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The electron-positron pair annihilation effects on the surface ion cyclotron wave are 

investigated in magnetized electron-positron-ion plasmas in atmospheres of neutron 

stars.  The dispersion relation of the surface ion cyclotron wave is obtained by the 

specular reflection boundary condition with the plasma dielectric function.  It is shown 

that the high- and low-frequency modes of the surface ion cyclotron wave could be 

existed in electron-positron-ion plasmas.  For the high-frequency mode, the pair 

annihilation enhances the wave frequency in large wave number domains.  However, 

the pair annihilation effects are found to be negligible for the low-frequency mode.  It is 

also found that an increase of the electron temperature or a decrease of the positron 

temperature strongly suppresses the wave frequency.  It is shown that an increase of the 

magnetic field strongly enhances the wave frequency. 
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I.  INTRODUCTION 

 

The investigation of the surface waves1-3 in plasmas has been of a great interest since 

their spectral frequency spectra provide useful information on plasma parameters for 

spatially bounded plasmas.  The electron-positron-ion plasmas have been encountered 

in various astrophysical environments such as active galactic nuclei, atmosphere of 

neutron stars, pulsar magnetospheres, and supernova environments.4  In these 

astrophysical environments, the direct and indirect positron annihilations with electrons 

are now of great interests and have been extensively investigated.5,6  Recently, the 

propagation of plasma waves has been extensively investigated in electron-positron 

pair plasmas.7-12  However, to the best of our knowledge, the electron-positron pair 

annihilation effects on the surface ion cyclotron wave in magnetized electron-positron-

ion plasmas have not been investigated as yet.  The theoretical investigation on the 

dispersion properties of the surface wave in electron-positron-ion plasmas can be a 

useful tool for investigating the structure and physical properties of electron-positron-

ion plasmas.  Thus in this paper, we investigate the pair annihilation effects on the 

propagation of the surface ion cyclotron wave along the plasma-vacuum interface in 

magnetized electron-positron-ion plasmas.  The specular reflection analysis1 is 

employed to investigate the plasma dispersion relation since it has been known that the 

specular reflection condition is quite useful to investigate the dispersion properties of 

surface waves propagating on the plasma-vacuum interface. 

This paper is composed as follows.  In Sec. 2 we discuss the specular reflection 

condition for the surface wave propagating along the plasma-vacuum interface with the 

plasma dielectric function in magnetized electron-positron-ion plasmas.  In Sec. 3, we 

obtain the dispersion relation of the surface ion cyclotron wave in atmospheres of 

neutron stars.  We also obtain the group velocities for the high- and low-frequency 

modes of the surface ion cyclotron wave.  In Sec. 4, we discuss the electron-positron 

pair annihilation effects on the wave frequency and the group velocity of the surface 

ion cyclotron wave.  Finally, the conclusions are given in Sec. 5. 
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II. SPECULAR REFLECTION CONDITION 

 

The specular reflection condition is known to be particularly useful to investigate the 

dispersion properties of various surface waves in plasmas.  The dispersion relation for 

surface electromagnetic waves propagating in the z-direction with the plasma-vacuum 

interface at 0x=  can be obtained by the specular reflection condition1 determined by 

the surface impedances: 

 
2 22 2 2 2

2 2 2 2 2 21 0,
( , ) ( , )

x xz z

l t

dk k ck c k c
c k k k c k
ω

ω π ω ε ω ω ε ω

∞

−∞

⎡ ⎤
− + − =⎢ ⎥−⎣ ⎦

∫  (1) 

 

where ( , )l kε ω  and ( , )t kε ω  are the longitudinal and transverse components of the 

plasma dielectric function, ω  is the frequency, c is the speed of the light, and 

2 2( )x zk k k= +  is the wave number.  In this geometry, the y-coordinate can be ignored 

without loss of generality since the y-coordinate is a translational invariance.    For 

surface electrostatic waves, i.e., the quasi-static limit 2 2 2( / )c kω ε << , the specular 

reflection condition for the electrostatic wave propagating along the z-direction would 

be expressed as 

 

2

1 1 0.
( , , )

x z

l x z

dk k
k k kπ ε ω

∞

−∞
+ =∫      (2) 

 

