the fourth-order RKG scheme in the
vicinity of @ = 1. In other words, we can employ a time step
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FIG. 1. The amplification factor |g| for the case of @ = 7/4 (top) and the
phase error A® for the case of & = 0.8 (bottom) at ¢ = f, + 8k Ax/w. The
line RKG shows the result of the fourth-order Runge-Kutta-Gill scheme
while the line LW shows the result of the two-step Lax—Wendroff scheme.
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somewhat larger than that of the two-step LW scheme. The
leapfrog scheme'® has also been studied as an alternative
method to reduce the numerical diffusion. '

The new scheme is found to be numerically stable if the
condition & < 1.5 always holds for a periodic boundary prob-
lem. However, a numerical error accumulates against a grid-
size mode for a bounded problem because the fourth-order
central differencing cannot be applied to the spatial deriva-
tives at the boundary and one mesh point from the boundary.
That is, the four-point (not centered) differencing method is
used at one mesh point from the boundary and the three-
point differencing method is used at the boundary in this
paper. Fourth-order artificial smoothing technique is thus
introduced to exclude the numerical error of the grid-size
mode. The technique is as follows: let the value of a variable
on the grid j be denoted by F( j). Then, the smoothing pro-
cess is expressed by the replacement as

F(J)-F()(1 — M) + ML F( ), (3)
where M, = § and
FMN=[-FG++4F(+D
+4F(j—1)—F(j—2)]/6

is the fourth-order average value of F( ). This replacement
can be interpreted as the smoothing through a low-pass filter
in the Fourier space. Figure 2 shows the filter functions of
the fourth-order scheme (solid line) and the second-order
scheme (dashed line) where the second-order smoothing is
obtained by setting (F( j)) equal to the second-order aver-
agevalue [F(j+ 1) + F(j—1)1/2and M, to }in Eq. (3).
It is clear that this fourth-order smoothing keeps small
wavenumber modes almost unchanged while it excludes
large wavenumber modes more effectively compared with
the second-order scheme.

Now we give the resistive full MHD equations in dimen-
sionless units which are to be solved by means of the fourth-
order scheme described above:

9

—_— —V' ) 4

En (pv) 4)
av .

pb7= —p(vV)v—Vp 4+ jxXB, (3)

Low pass filter
L]

0.0

1
L
32
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| |-
(I

3
kAx/(2m)

FIG. 2. Wavenumber dependence of the filter function for the second-order
scheme (dashed line) and the fourth-order scheme (solid line).

R. Horiuchi and T. Sato 582



JdB

— =V X (vXB — 7j), (6)
dat
a_U= _v-g, (7)
at

where

g={U+p+ (BB)/2]v— (Bv)B + 7jXB,
j=VXB, U=p(vv)/2+ pe+ (BB)/2,

and € is the internal energy per unit mass,  is the electrical
resistivity, p is the thermal pressure, p is the matter density,
and v is the matter velocity. The equation of state is assumed
to be

e=p/lply— 11, (8)

where ¥ is the ratio of specific heats.

Since the tilt mode is essentially ideal and its time scale is
given by the Alfvén transit time, '~ the resistive process does
not play an important role. In this work, a uniform resistiv-
ity, which corresponds to the magnetic Reynolds number
S, = 10%, is assumed for simplicity. The initial pressure and
density profiles are assumed to be

_ {Po[(q)o— D)/ (0, — P,)]% if ®<D, )
2= 1o, if ®>b,,
p = po(p/Po)"", (10)

where @ is the poloidal flux function and @, ( <0) is its
value on the field null point (the “‘o” point of a magnetic field
line); a, pg, po, and P, are constants. The magnetic separa-
trix is expressed by the relation ®(r,z) = 0. If &, =0, the
magnetic separatrix coincides with the plasma-vacuum
boundary. If ®, > 0, the plasma can extend outside the mag-
netic separatrix.

