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Effects of collisions on conservation laws for toroidal plasmas are investigated based on the
gyrokinetic field theory. Associating the collisional system with a corresponding collisionless
system at a given time such that the two systems have the same distribution functions and
electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived
from Noether’s theorem are modified by the collision term. Effects of the external source term
added into the gyrokinetic equation can be formulated similarly with the collisional effects.
Particle, energy, and toroidal momentum balance equations including collisional and turbulent
transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which
the collisional change rates of energy and canonical toroidal angular momentum per unit volume in
the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport
equations of particles, energy, and toroidal momentum given in the present work are shown to
include classical, neoclassical, and turbulent transport fluxes which agree with those derived from
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conventional recursive formulations. © 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928378]

I. INTRODUCTION

Gyrokinetic theories and simulations are powerful means
to investigate microinstabilities and turbulent transport proc-
esses in magnetically confined plasmas.'™ Originally, gyroki-
netic equations are derived by recursive techniques combined
with the WKB or ballooning representation.”'® On the other
hand, modern derivations of the gyrokinetic equations are based
on the Lagrangian and/or Hamiltonian formulations,'" in which
conservation laws for the phase-space volume and the magnetic
moment are automatically ensured by Liouville’s theorem and
Noether’s theorem, respectively.'? Besides, conservation of the
total energy and momentum is naturally obtained in the gyroki-
netic field theory, where all governing equations for the distri-
bution functions and the electromagnetic fields are derived
from the Lagrangian which describes the whole system consist-
ing of particles and fields.">"” A subtle point regarding the
Lagrangian/Hamiltonian gyrokinetic formulations is that they
basically treat collisionless systems so that Noether’s theorem
and conservation laws do not hold directly for collisional sys-
tems. In this paper, we examine how the collision and external
source terms added into the gyrokinetic equations influence the
conservation laws derived from Noether’s theorem in the gyro-
kinetic field theory for collisionless systems.

For a given collisional kinetic system, we can imagine a
corresponding collisionless kinetic system such that the two
systems have the same distribution functions and electromag-
netic fields instantaneously. As an example of two such sys-
tems, the Boltzmann-Poisson-Ampere system and the Vlasov-
Poisson-Ampere system are considered in Sec. II, where we
express the variation of the action integral for the latter colli-
sionless system in terms of the distribution functions and the
electromagnetic fields for the former collisional system to
show how the conservation laws derived from Noether’s
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theorem in the collisionless system are modified in the colli-
sional system with external sources of particles, energy, and
momentum. There, we confirm the natural result that, when
adding no external sources but only the collision term that con-
serves the energy and momentum, the energy and momentum
conservation laws for the Boltzmann-Poisson-Ampere system
take the same forms as those for the Vlasov-Poisson-Ampere
system. The above-mentioned procedures are repeated in Sec.
IIT to treat the collisional and collisionless gyrokinetic systems.
In our previous work,'® using the gyrokinetic Vlasov-Poisson-
Ampere system of equations, conservation laws of particles,
energy, and toroidal angular momentum are obtained for colli-
sionless toroidal plasmas, in which the slow temporal variation
of the background magnetic field is taken into account in order
to enable self-consistent treatment of physical processes on
transport time scales. Based on these results, the particle,
energy, and toroidal angular momentum balance equations for
the collisional plasma are derived from the gyrokinetic
Boltzmann-Poisson-Ampere system of equations in Secs. IV
and V. In Sec. VI, it is shown by taking the ensemble average
of these balance equations that the particle, energy, and toroidal
angular momentum transport fluxes are given by the sum of the
conventional expressions of the classical, neoclassical, and tur-
bulent transport fluxes to the lowest order in the normalized
gyroradius parameter. Conclusions are given in Sec. VII and
formulas for transformation from particle to gyrocenter coordi-
nates are presented in Appendix A.

Regarding the collision operator for the gyrokinetic equa-
tion, several works have been done, which take account of
finite-gyroradius effects to modify the Landau collision opera-
tor defined in the particle coordinates.'®” The relation of the
collision operator in the gyrocenter coordinates to that in the
particle coordinates is explained in Appendix B. The Landau

© 2015 AIP Publishing LLC
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operator for Coulomb collisions conserves particles’ number,
kinetic energy, and momentum locally at the particle position
although, in the gyrocenter position space, collisions induce
transport fluxes of particles, energy, and momentum. Besides,
it is emphasized in this work that the collisional change rates of
the gyrocenter Hamiltonian (which includes not only the ki-
netic energy but also the potential energy) and of the canonical
momentum (instead of the kinetic momentum) per unit volume
in the gyrocenter space should take the conservative (or diver-
gence) forms in order to properly derive the energy and mo-
mentum conservation laws for the collisional gyrokinetic
system. The approximate collision operator which keeps these
conservation properties of the gyrocenter energy and canonical
toroidal angular momentum is shown in Appendix C [It is
noted that another form of the gyrokinetic collision operator,
which satisfies the energy and momentum conservation laws,
has recently been presented by Burby er al.?®]. Appendix D is
given to describe how to derive the formula for the toroidal
angular momentum transport flux due to the collision term.