It is well known that the physical properties of electrostatic waves in plasmas would be 

resolved by the plasma dielectric function.  In magnetized electron-positron-ion 

plasmas, the plasma dielectric function is represented by the summation of the 

dielectric susceptibilities ( , , )iαχ α =− +  of electrons ( )e− , positrons ( )e+ , and ions (i): 

 

( , ) 1 .l ikε ω χ χ χ− += + + +      (3) 
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The dielectric susceptibility13 of the species α  in magnetized thermal plasmas is 

written in integral form as 

 
2

2 2 2 2 2 2
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T z z cl
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α α
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v vv v
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         (4) 

 

where 2( 4 / )p n q mα α α αω π=  is the plasma frequency of the species α , nα  is the 

density of the species α  without the electron-positron pair annihilations, qα  is the 

charge, mα  is the mass, ( / )T Bk T mα α α=v  is the thermal velocity, Bk  is the Boltzmann 

constant, Tα  is the plasma temperature, lI  is the modified Bessel function of order l, 

( / )c q B m cα α αω =  is the cyclotron frequency, B is the strength of the magnetic field, 

and  2 1/ 2 2 2( )[ (2 ) exp( / 2 )]z T z Tfα α απ −= −v v v v  is the Maxwellian distribution function.  In 

the range of the ion plasma wave, , /Ti z Te ce z xk k k kω ω<< <<v v , T ck α αω<<v , the 

dielectric susceptibilities for electrons ( )− , positrons ( )+ , and ions (i) including the 

electron-positron pair annihilations are, respectively, found to be 
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χ δ
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where 2( / 4 )D Bk T n qα α α αλ π=  is the Debye length, /n nδ + +≡Δ , n n+ −Δ =Δ , and n+Δ  

and n−Δ  are, respectively, the density variations of positrons and electrons due to the 
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electron-positron pair annihilations.  Here, 0δ >  and 0δ <  represent the pair 

annihilations and creations, respectively.  In this work, we only consider the direct 

positron annihilations with free electrons and the single photon annihilations of 

positrons with bound atomic electrons have been neglected since the one-photon 

positron annihilation cross section with an atomic electron is known to be quite small 

compared with the two-photon positron annihilation cross section with a free 

electron.6,14   The plasma dielectric function for the ion cyclotron wave in magnetized 

electron-positron-ion plasmas including the direct electron-positron pair annihilations is 

then found to be 

 
2 2 2 2

2 2 2 2 2 2 2 2 2

1 1( , , ) 1 1 (1 ) .
( )

pi x pi z
l x z

D D ci

k knk k
k n k k k

ω ω
ε ω δ δ

λ λ ω ω ω
− +

+

−
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≅ + − + − − −⎜ ⎟ −⎝ ⎠

 (8) 

 

Very recently, the excellent discussions15 on the physical properties of the nonlinear 

interaction effects involving the ion cyclotron waves were given in magnetoplasmas 

such as white dwarf and neutron star environments. 

 

 

III. DISPERSION RELATION AND GROUP VELOCITY 

 

From the mirror reflection condition for the electrostatic surface wave and the 

plasma dielectric function, the dispersion relation for the surface ion cyclotron wave is 

given by 
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Since 2 2 1[( ) ( , , )] 0x z l x zk k k kε ω −+ →  as xk →∞ , i.e., the Jordan’s lemma,16 the 

integration over xk  in the interval [ , ]−∞ ∞  in the spectral reflection condition would be 
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replaced by the following contour integration in the complex xk -plane: 
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By using the residue calculation for the simple pole in the upper-half plane in the 

complex xk -plane, the dispersion relation for the surface ion cyclotron wave in 

magnetized electron-positron-ion plasmas in atmospheres of neutron stars is then 

obtained as 
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The dependence of the density variation ( )δ  in equation (11) confirms the electron-

positron pair annihilation effects on the propagation of the surface ion cyclotron wave 

in magnetized electron-positron-ion plasmas.  From equation (11), the analytic 

solutions of the high (H) and low (L) frequency modes are, respectively, found to be as 

follows: 
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where T−  and T+  are the temperatures of electrons and positrons, respectively.  If we 

set /ci piω ωΩ≡  and [ ]1/ 2/ 1 ( / )( / ) ( / )(1 / )z DK k n n T T n n T Tλ δ
− + − − + + − − +≡ + − +  , the high- 

and low-frequency mode solutions of the surface ion cyclotron wave in magnetized 

electron-positron-ion plasmas including the pair annihilation effects are represented by 