Three types of plasma model are considered in a cylin-
drical conducting vessl: case (a), where the plasma is con-
fined by a uniform external field and the periodic boundary
condition is imposed at two axial edges; case (b), where the
plasma is confined by a mirror external field and the fixed
boundary condition is imposed at two axial edges; and case
(c), where the plasma rotates around the major axis in a
uniform field with the axially periodic boundary condition.
The initial equilibrium state is obtained by solving the Grad-
Shafranov equation by an iteration method."? The initial per-
turbation is assumed to be

v, = vo(p/po) = 1’7 cos(ne), (11)

so that both the internal and external tilt modes can be in-
duced. Here n is the toroidal mode number, ¢ is the azi-
muthal  coordinate, and v, =10"%v,,, U,

= J(B*B)/p,; {F(x)) means the volume average of F(x) in
the plasma region.

We carry out several simulation runs to obtain appro-
priate simulation parameters. Almost the same results are
obtained from the three runs where the numbers of the grid
points along the radial coordinate n, are 33, 49, and 65,
respectively. Figure 3 shows the temporal evolution of the z
component of the kinetic energy for the cases where the
numbers of the grid points along the azimuthal coordinate
ny are4, 8,12, and 16, respectively. It should be noted in Fig.
3 that the artificial smoothing reduces the growth rate of the
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FIG. 3. Temporal evolution of the zcomponent of the kinetic energy for the
cases where the number of the grid points along the azimuthal coordinate
n, is equal to 4 {dotted—dashed line), 8 (dotted line), 12 (dashed line), and
16 (solid line), respectively.

tilt mode and the results look as if the system was stable
against the tilt mode for n, = 4 (dotted-dashed line). Asn,
increases, the growth rate becomes larger and approaches
the theoretical value. Since the main interest of this paper is
in the behavior of the n = 1 mode, it is sufficient to fix the
number of the azimuthal grid points 7, to 16. Thus the simu-
lation domain is implemented on a (65X 16X 65) point grid
in cylindrical coordinates (r,¢,z). The aspect ratio of the
simulation cylinder z_/r, is equal to 10 for the prolate FRC
and 4 for the oblate and spherical FRC’s. The time step is
adjusted to satisfy the relation a< 1 everywhere. The depen-
dence of the result on the smoothing frequency is also
checked. Itis found that the » = 1 mode evolves almost inde-
pendently of the smoothing frequency while the high »
modes comparable to the grid-sized wavelength tend to be
suppressed at low amplitudes as the frequency increases. We
carry out the smoothing once at every four time steps in the
present simulation.

Il. SIMULATION RESULTS
A. Uniform field case

Four simulation runs with different values of o are car-
ried out in the uniform external field. The simulation param-
eters are given in Table I, where Z,, is the plasma length
along the z axis, R,, is the radial distance of the magnetic
separatrix, 3., is the average plasma beta corresponding to
the external magnetic field on the midplane, ®, is the poloi-
dal magnetic flux in the plasma region, and ®,, is the exter-
nal magnetic flux. The initial configurations of the magnetic
field are plotted in Fig. 4. The shape of the magnetic separa-
trix becomes more prolate and the external beta ., in-

TABLE I. Simulation parameters.

o Ry,/r.  Zy/r.  Z,/R, B /P,
21 0.96 2.69 2.80 0.56 3.92
1.8 0.95 3.09 3.25 0.57 271
15 0.92 3.92 4.25 0.59 1.56
12 0.87 5.26 6.02 0.62 0.81
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FIG. 4. Magnetic field configuration in the poloidal plane for the case where
the FRC plasma is confined by the uniform external field. The top, second,
third, and bottom panels show the equilibrium configurations with the pa-
rameter o = 2.1, 1.8, 1.5, and 1.2, respectively.

creases as the parameter o decreases. It turns out that the
value of 8., is nearly equal to the one predicted by the aver-
age beta condition,* 8., =1 — (R,,/r.)?/2, and that this
condition holds more precisely as the plasma length in-
creases. The distance between the separatrix and the wall
becomes slightly longer as the poloidal magnetic flux de-
creases.