Il. BOLTZMANN-POISSON-AMPERE SYSTEM

In this section, conservation laws are investigated for the
Boltzmann-Poisson-Ampere system of equations which pro-
vide the basis of approximate description by the collisional
electromagnetic gyrokinetic system of equations for strongly
magnetized plasmas considered in Secs. III-VI. Time evolu-
tion of the distribution function f;(x, v, ¢) for particle species
a is described by the Boltzmann kinetic equation

0 e, 1 0
[51+V-V+m—a{E(x,t)+Ev xB(x,t)} -E}fa(x,v,t)

=Ka(x,V,1), (D

where IC,(x, v, ) denotes the rate of change in the distribu-
tion function f, due to Coulomb collisions, and it may also
include other parts representing external particle, momen-
tum, and/or energy sources if any. The electromagnetic fields
E(x,?) and B(x, ) are written as E = —V¢ — ¢ '9A /0t and
B = V x A, where the electrostatic potential ¢ and the vec-
tor potential A are determined by Poisson’s equation,

V2ip(x,1) = —4nZea Jfa(x,v,t)d3 = —4no, (2)

and Ampere’s law,

4,
VZA(Xv t) = _TJTv (3)

respectively. Here, the Coulomb (or transverse) gauge condi-
tion V-A=0 is used and the current density j=
Y opCalala = >, eq [ fu(X,V, t)vd®v (or any vector field) is
written as j = j, + j, where j, = —(4n)"'V [®X (V' -j)/
Ix —x/| and j, = (47)'V x (V x [d*X'j/|x —x|) repre-
sent the longitudinal (or irrotational) and transverse (or solenoi-
dal) parts, respectively.?® Equations (1)—(3) are the governing
equations for the Boltzmann-Poisson-Ampere system.

Suppose that f,, ¢, and A which satisfy Eqgs.
(1)-(3) are given. Then, for the electromagnetic fields

Phys. Plasmas 22, 082306 (2015)

E=-V¢ —c'0A/0tand B =V x A given from ¢ and A,
we consider the distribution function f which is the solution
of the Vlasov equation

0 ey 1 0.y B
|:5I+V-V+m—a{E(X,t)+;VXB(X,[)} .E}f" (x,v,1) =0.
“4)

We also assume f to coincide instantaneously with £, at a
given time ¢y so that fY(x,v,t) = fu(X,V,1). Therefore,
equations obtained from Eqgs. (2) and (3) with f, replaced by
£V also hold at #,. In other words, £, ¢, and A satisfy the
Vlasov-Poisson-Ampere system of equations at #y. Note that
the Vlasov-Poisson-Ampere system of equations can be
derived from the variational principle using the action 7
defined by Eq. (1) in Ref. 29 where its variation 0Z associ-
ated with infinitesimal transformations of independent and
dependent variables [see Eqgs. (10) and (15) in Ref. 29] is
explicitly shown in order to apply Noether’s theorem for
obtaining conservation laws of energy and momentum. Now,
let us use fV, ¢, and A to define the action integral Z over a
small time interval, tp — h/2 <t <ty + h/2, during which
the Vlasov-Poisson-Ampere system of equations are approxi-
mately satisfied by £, ¢, and A within the errors of order A.
Then, neglecting the errors of higher order in /4, the variation
0Z can be written in the same form as in Eq. (15) of Ref. 29,

l(]+h/2 a
8T = —J dtjd3x {—5Gg(x,t) + V- 0GY (x,1)|, (5)
to—h/2 ot
where 5G}, and 6G" are written as
OGY (x,1) = EY otp — PV - oxg,
0GY (x,1) = Q) tp — I/ - 6xg + Sy 9¢ — X4 - 0A.  (6)

Here, tg, 0xg, d¢, and OA represent variations of 7, X, ¢, and
A, respectively, while SY, P:./, Q:./, l'[:./, Sg, and X4 are
defined by

&=y

5 (ZIVOP + [B).

1
d3vf;lv(x7 v, 1) (zma|v2 + euq,’))

BvE (x,v,1) (mav n %"A) ,

1
VL) (x,v,1) (Ema|v2 + ea¢) v

1 (0¢ AO0A O0A
+E<EV(]§+ - XB),

m=>" Jd3vf2/(x, v, t)v(mav + %”A)

o (V6P ~ BT+ o [-(V4)(V9)
+((VA) = (VA)") - (VA)" —é(VA)T},

1 1 A
S¢:—EV¢, andEA=E<BXI+;I), (7)
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respectively, where the superscript T represents the transpose
of the tensor and I denotes the unit tensor. The field variable
A which appears in Eq. (7) is introduced in Ref. 29 as the
Lagrange undetermined multiplier to derive the Coulomb
gauge condition V - A = 0, and it is shown from Eq. (8) in
Ref. 29 that

V2) = 4xnV -j. (®)