{ }1/ 2
2 2

,( / ) (1 )(1 )[1 ( , )] / 2pi H L K F Kω ω = +Ω + ± Ω , where H(L) corresponds to +(-) 

sign and 2 2 2 2 2 2 2 2( , ) [(1 ) (1 ) ] /[(1 )(1 ) ]F K K K KΩ ≡ + +Ω − +Ω + .  Here, 2
,( / ) 0pi H Lω ω ≥  

since ( , ) 1F KΩ ≤  for all values of K.  Thus, the unstable growing mode of the ion 

cyclotron wave would be impossible in magnetized electron-positron-ion plasmas.  We 
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consider here the group velocity since the physical properties of the wave propagation 

can be analyzed by the group velocity of the wave.  After some algebra, the group 

velocities for the high- and low- frequency modes are, respectively, given by  
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IV. PAIR ANNIHILATION EFFECTS 

 

In order to investigate the effects of the electron-positron pair annihilation and the 

variations of the density and the temperature in the atmosphere of the neutron star on 

the wave frequencies and group velocities of surface ion cyclotron wave, we illustrate 

our results with numerical values of plasma parameters.  The various physical 

properties of the high- and low- frequency mode waves can be investigated by 

equations (12) and (13).  Figure 1 shows the three-dimensional plot of the high-

frequency mode of / piω ω  as a function of the variation of the positron density 

/ ( )n n δ+ +Δ =  and the scaled wave number z Dk λ
−

 when / 10ci piω ω = , / 1n n+ − = , and 

/ 1T T− + = .  As we see in this figure, the wave frequency increases with the wave 

number.  It is interesting to note that the electron-positron pair annihilation enhances 

the wave frequency in large wave number domains.  Figure 2 shows the high-frequency 

mode of / piω ω  when / 10ci piω ω = , / 1n n+ − = , and / 10T T− + = .  From Figures 2 and 1, 

we found that an increase of the electron temperature or a decrease of the positron 

temperature strongly suppresses the wave frequency.   Thus, it is expected that the 

wave frequencies in high electron temperatures are smaller than those in low electron 

temperatures.  Figure 3 represents the three-dimensional plot of the high-frequency 

mode of / piω ω  when / 10ci piω ω = , / 0.1n n+ − = , and / 1T T− + = .  From Figures 3 and 1, 

a decrease of the electron density or an increase of the positron density weakens the 

electron-positron pair annihilation effects on the wave frequency.   Figure 4 represents 

the high-frequency mode of / piω ω  when / 1ci piω ω = , / 1n n+ − = , and / 1T T− + = .  From 

Figures 4 and 1, a decrease of the ion cyclotron frequency, i.e., a decrease of the 

magnetic field strength, strongly suppresses the wave frequency.  Thus, the wave 

frequencies in atmospheres of neutron stars would be much smaller than those in 

atmospheres of magnetars due to the extremely strong magnetic field in magnetars.  

Figure 5 represents the three-dimensional plot of the low-frequency mode of / piω ω  as 

a function of the variation of the positron density /n n+ +Δ  and the scaled wave number 
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z Dk λ
−
 when / 10ci piω ω = , / 1n n+ − = , and / 1T T− + = .  As it is seen, the wave frequency 

has been saturated with increasing the wave number.  Hence, we found that the low-

frequency mode of the ion cyclotron wave cannot be propagated in large wave number 

domains in contrast to the high-frequency mode case.  It is also found that the pair 

annihilation effects are negligible for the low-frequency mode case.  Figure 6 

represents the low-frequency mode of / piω ω  when / 10ci piω ω = , / 1n n+ − = , and 

/ 10T T− + = .  From Figures 6 and 5, an increase of the electron temperature or a decrease 

of the positron temperature suppresses the increase of the wave frequency in small 

wave number domains, i.e., before approaching to the saturated oscillation frequency.   