Figure 5 shows the vector plots of the magnetic field,
plasma velocity, pressure, and the density contours in the
poloidal plane ¢ =0 at =0 (top) and ¢t = 4z, (bottom)
foro = 1.5.Heret , = r./v,, is the transit time for the Alf-
vén wave and the radial scale is magnified by two and one-
half times for convenience. The nonzero plasma velocity
along the z axis is given in the plasma region as an initial

Bpol

_4

Vpol
t =4ty

Bpol

S
>
@

P

o>
P
P
14

Vpol

perturbation, as is seen in the top panel of Fig. 5. The initial
perturbation induces a circulating flow inside the magnetic
separatrix that makes the plasma tilt internally. The internal
tilt mode grows as time elapses, and the corresponding
changes in the density and pressure profiles are recognized in
the bottom of Fig. 5. As we mentioned in the Introduction,
there are two severe problems to be overcome in treating the
evolution numerically, i.e., the appearance of numerical er-
ror at the singular point » = 0, which sometimes leads to the
numerical blowup, and at the plasma-vacuum boundary.
Figure 5 indicates that these problems are beautifully
cleared in our scheme, and consequently the full nonlinear
evolution of the tilting instability is pursued satisfactorily.

In order to examine the global structure of the magnetic
field, we introduce a scalar function W(r,z) that describes
the configuration of the magnetic field on the poloidal cross
section, namely,

Y(r,z) = 27TJ dr'r

X [B, (¥ $pz) — B, | + 2#[ dr rB,, (12)
0

where ¢, is constant. Since the magnetic field is not necessar-
ily axisymmetric in a strict sense except at the initial stage,
the function ¥ may not represent the magnetic flux function.
The amplitude of the toroidal magnetic field, however, re-
mains far smaller than that of the poloidal component dur-
ing the simulation. Therefore the function W can be regarded
as the function representing the global magnetic field config-
uration. Figure 6 shows the temporal evolution of the func-
tion ¥ (r,z) for the same case as Fig. 5. The initial separatrix
takes a racetrack form in the uniform external field. As the
internal mode grows, the deformation starts in the region
near the X point of the magnetic field (¢ = 3¢, ). The defor-

FIG. 5. Magnetic field, matter velocity, thermal pressure, and mass density
in the poloidal plane at 1 =0 (top) and ¢ = 4z, (bottom) for the case of
o = 1.5, where the radial scale is magnified by two and one-half times for
convenience.

FIG. 6. Temporal evolution of the function W (,z) for the same case as Fig.
5. Each panel shows the tilt deformation of the magnetic field at ¢ = O (top),
3t, (second), 47, (third), 5¢, (fourth), 6z, (fifth), and 7z, (bottom),
respectively.
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FIG. 7. Three-dimensional display of the pressure contour at # = 0 (top),
t = 5t, (middle), and ¢ = 61, (bottom) for the same case as Fig. 6.

mation extends gradually to the inner region of the FRC
plasma. Finally, the field null point suffers from shifting and
the tilting instability is completed internally (¢ = 5¢, ). The
internal deformation gives rise to a pressure imbalance at the
plasma-vacuum boundary and triggers an external mode
which generates the outgoing flow beyond the boundary
(t = 5t, ). The uniform external field cannot work to stop
the plasma motion along the z axis, and thus, the external
mode grows until the FRC plasma is torn into two pieces
(t = 6t,, ). The pieces move away toward the axial edges. At
this stage magnetic reconnection takes place between the
plasma field and the external field, and the confinement of
the FRC plasma is completely destroyed.'> When the plas-
ma flow reaches the edge, the simulation is terminated
(t = Tt, ). The splitting of the FRC plasma is also seen in the
pressure distribution. Figure 7 shows a three-dimensional
display of the contour maps of the thermal pressure for the
same case as Fig. 6. The axisymmetric pressure profile is
deformed by the internal tilt mode (middle panel). The plas-
ma flow along the z axis breaks the plasma into two pieces
(bottom panel).

Now let us focus our attention on the o dependence of
the growth rate of the n = 1 mode. Figure 8 shows the tem-
poral evolution of the n = 1 mode for the cases where the
parameter ¢ is equal to 1.2 (solid), 1.5 (dashed), 1.8 (dot-
ted), and 2.1 (dotted—dashed line), respectively; and the
vertical axis denotes log[v-v]|_,. The gradient of the
growth curve becomes steeper as o increases. This phenome-
non is quite understandable when we take into account the
fact that the plasma length decreases as o increases (see Ta-
ble 1). That is, the FRC plasma with a shorter plasma length
can tilt faster. The growth rate versus the plasma length is
plotted in Fig. 9, where the growth rate is defined by the
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FIG. 8. Temporal evolution of the tilt mode (# = 1) in the uniform external
field for the cases where the parameter o is equal to 1.2 (solid line), 1.5
(dashedline), 1.8 (dotted line), and 2.1 (dotted—dashed line), respectively.
The vertical axis stands for log[v-v]|,_,,-