Suppose that the variations ¢z, 0xg, d¢, and 0A are such
that 0Z =0 holds for an arbitrary x-integral domain in
Eq. (5). Then, taking the small time interval limit # — +0 in
Eq. (6), we find that the conservation law,

0
[— (3Gg(x, t)] + V- 5GV(X7 f) =0, O
ot 1=t
should be satisfied. This is the so-called “Noether’s theo-
rem.” Recalling that f) (x,v, %) = f,(X, Vv, ) and comparing
Egs. (1) and (4) at t =t,, we have

ofY (x,v, t)] B {8f,,(x7v7t)}
[ o e | o m—’Ca(X,v,to)- (10)

We now define &, P, Q,, and II. from £, P, QY, and
HZ, respectively, by replacing f' with fa in Eq .
Correspondingly, 6Gy and 0G are defined from JG} and
0GY by replacing c‘IV PV 2./, and HZ./ with &, P, Q., and
I1,, respectively, in Eq. (7). These definitions immediately
yield 6G" (x,#9) = 6G(x, o) and

{a&cg (X, z)} _ [aaao(x, )

o o ]f—[o_éKGO(X’ZO)’ (11)

where Eq. (10) is used and 0K is defined by

0Kgo = Kec 0ty — Kpe - OXg,

Ke, = Zjdgvlc ( ma|v[* +€a¢>) a2)

a

Kpe=Y_ Jd% K, <mav +%”A).

a

Substituting Eq. (11) into Eq. (9), we find that the conserva-
tion law is modified for the Boltzmann-Poisson-Ampere
system as

%56’0(X7 f) +V- 5G(X, l) = 0K, (13)
where t, is rewritten as ¢ because #, is an arbitrarily chosen
time. Equation (13) shows that 6K represents effects of /C,
in Eq. (1) on the conservation law. If X, is given by the
Coulomb collision term only, 0K defined by Eq. (12) van-
ishes because the collision term conserves particles’ number,
momentum, and energy.

Energy and momentum balance equations can be
derived from Eq. (13) using symmetries of the system under
infinitesimal time and space translations as shown later.
Before deriving them, we first consider the equation for the
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particle number density n, = | fud>v which is obtained by

taking the velocity-space integral of Eq. (1) as

on,
ot

+ V- (nqug) = JICad3V. (14)

We hereafter assume that Za e, fICad3V = 0, which means
that the source terms /C, conserve electric charge even if
fICad3V # 0 for each species a. This seems a reasonable
assumption in consistency with Egs. (2) and (3), in which no
external source terms are included. Then, multiplying Eq.
(14) with the electric charge e, and performing the summa-
tion over species result in the charge conservation law

@ +V.j=0. (15)

ot
We also find from Za e, flCad3V = 0 that, in Eq. (12), the
terms including ¢ and A vanish and make no contribution to
Kg. and Kp.. As seen from Egs. (2), (8), and (15), we can put
A= 0¢/0t, which is also used in Ref. 29 to derive energy
and momentum conservation laws for the Vlasov-Poisson-
Ampere system.

We now note that the action integral is invariant,
namely, 6Z = 0 under the infinitesimal translations in space
and time represented by dtg = €, 0X, = 0Xg = €,0vV, = 0,
0¢ = 0, and A = 0, where ¢, and € are constant in time and
space. These invariance properties hold because the inte-
grands in the action integral Z depend on (X, ¢) only through
variational variables [see Eq. (1) in Ref. 29]. Using the time
translational symmetry, Eq. (13) reduces to the canonical
energy balance equation

on
ot

(16)

where the canonical energy density and flux (&.,Q,) are
given by replacing f with £, in the definitions of (£/,Q)) in
Eq. (7). In the same way as in Ref. 29, we use the kinetic
energy density and flux, (£,,Q,), defined by

_ 3 1 2
& = ZJd Vfa(x,v,t)ima|v| ,
‘ 1 (17
_ 3 2
Qp = ;Jd Vf,,(x,v,t)ima|v| v,

to modify Eq. (16) into more familiar forms. Then, the
energy balance equation is finally written as

0 |EL|2+|B|2> ( 1 94 )
<5 ) V(@ BB

(5 n [E.|” +2E, - Er + |B| )
P 8n

(Q+ ExB+— gbaET)

=Ke. EZJdSVICHEmHMZ, (18)

a

where E;, = —~V¢ and Er = —¢"'0A /0t are the longitudi-
nal and transverse parts of the electric field, respectively.
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Next, from the space translational symmetry and Eq.
(13), we obtain the canonical momentum balance equation,

OP,
or

+ V-1l = Kp, (19)

where the canonical momentum density and tensor (P, II,)
are given by replacing £/ with £, in the definitions of
(PY,11Y) in Eq. (7). Furthermore, in the same way as in
Ref. 29, the invariance of / under the infinitesimal rotation is
shown to give the equation for the angular momentum,
which is used to modify Eq. (19) into the momentum balance
equation,

0
o (P +Py) + V- (I, +Thy) = K, = > Jd% Kamav.

a

(20)

Here, the particle parts (P,,II,) of the momentum density
and the pressure tensor are defined by

P, = Z chvfa(x,v7 1)mgv,
‘ (21)
I, = Z JdSVfa(x, v, 1)m,vv,

and the field parts (Ps, Iy) are given by

EL x B
p=—+-""
! 4rc
1
My =~ (B + 2, - Er + [B])I (22)
1
~ 1= (E.E; + E,Er + ErE, + BB).

