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OV spectral lines were measured by VUV and UV-visible
spectrometers in the LHD plasmas in the Third Cyle.
‘We constructed a collisional-radiative model (CRM) for
OV line intensities and compared calculated intensity ra-
tios with the LHD measurements. The measured inten-
sity ratio of the triplet transition 2s2p 3P-2p? 3P (75.8-
76.2nm) to the resonance line 2s® 1S-2s2p !P (63.0nm)
in the steady state phase was always larger than 1 (i.e.
the triplet transition was stronger than the resonance
line). This large ratio was difficult to be explained by
our model with ionizing component of Be-like ion and
recombining component from Li-like ion for steady state
phase [1].

The intensity ratio of these transitions for Be-like ions
in ionizing plasma or ionization equilibrium plasma is
usually smaller than 1 at least for Be-like C, O, Ne, and
Fe ions, as calculated by CRMs, and the resonance line
is stronger than the triplet transition. Some other mech-
anism is required to enhance the intensity of the triplet
transition.

We then consider the effect of inner-shell ionization
from B-like to Be-like oxygen ions, i.e. B-like 2s?2p —
Be-like 2s2p. Ionization from B-like excited states to Be-
like excited states, for example, B-like 2s2p? — Be-like
2s2p, B-like 2s2p? — Be-like 2p?, and B-like 2p® — Be-
like 2p?, also should be accounted for. These transition
can enhance the population densities of 2s2p and 2p?
levels of the Be-like ion.
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Figure 1: Line intensity coeflicients for the resonance line

(left) and the triplet transition (right). Excitation com-

ponent, recombining component, and inner-shell ioniza-

tion component are shown as a function of electron tem-

perature.
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Figure 2: Calculated intensity ratio I(2s2p 3P —
2p? 3P)/I(2s® 1S — 2s2p 'P) for excitation component
(lower solid line) and inner-shell ionization component
(upper solid line) as a function of electron temperature.
Dotted lines are calculated with fixed ion abundance ra-
tio, np/n1. Horizontal solid line at ratio=2.2 is averaged
ratio from the LHD measurement at steady state phase

(1].

The effect of such ionization is included into our CRM
as the third component: the population density of Be-
like excited state i is obtained as nf¢(i) = Nin; +
Ngnp; + Nsnp, where Ny, Ng, Ng are excitation com-
ponent (usually called as ionizing plasma component),
recombining plasma component, and inner-shell ioniza-
tion component, respectively, and n1, nr;, and ng are
the ground state densities of Be-like, Li-like, and B-like
ions, respectively.

The rate coefficients of ionization from B-like ion are
calculated by Hullac code [2]. We also construct a CRM
for B-like ion to get the population densities of the ex-
cited states. The atomic data necessary for the B-like
CRM are also calculated by Hullac code. We take into
account 2s22p, 2s2p?, 2p°, 25231, 25241, 2s2p3l states in
the B-like CRM.

As Fig.1 shows the effect of inner-shell ionization on
the triplet transition is significant at high temperature.
Figure 2 indicates that the measured intensity ratio can
be explained if we can determine the ion abundance ra-
tio, ng/n; or electron temperature. Information from
OIV lines near the Be-like resonance line and the B-like
CRM will help to determine the physical condition of
the plasma.
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