inverse of the e-folding time of the mode amplitude and esti-
mated by the gradient in the range of 0.2 <, /Z,, <1.2. It
is noteworthy that the growth rate is in proportion to the
inverse of the plasma length and the growth time of the tilt-
ing instability is nearly equal to the transit time for the Alf-
vén wave to propagate over the plasma length, ie., 7,
~Z,,/v,. These results imply that the tilting instability is
essentially ideal and the resistive process is secondary. The
reason for this is that there is no toroidal field in the FRC
plasma and the poloidal flux tubes are not magnetically
linked with each other, so that the reconnection process can-
not necessarily be involved in the tilting instability and the
resulting splitting phenomena. '

B. Mirror field case

In order to examine the suppression effect of the tilting
instability by adding the pinching magnetic field at both
ends of the FRC plasma, we carry out simulation runs in the
mirror field, which is described by the poloidal fiux function

D, (r2) =P,rJ,(kr)cosh(kz) . (13)

Here J, (x) is the Bessel function of order n and ®,,, and k

Y ta
N

-
T

Growth Rate

0 1 1 i | i 1
0 1 2 3 q 5 6 7
Plasma Length Zsp

FIG. 9. Growth rate versus plasma length for the same case as Fig. 8 where
the closed triangles show the simulation results and the dotted line shows
the relation y2, « 1/Z,,. Notice that the growth rate is in proportion to the
inverse of the plasma length.
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TABLE II. Simulation parameters.

R,  Ry/r.  Zo/r. Z R, B, 9,/%,
1.0 0.92 448 4.85 0.59 1.63
1.54 0.93 422 4.54 0.57 1.78
3.76 0.94 3.76 4.02 0.60 2.05
6.13 0.94 3.56 3.78 0.58 221
6.85% 0.94 1.88- 201 0.68 2.00
20.9* 0.94 1.48 1.57 0.71 2.33

* Note that the aspect ratio of the simulation cylinder is fixed to 4 for the last
two runs.

are constants. The simulation parameters are given in Table
I1, where R,, = B, (edge)/B, (center) is the mirror ratio of
the external field, and the external magnétic flux @, is given
by the value on the midplane. The initial configurations of
the magnetic field are shown in Fig. 10 for the cases where
the mirror ratio R, is equal to 1.0 (top), 1.54 (second), 3.76
(third), and 6.13 (bottom diagram), respectively. The pa-
rameter o is fixed to 1.5 for every case. The shape of the
magnetic separatrix becomes less prolate as the mirror ratio
increases. Figure 11 shows the temporal evolution of the
pressure distribution in the poloidal plane for R,, = 6.13.
The initial axisymmetric profile is deformed gradually as the
internal tilt mode grows (¢ =3, 47, ). When the internal
mode grows sufficiently, the external mode setsin (¢ = 5¢, ).
Finally, the FRC plasma is broken into two pieces by the
outgoing flow (¢ = 6¢,, ). In this way, the disruption process
of the FRC plasma is considered the same as that for the
uniform field case.

The time history of the n = 1 mode is plotted in Fig. 12
for the cases where R,, = 1.0 (solid), 1.54 (dashed), 3.76
(dotted), and 6.13 (dotted—dashed line), respectively. The
time in Fig. 12 is normalized by the Alfvén transit time
Z,,/v, . As can be seen in Fig. 12, the growth rate decreases
slightly as the mirror ratio increases. The growth time is
nearly equal to Alfvén transit time, which is the same as that
for the uniform field case. Since the velocity of the outgoing

T1vER

@_‘¢.2@5

FIG. 10. Magnetic field configuration in the poloidal plane for the case
where the FRC plasma is confined by the mirror field. The top, second,
third, and bottom panels show the equilibrinm configurations of the param-
eter R, = 1.0, 1.54, 3.76, and 6.13, respectively.
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PRESSURE ( Ry, = 6.13)

FIG. 11. The pressure profile in the poloidal plane at ¢ = 0 (top), 3z, (sec-
ond), 4t, (third), 5t (fourth), and 67, (bottom) for the case of R,
=6.13.

flow toward the axial edge is comparable to the Alfvén veloc-
ity, the external mirror field is needed to have the radial
component comparable to the dynamical pressure of the out-
going flow just at the outside of the magnetic separatrix in
order to suppress the external mode.