Equations (18) and (20) take physically familiar forms
of energy and momentum balance equations including exter-
nal source terms. As mentioned earlier, if /C, is given by the
Coulomb collision term only, K¢. and Kp. vanish so that the
energy and momentum balance equations for the Boltzmann-
Poisson-Ampere system take the same forms as those for the
Vlasov-Poisson-Ampere system.>’

Il. GYROKINETIC BOLTZMANN-POISSON-AMPERE
SYSTEM

Let us start from the gyrokinetic Boltzmann equation
written as

o dz, 0 e
(5+ & .a_Z>Fa(Z,t)_Eb:Cab[Fa,Fb}(Z,t)+Sa(Z,t),

(23)

where F,(Z,t) is the gyrocenter distribution function for spe-
cies a, C,[F,,Fy)(Z,t) represents the rate of change in
F,(Z,t) due to Coulomb collisions between particle species
a and b, and S,(Z,1) denotes other parts including external
particle, momentum, and/or energy sources if any. The gyro-
center coordinates are written as Z, = (X4, Uq, iy, Ea)s
where X, U,, 1, and &, represent the gyrocenter position,

Phys. Plasmas 22, 082306 (2015)

parallel velocity, magnetic moment, and gyrophase angle,
respectively. Appendix A shows the relation of the gyrocen-
ter coordinates to the particle coordinates in detail. The per-
turbation expansion parameter in the gyrokinetic theory is
denoted by J, which represents the ratio of the gyroradius p
to the macroscopic scale length L of the background field. It
is shown in Appendix B, how the collision operator
C%,|F4,Fy) for the gyrocenter distribution functions F,, and
F, is given from the collision operator C, [f,, f;] for the par-
ticle distribution functions f,, and f5,.

The deviation of each distribution function from the
local Maxwellian is regarded as of O(J), and accordingly,
the collision term C%, is considered to be of O(5). We
assume that the source term S, is of 0(52) so that its effect
appears only in the transport time scale. We also assume that
SoueaJdU [du [dEDySq(Z,t) =0 in order to prevent the
source term from affecting the charge conservation laws [see
Eq. (60)]. Here, D, denotes the Jacobian for the gyrocenter
coordinates, D, = det[0(X,,V4)/0(Xa, Uas &4y 1t,)],  where
(X4, V,) represent the particle coordinates consisting of the
particle’s position and velocity vectors.

We treat toroidal systems, for which the equilibrium
magnetic field is given in the axisymmetric form as

By =V x Ay = IV{+ V{ x Vy, (24)

where [ and y are constant on toroidal flux surfaces la-
beled by an arbitrary radial coordinate s and ( is the toroi-
dal angle. We note that / and y represent the covariant
toroidal component of the equilibrium field By and the
poloidal magnetic flux divided by 2=, respectively. The
equilibrium field By is allowed to be dependent on time.
Then, following Ref. 18, the gyrocenter motion equations
are written as

dZ,
dt

eq OA)
c o’

= {Za;Ha} + {Zaaxa} ' (25)
where the gyrocenter Hamiltonian, which is independent of
&4, 1s defined by

1
H, = gmng + ,uaBO + ea\Pa; (26)
and A} is given by A = Ao(X,,1) + (mec/e,)Ub(Xy, 1).
Using the nonvanishing components of the Poisson brackets
for pairs of the gyrocenter coordinates given by

c B*
X, Xyt =——bx1I X, U,} =—=4
{ ay a} eaBZH X 1, { as a} maBZH’
€a
= 27
{éaatua} mac’ ( )

the gyrocenter motion equations in Eq. (25) are rewritten as

dX, 1 e, 0¥,
= U, +-—= B
dt By [( * m, 0U,) ¢

10A*
+cb x (ﬁVBO + VY, +- )} ; (28)
e, c Ot
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du, BZ 10A”
= — . VB \A 4 ——1 29
dt maBZH |::ua 0+ea< a+c ot >:|7 (29)
du
—24 =90 30
it , (30)
and
d Z ¥,
La_q, 4 (1)

dt “ " mgc Op,

Here, Q, = e¢,Bo/(muc), b=By/Bo, BZH =B -b, and
B = V x A’. The field variable ¥, is defined by

€a
Y, = Zy1))e P
<lpa( )>g(1 +2maC2

_<[¢a(Zavt)}2>f/a (32)

(1A1(Xa + pas1))e,

where the field variable V, is defined in terms of the electro-
static potential ¢ and the perturbation part of the vector
potential A; as

1
lpa(th) = ¢(Xa +Pa7l) _;VaO(Zaat) : A1 (Xa +Pa7f)~ (33)