Figure 7 shows the three-dimensional plot of the low-frequency mode of / piω ω  when 

/ 10ci piω ω = , / 0.1n n+ − = , and / 1T T− + = .  From Figures 7 and 5, it is also found that 

the effects of the density variation on the wave frequency are negligible for the low-

frequency mode case.  Figure 8 shows the low-frequency mode of / piω ω  when 

/ 1ci piω ω = , / 1n n+ − = , and / 1T T− + = .  From Figures 8 and 5, a decrease of the ion 

cyclotron frequency, i.e., a decrease of the magnetic field strength, strongly reduces the 

wave frequency such as in the case of the high-frequency mode.  The physical 

properties of the group velocity for the high- and low- frequency modes would be 

investigated by equations (14) and (15).  Figure 9 represents the group velocity 

( / ) / ( )pi z Dd d kω ω λ
−

 for the high-frequency mode of the ion cyclotron wave as a 

function of the scaled wave number z Dk λ
−
 for various values of the variation of the 

positron density /n n+ +Δ  when / 10ci piω ω = , / 1n n+ − = , and / 1T T− + = .  As it is seen, 

the group velocity has been suddenly increased for 1z Dk λ
−
>  and saturated in high wave 

number regions.  It is also found that the pair annihilation strongly enhances the group 

velocity of the surface ion cyclotron wave for all values of the wave number.  Figure 10 

represents the group velocity for the high-frequency mode for various values of the 

temperature ratio /T T− +  when / 10ci piω ω = , / 1n n+ − = , and / 0.2n n+ +Δ = .  From this 

figure, a decrease of the temperature ratio, i.e., a decrease of the electron temperature or 

an increase of the positron temperature, strongly enhances the group velocity.  Figure 
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11 represents the group velocity for the high-frequency mode for various values of the 

frequency ratio /ci piω ω  when / 1n n+ − = , / 1T T− + = , and / 0.2n n+ +Δ = .  It is shown that 

the group velocity increases with an increase of the frequency ratio /ci piω ω , i.e., an 

increase of the magnetic field strength, especially, for 1z Dk λ
−
> .  However, for small 

wave number domains ( 1)z Dk λ
−
< , an increases of the magnetic field suppresses the 

group velocity.  Figure 12 shows the group velocity for the low-frequency mode for 

various values of the variation of the positron density /n n+ +Δ  when / 10ci piω ω = , 

/ 1n n+ − = , and / 1T T− + = .  In contrast to the case of the high-frequency mode, the group 

velocity for the low-frequency mode decreases with increasing the wave number.  It 

should be noted that the electron-positron pair annihilation enhances the group velocity 

for 1z Dk λ
−
<  and, however, suppresses the group velocity for 1z Dk λ

−
> .  From Figures 

12 and 9, we can expect that the propagation of the ion cyclotron wave in electron-

positron-ion plasmas such as in atmospheres of neurons stars is mainly determined by 

the low-frequency mode in small wave numbers ( 1)z Dk λ
−
<  and the high-frequency 

mode in large wave numbers ( 1)z Dk λ
−
> .  Figure 13 shows the group velocity for the 

low-frequency mode for various values of the temperature ratio /T T− +  when 

/ 10ci piω ω = , / 1n n+ − = , and / 0.2n n+ +Δ = .  It is shown that an increase of the 

temperature ratio, i.e., an increase of the electron temperature or a decrease of the 

positron temperature, suppresses the group velocity for 1z Dk λ
−
<  and, however, 

enhances the group velocity for 1z Dk λ
−
> .  Figure 14 shows the group velocity for the 

low-frequency mode for various values of the frequency ratio /ci piω ω  when / 1n n+ − = , 

/ 1T T− + = , and / 0.2n n+ +Δ = .  It is also shown that the group velocity significantly 

increases with an increase of the frequency ratio /ci piω ω , i.e., an increase of the 

magnetic field strength.  However, for small wave numbers ( 1)z Dk λ
−
< , the group 

velocity is suddenly decreased and the effect of the magnetic field strength is found to 

be small for large wave numbers ( 1)z Dk λ
−
> .      
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V. CONCLUSIONS 

 

In this work, we have investigated the electron-positron pair annihilation effects on 

the surface ion cyclotron wave in magnetized electron-positron-ion plasmas.  The 

dispersion relation of the surface ion cyclotron wave is obtained by the specular 

reflection boundary condition with the dielectric susceptibilities for electrons, 

positrons, and ions.    Considering the dispersion relation of the surface ion cyclotron 

wave, we observe that the high- and low-frequency modes of the surface ion cyclotron 

wave could be existed in electron-positron-ion plasmas.  We have analyzed the effects 

of the pair annihilation on both high- and low-frequency modes of the surface ion 

cyclotron wave.  The physical properties of the group velocity of the surface ion 