C. Spin-stabilization effect

It is reported'® that the lifetime of a spheromak against
the tilting instability was made several times longer by spin-
ning the plasma with an Alfvén Mach number of M, > 1.
Let us examine the spin-stabilization effect against the tilting
instability of the FRC plasma. The initia] condition is ob-
tained by gradually accelerating the rotation inside the mag-
petic separatrix with the use of a two-dimensional simula-
tion code.'® The angular velocity of the rotation is assumed

0 T T T T T T T T T T

-1 -

-2 |

.3 b
——— Ry =1.54

4t g | e Rm =3.76 | -
——- Rp =6.13

-5 1 1 1 L 1 A 2 X a1l 1 1 PR |

0.0 0.5 1.0 1.5

TIME tV,/Zs

FIG. 12. Temporal evolution of the tilt mode (7 = 1) in the mirror field for
the cases where the parameter R, is equal to 1,0 (solid line), 1.54 (dashed
line), 3.76 (dotted line), and 6.13 (dotted—dashed line), respectively. The
vertical axis denotes log[v-v]|, ., and the time is normalized by the Alf-
vén transit time Z_, /v, .
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TABLE III. Simulation parameters.

M R, /1. Z,/r, Z,/R, Bex ®, /0,
0.0 0.84 5.62 6.69 0.69 0.56
0.5 0.83 5.67 6.86 0.64 0.52
1.0 0.85 5.32 6.27 0.51 0.52
1.5 0.88 5.31 6.02 0.37 0.52

to be in proportion to the poloidal flux function, i.e.,
AQ =Q, P(rz2). For technical reasons we chose a nonro-
tating equilibrium with plasma leakage beyond the separa-
trix as the starting configuration, i.e., ®,= - 0.3P,. An
artificial viscosity is added in the toroidal component of the
induction equation to approach a solution satisfying the rela-
tions B, = 0 and Q = Q(P) as quickly as possible.

Four simulation runs are carried out in order to examine
the Mach number dependence on the tilting instability. The
simulation parameters are given in Table III. The field null
point tends to shift outward as the Mach number becomes
larger, because of the centrifugal force. Figure 13 shows the
temporal evolution of the pressure distribution in the poloi-
dal plane for the nonrotating case (left panel) and also for
the rotating case (right panel) where the Mach number M

(=wv4/JyP/p)isequalto 1.5.1tis clear that for the nonro-
tating case the pressure profile is deformed by the internal
tilt mode and the plasma is broken into two pieces in a man-
ner similar to the cases discussed in Sec. IIT A. When the
plasma spins with M = 1.5, the pressure profile is also slight-
ly deformed, which indicates that the instability is largely
weakened.

Let us roughly estimate the threshold value of the spin-
ning Mach number leading to the stabilization of the tilt

PRESSURE (M=0.0)

mode. The outward transfer of angular momentum is needed
for the rotating plasma to shift inward as a result of the tilt
deformation. When there is no toroidal magnetic field,
namely, no magnetic tension, angular momentum cannot be
transferred in the axisymmetric equilibrium configuration.
Suppose that a small piece of plasma moves slightly inward
by 6r. Then, the piece is forced to move to the original posi-
tion by the centrifugal force unless any deceleration occurs.
In this case, however, the toroidal magnetic field is genera-
ted by the induction electric field 7 Q1 X B, and the mag-
netic tension due to the poloidal and the induced toroidal
fields acts to decelerate the rotating plasma, thus accelerat-
ing the tilt deformation. Rough estimation leads to the result
that the restoring centrifugal force overcomes the magnetic
tension when 6r B, B,, /1> < p 8r (¥ Because the relations
B2,/2+p=B’ /2 and 2p/B, =~0.5 (see Tables I-III)
hold in the FRC plasma, the condition of M > 1.3 is needed
for the spin stabilization of the tilting instability.