The gyroradius vector is given by p, =b(X,,1) X
Va0(Za,t)/Qu(Xy, 1) and the zeroth-order particle velocity
Va0 1s written in terms of the gyrocenter coordinates as
VaO(Zaa t) = Uab(Xav t) - [Z,UaBO(Xu)/ma}l/z [Sin éael (Xm t)
+cos &,e2(X,, )], where the unit vectors (e, ep,b) form a
right-handed orthogonal system. The gyrophase-average and
gyrophase-dependent parts of an arbitrary periodic function
0O(¢,) of the gyrophase &, are written as

(). = %i 0¢) ad 0=0-(0)., G4
respectively. In the gyrocenter motion equations, effects of
the time-dependent background magnetic field and those of
the fluctuating electromagnetic fields appear through 0A, /Ot
and W, respectively. It should be noted that dZ,/dt on the
left-hand side of Eq. (23) is regarded as a function of (Z,¢)
which is given by the right-hand side of Eq. (25).

We find from Eqgs. (A3) and (A4) in Appendix A and
Eq. (B1) in Appendix B that the gyrophase-dependent part of
the right-hand side of Eq. (23) appears from C%, and it is of
O(5). Using Q, = O(6™ "), the gyrophase-dependent part of
the left-hand side of Eq. (23) is written as Q,0F, /O to the
lowest order in 8. Then, it is concluded that F, = O(5?).
Taking the gyrophase average of Eq. (23), we obtain

9 dz, o
(&Jr di 'a_Z)F“(Z’t>

(35)
= Z<C§b[FmFb](th)>§ + 8a(Z,1),

where F,(Z,t) and S,(Z, t) are both regarded as independent
of the gyrophase ¢ and (- - -) . are omitted from them for sim-
plicity. It is seen from Eq. (B1) that effects of F, = O(d%)
on (C%,[F, Fpl); in the right-hand side of Eq. (35) are

Phys. Plasmas 22, 082306 (2015)

estimated as of O(6%). Here and hereafter, we neglect F,
= (’)(52) in both sides of the gyrokinetic Boltzmann equation
given in Eq. (35). Even so, its moment equations can cor-
rectly include the collisional transport fluxes of particles,
energy, and toroidal momentum up to the leading order, that
is (’)(52), as confirmed later. In Appendix C, Eq. (C1) com-
bined with Egs. (C2), (C10), (C15), and (C16) presents
the approximate gyrokinetic collision operator, which has
favorable conservation properties and correctly describes
collisional transport of energy and toroidal angular
momentum.

The gyrokinetic Poisson equation and the gyrokinetic
Ampere’s law are written as'®

Vip(x, 1) =—4n> e, Jd6Z D(Z,0)8*(X + p, — X)

e, OF,
X [Fa(Z,t) + Bo 3”]’ (36)
and
) 4r
V(Ao +Ay) = _TQG)T? (37)

respectively, where (j;); is the transverse part of the gyroki-
netic current density js defined by

o= e JdﬁzDa<Z)a3 X + p,(Z) — x]

a

a

4 eV OF vao<Z>>. (38)

X (Fa(Z, ) {vao(z) = nj”cAl (X + p,(Z),1)

By 8/1

It should also be noted that the Coulomb gauge conditions
V-Ap=0and V- A; = 0 for the equilibrium and perturba-
tion parts of the vector potential are used here. The equilib-
rium vector potential Ay is given by A= —yV{
+V{x Vn, where n=n(R,Z) is the solution of A.n
=R’V -(R>Vn) =1. In Ref. 18, additional governing
equations are derived in order to self-consistently determine
I and y for the time-dependent axisymmetric background
field By = V x Ag = IV{ + V{ x Vy. They are given by

do |4n S
1= jgﬂ [CMg + (B(), —Blg], (39)
and
4 ol —
A= (771 (i) + ¥ x M| =V x Bl) RV A
(40)
where the toroidal-angle average is represented by

—=2n)" $---dl, the poloidal angle is denoted by 0,
and A; =1 — (4n/c)M; — (B(e)), + By;. Here, the covari-
ant toroidal component of an arbitrary vector V is written as
V¢. The turbulent part of the magnetic field is given by
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B, =V xA;, and B®) s defined by V x B
= (41/c)(j'®)),. The magnetization M can be obtained
from the turbulent fields and the distribution functions for all
species using Egs. (41)-(43) in Ref. 18. Thus, Egs. (35),
(36), (37), (39), and (40) constitute the closed system of gov-
erning equations which determine F,, ¢, Ay, I, and y.