cyclotron wave are also discussed.  In addition, we have investigated the effects of the 

temperature and magnetic field strength on the surface ion cyclotron wave.  From this 

work, we have shown that the group velocities in atmospheres of magnetars would be 

much greater than those in atmospheres of normal neutron stars due to the extremely 

strong magnetic fields of magnetars.  It is also shown that the propagation of the ion 

cyclotron wave in atmospheres of neurons stars is mainly determined by the low-

frequency mode in small wave number regions and by the high-frequency mode in 

large wave number regions.  Thus, we have found that the electron-positron pair 

annihilation plays an very significant role in the propagations of the surface wave in 

magnetized electron-positron-ion plasmas such as atmospheres of neutron stars.  
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FIG. 1.  The three-dimensional plot of the high-frequency mode of / piω ω  as a function 

of /n n+ +Δ  and z Dk λ
−
 when / 10ci piω ω = , / 1n n+ − = , and / 1T T− + = .   

 

 

FIG. 2.  Same as Fig. 1, but for / 10T T− + = . 
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FIG. 3.  Same as Fig. 1, but for / 0.1n n+ − = . 

 

 

FIG. 4.  Same as Fig. 1, but for / 1ci piω ω = . 
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FIG. 5.  The three-dimensional plot of the low-frequency mode of / piω ω  as a function 

of /n n+ +Δ  and z Dk λ
−
 when / 10ci piω ω = , / 1n n+ − = , and / 1T T− + = .   

 

 

FIG. 6.  Same as Fig. 5, but for / 10T T− + = . 
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FIG. 7.  Same as Fig. 5, but for / 0.1n n+ − = . 

 

 

FIG. 8.—Same as Fig. 5, but for / 1ci piω ω = . 
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FIG. 9.  The group velocity ( / ) / ( )pi z Dd d kω ω λ
−

 for the high-frequency mode as a 

function of z Dk λ
−

 when / 10ci piω ω = , / 1n n+ − = , and / 1T T− + = .  The solid line 

represents the case of / 0.1n n+ +Δ = .  The dashed line represents the case of 

/ 0.3n n+ +Δ = .  The dotted line represents the case of / 0.6n n+ +Δ = .       

 

FIG. 10.  The group velocity ( / ) / ( )pi z Dd d kω ω λ
−

 for the high-frequency mode as a 

function of z Dk λ
−

 when / 10ci piω ω = , / 1n n+ − = , and / 0.2n n+ +Δ = .  The solid line 

represents the case of / 0.5T T− + = .  The dashed line represents the case of / 1T T− + = .  

The dotted line represents the case of / 2T T− + = .       
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FIG. 11.  The group velocity ( / ) / ( )pi z Dd d kω ω λ
−

 for the high-frequency mode as a 

function of z Dk λ
−

 when / 1n n+ − = , / 1T T− + = , and / 0.2n n+ +Δ = .  The solid line 

represents the case of / 20ci piω ω = .  The dashed line represents the case of 

/ 10ci piω ω = .  The dotted line represents the case of / 1ci piω ω = .       

 

FIG. 12.  The group velocity ( / ) / ( )pi z Dd d kω ω λ
−

 for the low-frequency mode as a 

function of z Dk λ
−

 when / 10ci piω ω = , / 1n n+ − = , and / 1T T− + = .  The solid line 

represents the case of / 0.1n n+ +Δ = .  The dashed line represents the case of 

/ 0.3n n+ +Δ = .  The dotted line represents the case of / 0.6n n+ +Δ = .       
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FIG. 13.  The group velocity ( / ) / ( )pi z Dd d kω ω λ
−

 for the low-frequency mode as a 

function of z Dk λ
−

 when / 10ci piω ω = , / 1n n+ − = , and / 0.2n n+ +Δ = .  The solid line 

represents the case of / 0.5T T− + = .  The dashed line represents the case of / 1T T− + = .  

The dotted line represents the case of / 2T T− + = .       

 

FIG. 14.  The group velocity ( / ) / ( )pi z Dd d kω ω λ
−

 for the low-frequency mode as a 

function of z Dk λ
−

 when / 1n n+ − = , / 1T T− + = , and / 0.2n n+ +Δ = .  The solid line 

represents the case of / 20ci piω ω = .  The dashed line represents the case of 

/ 10ci piω ω = .  The dotted line represents the case of / 1ci piω ω = . 

 