Let us examine the dependence of the growth rate on the
spinning Mach number in more detail. The growth of the
tilting instability is drawn in Fig. 14 for the cases where the
Mach number on the field null point M is equat to 0.0 (sol-
id), 0.5 (dashed), 1.0 (dotted), and 1.5 (dotted—dashed
line), respectively. Notice that the tilt mode also grows slow-
ly for M = 1.5, though the deformation of the pressure pro-
file stays at a low level (see Fig. 13). This result implies that
the FRC plasma is not stable against the tilting instability
even if the spin is as high as M = 1.5. The growth rate versus
the Mach number is plotted in Fig. 15 for the same case as
Fig. 14. It is worth noting that the growth rate decreases
linearly as the Mach number increases. The dotted line
shows the relation yv,/Z, = —2.2M + 5.7. Figure 15
leads us to a conclusion that the tilt disruption can be sup-
pressed by driving the plasma to spin with such a high veloc-

PRESSURE (M=1.5)

FIG. 13. Temporal evolutions of the pressure
profiles in the poloidal plane for the nonrotat-

ing case (left panels) and for the case of the
spinning Mach number M = 1.5 (right pan-
els), where each panel shows the configura-

tion at six different periods (=0, 3, 4, 5, 6,

7, ). Notice that the FRC plasma is disrupt-
ed by the tilt mode for the nonrotating case
while the tilt deformation scarcely appears for

the rapidly rotating case.
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TIME tVih/zsp

FIG. 14. The growth curves of the tilting instability for the cases where the
Mach number on the field null point M is equal to 0.0 (solid line), 0.5
(dashed line), 1.0 (dotted line), and 1.5 (dotted—dashed line), respectively.
The vertical axis represents log[v,v. ]|, _,-

ity as M > 2.5. This threshold value is somewhat larger than
the value reported by Milroy et al.'?

D. Obiate FRC

According to the linear analysis’'~> the FRC plasma be-
comes stable against the internal tilt mode when the shape of
the magnetic separatrix becomes oblate, i.e., Z,, /2R, < 1.0.
In this subsection we shall investigate the nonlinear evolu-
tion of the tilting instability in the oblate FRC plasma con-
fined by a mirror external field. Two types of the simulation
model are considered in the cylindrical vessel with the aspect
ratio z_/r. = 4, i.e., the spherical FRC of the plasma aspect
ratio Z_, /2R, = 1.0 and the oblate FRC of Z,/2R,,

= (.78. The physical parameters are listed in the last two
lines in Table II. The initial configuration of the magnetic
field in the poloidal plane is illustrated in Fig. 16 for the two
cases. A strong mirror field of R,, = 20.9 is adopted to ob-
tain the initial equilibrium solution of the oblate FRC.

Figure 17 shows the tilt deformation of the pressure pro-
file in the poloidal plane ¢ = 0 for the oblate case. It is
noteworthy that there is no clear deformation of the pressure
distribution associated with the internal tilt mode, but the

Growth Rate 7 Zsp/ V4
w
T
Q
1

1 1 1 1 >

0
0.0 0.5 1.0 1.5 2.0 2.5
Mach Number M

FIG. 15. Growth rate versus Mach number for the same case as Fig. 14
where the open circles show the simulation results and the dotted line repre-
sents the relation yv,/Z = —2.2M + 5.7. It is noteworthy that the
growth rate decreases in proportion to the Mach number.

588 Phys. Fiuids B, Vol. 1, No. 3, March 1989

z!p/2R5p= 0.78

FIG. 16. The initial configuration of the magnetic field for the spherical
FRC (top) and the oblate FRC (bottom) in the mirror field.

plasma is deformed directly by the external mode,'” which
induces the plasma flow and changes the plasma-vacuum
boundary shape (see the middle panel of Fig. 17). This result
is consistent with the linear theory that the oblate FRC plas-
ma is stable against the internal tilt mode. The plasma tilts
freely toward the region where the magnetic energy density
is at a minimum in the initial configuration (Fig. 16). Final-
ly, a standing shock is formed by the interaction between the
tilted plasma and the mirror field (¢ = 4¢, ). It is concluded
therefore that an oblate FRC in the mirror field can be dis-
rupted by the development of an external tilt mode. For the
spherical case we obtain almost the same result as that for
the oblate case.