For the gyrocenter coordinates which have Poisson
brackets given in Eq. (27), the Jacobian is given by
D, = BZH /mg. It is important to note that the Jacobian D,, sat-
isfies the gyrocenter phase-space conservation law,

oD, O dz,\
=t oz (DHW) = 0. 1)

Then, using Eq. (41), the gyrokinetic Boltzmann equation in
Eq. (35) can be rewritten as

0 0 dZ,
a(DaFa) + 87 : (DaFa dl) - Da’Caa (42)

where IC, is the gyrophase-independent function given by
the right-hand side of Eq. (35),

Ka(Z,1) = (C)[Far Fy)(Z,1)) + Sa(Z,1).  (43)

a

We hereafter derive conservation laws for the gyroki-
netic Boltzmann-Poisson-Ampere system of equations
following the procedures similar to those shown in Sec. II.
For that purpose, suppose that F, ¢, Ay, I, and y satisfy Egs.
(35), (36), (37), (39), and (40). Then, we consider the gyro-
center distribution function F! which obeys the gyrokinetic
Vlasov equation,

(6 dZ, 0

g G \pv _
ot dt BZ)F“ o “44)

where dZ,/dt is evaluated by using the above-mentioned
fields (¢, Ay,1, ) obtained from the solution of the gyroki-
netic Boltzmann-Poisson-Ampere system of equations. Here,
it should be noted that, if the distribution functions F, and
FL/, which are given as the solutions of Eqgs. (35) and (44),
respectively, are initially gyrophase-independent, they are
gyrophase-independent at any time. Besides, F! is assumed
to coincide instantaneously with F, at a given time f.
Therefore, Egs. (36), (37), (39), and (40) are all satisfied at
that moment even if F, is replaced with F! in these equa-
tions. Thus, the gyrokinetic Vlasov-Poisson-Ampere system
of equations are instantaneously satisfied by (FY, ¢, Ay, 1, )
at t =ty. In Ref. 18, the action integral 7 is defined to derive
all the governing equations for the gyrokinetic Vlasov-
Poisson-Ampere system based on the variational principle,
and its variation 0Z associated with the infinitesimal variable
transformations is given to obtain conservation laws from
Noether’s theorem. Here, the action integral Z can be
expressed in terms of (FY, ¢, Ay, %) over a small time
interval, tp — h/2 <t < ty + h/2, during which the gyroki-
netic Vlasov-Poisson-Ampere system of equations is approx-
imately satisfied by them within the errors of order /. Then,
neglecting the errors of higher order in 5, we can write the
variation ¢Z in the same form as in Eq. (77) of Ref. 18,
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to+h/2 o
0T = _J dtJdSX P‘SGX(X, 0+ V-G (X, 1),
to—h/2 ot

(45)
with the functions 4G}, and 0G" defined by

0GY(X,t) = Q) 6tp — 1! - 6Xg + Sy 6 — a1 - 0A; (46)
X}y - 0Ag + S0y + T,

where E:,/ and PL/ are defined by

&=y JdUJdu JdéDaFXHa

a

1
5 (ZIVol + [Bo+Bi[), (47)

P/ = ZJdUJdquwaFg (man +e—“A0>,
~ c
and definitions of other variables Q!, I/, Sy, a1, )y S,
and 0TV are shown in Eq. (79) of Ref. 18. The superscript V
in the variables (EY,PY,...) implies that they are defined
using the distribution function F instead of F,.

As explained in Ref. 18, the integral domain of Eq. (45)
is not an arbitrary local one in the X-space, but it can be local
only in the radial direction in order for Eq. (45) to be valid.
Then, if the variations tg, 0Xg, ... in Eq. (46) are such that
0Z = 0 holds for a spatiotemporal integral domain defined
by [to — h/2,to + h/2] X [s1,s2] where [s1,s,] represents an
arbitrary spatial volume region sandwiched between two flux
surfaces labeled by s; and s,, then the conservation law is
derived as

K%éGg(x, 1)+ V-0GY(X, zo)ﬂ

_ Kaﬁtacg(x, z)> . (V’<f;(;0v : Vs>)}

=0. (48)

1=ty

This is Noether’s theorem for the gyrokinetic Vlasov-
Poisson-Ampére system. In Eq. (48), V' = 9V /0s represents
the derivative of V(s, ) with respect to s and V(s, f) denotes
the volume enclosed by the flux surface with the label s at
the time ¢.

Using FY(Z,1)) = F4(Z,1)) and comparing Eq. (35)
with Eq. (44), we find

OFY(Z z)] {8F (Z x)}
a7 = | == — K A7t 49
|: or — ot — ll( ) 0)7 ( )
where K is defined by Eq. (43). Let us also define 6G( and
G from G} and 3G by replacing F" with F,. Then, we
have G (X, 7)) = G(X, #y) and

d5GY (X,t)] B PEGO(XJ)} i
|: ot t=ty N ot =ty bKGO(X’ t()), (50)

where
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oK GO

Keo = Zeu JdUJdHdeDaKaHav (51)

a

Kre=Y e, Ja’UJd,qufDa’CupZ-

a

= Keotg — Kpe - 0,

Here, p¢ denotes the canonical momentum for species a
defined by

pe = S4Ar = A A + m,Ub. (52)
c c
Substituting Eq. (50) into Eq. (48) and rewriting the arbitra-

rily chosen time 7, as #, we obtain the conservation law for
the gyrokinetic Boltzmann-Poisson-Ampere system,

<;5G0(X, )+ V- 5G(X,t)>

V' Os
= (0Kco), (53)

- <;5G0(X,t)> 419 (V(6G - Vs))

where (0Kgo) represents effects of the collision and source
terms on the conservation law. Under the nonstationary
background field By, flux surfaces may change their shapes
and the grid of the flux coordinates moves. Then, Eq. (53) is
rewritten as

0
ot

8

( '((6G - 3Gouy) - Vs)) =V'(3Kco), (54)
where u; - Vs represents the radial velocity of the flux sur-
face labeled by s and u, is defined by u; = 9x(s,0,{,t)/0t
with the flux coordinates (s, 0, ) [see Eq. (2.35) in Ref. 31].
In Sec. V, gyrokinetic energy and toroidal angular momen-
tum balance equations are derived from Eq. (54).

IV. EQUATIONS FOR GYROCENTER DENSITIES AND
POLARIZATION

In this section, we take the velocity-space integral of the
gyrokinetic Boltzmann equation in Eq. (35) to consider the
particle transport before treating the energy and toroidal
angular momentum transport in Sec. V. We define the gyro-
center density n&gc) by

nE%,0) = [ [au [azD,F., (55)

and the gyrocenter flux F((Igc) by

1) = peyle) — JdUJdqu.f DF.VE),  (56)
where u(gC) represents the gyrocenter fluid velocity and the
gyrocenter drift velocity v} (&) — gX, /dt is given by evaluat-
ing the right-hand side of Eq. (28) at (X, U, ). Then, inte-
grating the gyrokinetic Boltzmann equation, Eq. (42), with
respect to the gyrocenter velocity-space coordinates (U, p, &)
and using Eq. (43), we obtain
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8n,<,gc)
ot

+V. (r§g°> + rf) = JdUJdquéDaSa. (57)

Using the approximate collision operator given in Eq. (C1)
in Appendix C, the particle flux T’ S due to collisions and fi-
nite gyroradii is defined by Eq. (C6) with putting A" (z) =
[If the collision operator given in Eq. (B1) in Appendix B is
employed, I' S is defined by Eq. (B8).].

As shown in Ref. 18, the gyrokinetic Poisson equation
in Eq. (36) is rewritten as

. E
> e = ( 4L T P<P°1>) (58)

where E;, = —-V¢, V =09/9X, and P represents the
polarization density defined by
JdUJdu j dé

pol § :
1‘,“‘31/7

an I(D F*papall o .painfl)
8X,1 - 0X; .

(59)

In—1

Here, p,; denotes the ith Cartesian component of p, = b(X, )
X Vao(Z,1)/Q(X, 1), and F' = F, + (eq ,/Bo) (OF . /Op).

As mentioned before Eq. (24) in Sec. III,
Yowea [dU [du [dED,S,(Z,t) = 0 is assumed. Then, using
Eq. (57), we can obtain the charge conservation law,

g(z <)+v (i +§) =0, (60

where the current density due to the gyrocenter drift and that
due to the collisional particle transport are given by j(gc) =
S, el =3 enleule) and j€ =3 e,IC, respec-
tively. Note that the magnetization current is solenoidal and,
accordingly, it does not contribute to the charge conservation
law in Eq. (60). Equation (58) is substituted into Eq. (60) to
show

: : 9 (E 0
it it = a,(L+P£"”), (6D

where the subscript L is used to represent the longitudinal
part of the vector variable. Then, using Eqgs. (58), (60), and
(61), we find that the useful formula,

o) o )
- <58_j‘z<>> + - VA) = (A(V ),
(o o) -]
)] e

holds for any function A(X,¢). The relation in Eq. (62) is
used in Sec. V B to derive Eq. (74).
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V. GYROKINETIC ENERGY AND TOROIDAL ANGULAR
MOMENTUM BALANCE EQUATIONS

In this section, energy and toroidal angular momentum
balance equations for gyrokinetic systems including colli-
sional processes are derived by using the results shown in
Secs. IIT and IV.

A. Energy balance equation

The variation 0Z of the action given in Sec. III vanishes
under the infinitesimal time translation represented by otg
= € where € is an infinitesimally small constant. Here, all
other infinitesimal variations 0xg, ¢, ... are regarded as
zero. Then, 0Gy and 0G are determined by these conditions
for the infinitesimal time translation and they satisfy Eq. (54)
which, in the same manner as in Ref. 18, leads to the energy
balance equation,

0 0
o (V'(&)) + % (V'{(Q} + Qp — &uy) - Vs)) = V' (Kee).
(63)
Here, the energy density £ is defined by
47
m e :
:ZJdUJdMJdéDaFa<J Va0 — - Al
~ 2 «C
eq 0 ,~ .~ =
2B, 91 (Va(2¢ — %))5)
1
5. (VoI + [Bo+ B ), (64)

and the energy fluxes Q! and Q}, are given by

Q=Q 12 (9V9),

= JdUJdquf DoF, {Havﬁ,g” + %
maU 1
<y )N ) v

“am o X Bor B+ (At
s Ay ax >
A ( 5+, VL (65)
and
)
Qp=Q; + ? (66)

respectively, where N, Q, and @y, are defined by Egs. (43),
(85), and (88) in Ref. 18, respectively.