We plot the dependence of the growth rate yZ,, /v, on
the plasma aspect ratio Z,,/2R,, in Fig. 18, together with
the results of the uniform field case (open triangles) and the
mirror field case (open circles). The growth rate is almost
independent of the plasma aspect ratio for the uniform field
case, while for the mirror field case the growth rate decreases

Pressure( Z,, /2R, = 0.78)

FIG. 17. The pressure profile in
the poloidal plane at ¢ = 0 (top),
3t, (middle), and 4¢, (bottom)
for the case of Z,,/2R,, = 0.78.
Standing shock appears in the
bottom diagram where the tilted
plasma encounters the strong
mirror field.
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FIG. 18. Growth rate versus plasma aspect ratio for the uniform field cases
(open triangles) and for the mirror field cases where the open circles show
the results of the prolate FRC and the closed circles show the results of the
spherical FRC and the oblate FRC.

as the shape of the magnetic separatrix becomes more oblate.
It is concluded that, though the growth rate decreases com-
pared with the prolate FRC, the oblate plasma is unstable
against the external tilt mode.

IV. DISCUSSION

We developed a new simulation code with a fourth-or-
der accuracy both in space and time and applied the codetoa
FRC plasma confined in a conducting cylindrical vessel.
This simulation code succeeded in describing the nonlinear
evolution of the tilting instability with sufficient reliance.
The results are summarized as follows.

(1) The prolate FRC plasma is unstable against an inter-
nal tilt mode both for the case where the plasma is confined
by a uniform external field and for the case where the plasma
is confined by a mirror field. When the plasma suffers from a
sufficient deformation, the pressure imbalance triggers an
external mode at the plasma—vacuum boundary. Finally, the
FRC plasma is broken into two pieces by the outgoing flows
along the major axis.

(ii) The growth time of the internal tilt mode is given by
the transit time for the Alfvén wave to propagate over the
plasma length. This result implies that the tilting instability
is essentially ideal.

(iii) The plasma spin around the major axis results in
the decrease of the growth rate of the tilting instability. If we
can drive the plasma to rotate with the spinning Mach num-
ber M>2.5, the prolate FRC plasma can be stabilized
against the tilt mode.

(iv) The FRC equilibrium with an oblate shape is ob-
tained by adding a large pinching field at the axial edges. In
contrast to the prolate FRC, the oblate FRC plasma be-
comes unstable against the external tilt mode.

Before concluding the paper let us discuss the applica-
bility of the model we used. In our model there is the simple
relationship between the pressure and the poloidal flux func-
tion. The magnetic separatrix is close to the conducting wall
in the equilibrium where the plasma is fully confined in the
magnetic separatrix. When the plasma leakage is added be-
yond the separatrix in the equilibrium, the separatrix shifts
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inward and the value of R, /7, approaches the experimental
one.* As was reported for the case of M = 0 in Sec. II1 C, the
plasma leakage did not give rise to any significant change in
the simulation results. This result is understandable when
we take into account the fact that the tilting instability is
triggered by the internal mode in the prolate FRC.

In general, the equilibrium profile of the pressure is giv-
en by an arbitrary function of the poloidal flux function ¢
and there are infinite sets of the equilibrium solutions. Thus,
from a limited number of simulation runs, we cannot obtain
a definite conclusion that any FRC configuration is unstable
against the tilt mode. Judging from the linear analysis and
the simulation study, however, it seems that the FRC plasma
is not in a minimum energy state in a magnetohydrodynamic
sense. This may partly be due to the fact that there is no
global constraint like the magnetic helicity in the reversed
field pinch.'®

We used a simple spatially uniform resistivity model.
There may be an argument that the spatial dependence of the
resistivity should be considered. However, the resistivity
profile would not lead to an appreciable alteration of the
simulation results since the tilting instability is essentially
ideal.

The MHD analyses have shown that the FRC plasma is
unstable against the tilt mode except in a highly spinning
FRC. The observational fact that there is no experimental
evidence of tilt disruption may be explained by taking the ion
kinetic effect into account. In order to clarify the whole fea-
ture of the tilting instability, it is necessary to investigate the
nonlinear evolution by using a special particle simulation
code that can deal with a MHD time scale.
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