Recalling Eq. (51) and using Eq. (C5) into which we
substitute A%(Z) = H,(Z) and the approximate collision
operator given in Eq. (C1) in Appendix C, we rewrite the
right-hand side of Eq. (63) as
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ViKe) =~ 5 (V'(QS - V)

+V' Z<JdUJdu Jdé DaSaHa>, (67)

where the energy flux Q€ due to collisions and finite gyrora-
dii is defined by taking the summation of Eq. (C6) over spe-
cies a with putting A7 (2) = 3mavf, + Ho,Bo(Xa) + €atb(Xy)-
The derivation of Eq. (67) requires Eq. (C7) which is satis-
fied by the collision operator in the form of Eq. (C1) with
appropriately choosing Axflz), Av),, and Ay, as described in
Appendix C.

Substituting Eq. (67) into Eq. (63), the energy balance
equation is rewritten as

9
ot

2 (V4(@Q~ £w) - V)

=V Z<JdUJdqu§DaSaHa>, (68)

where the energy flux Q is given by

(V&) +

Q=Q +Q;+Q". (69)

The right-hand side of Eq. (68) represents the external
energy source. It is confirmed later in Sec. VIB that the en-
semble average of (Q - Vs) coincides with the well-known
expression of the radial energy transport to the lowest order
in the J-expansion.

B. Toroidal angular momentum balance equation

The toroidal angular momentum balance equation is
derived from the fact that 6Z = 0 under the infinitesimal
toroidal rotation represented by Jxg = ee;(X). Here, € is
again an infinitesimally small constant, and e;(X) is defined
by e:(X) = 0X(R,z,{)/0{ = R*V{ where the right-handed
cylindrical spatial coordinates (R,z,() are used. We also
define zZ by Z = RV{ x VR which represents the unit vector
in the z-direction. Then, if putting the origin of the position
vector X at (R,z) = (0,0), we have e;(X) = X x z. Under
the infinitesimal toroidal rotation, the variations of the vector
variables are given as 0A; = €A X Z and JAg = €Ay X Z
although the other variations dtg, d¢, ..., are all regarded as
zero. Then, using these variations of the variables associated
with the infinitesimal toroidal rotation, the canonical mo-
mentum balance equation is derived from Eq. (53) as

OP:e)\ 10,
<T> + V' Os [V <VS (HC €

+(Zar X Ap + g0 X Ag) - Z 4 Pry))] = (Kper).  (70)

Here, the density of the canonical toroidal angular momen-
tum is defined by

P, e — ZJdUJdquéDaFa(pg)g, (71)

with the toroidal component of the canonical momentum
denoted by
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: e, . €
(Ph); =~ Ai =~ Aog +maUby, (72)

where by = I/B represents the covariant toroidal component
of b = B/By. Definitions of X4, X490, and Pg; on the left-
hand side of Eq. (70) are given in Egs. (79) and (100) in Ref.
18. On the right-hand side of Eq. (70), the variation of the ca-
nonical toroidal angular momentum due to collisions and
external sources is given by

Kpe=Kpc-ec=> JdUJdquéDaICa(p;)C. (73)

a

We follow the same procedures as shown in Sec. VB of
Ref. 18 and use Eqgs. (70)—(73) and Eq. (62) with A = Ay; =
—y to write the toroidal angular momentum balance equation

as
B 1/ oy E
(2t (o) o)

10
97 {V’{ e T My —

1 i 1 oA
 ELE + BB +—( s
4n< Lk + By 1>+4nc<8£ 1>

1 5Aog< (pol) EL)
Jrc< ot PL +47t Vs

1
= (Kpct) + ;<V' (Aocif)), (74)

= (A(V x B)) - Vs)

where

Pir=>_ JdU Jdu Jdé DF,m,Uby,

a

= JdU Jdu de DoFamUb v - vs, (79

H;Q(: = PRC - Vs.

Using Egs. (73) and (C5) in Appendix C with putting
= (pg);» the right-hand side of Eq. (74) is rewritten as

(Kper) + % (V- (o))

o{(5025) 0
+ Z<J du J du J deaSamang>, (76)

where JI(,:( is defined by taking the summation of Eq. (C6)
over species a with putting A?(z) = (eq/c)[Aoz(X) + A1z (x)]
+mgv;. In deriving Eq. (76), Y., e,[dU [du [d¢D,S,
(Z,t) =0 and Eq. (C12) are used. The approximate colli-
sion operator which satisfies Eq. (C12) is presented in
Appendix C.

Substituting Eq. (76) into Eq. (74), the toroidal angular
momentum balance equation is rewritten as

10

V' Os
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0 1 0l EL
o (V’<P|g = (Pﬁp : 4n) VAoz>>

1o, . o1
+7 5 {v{ e+ My + (€)=~

X (A1;(V x By) - Vs) 2
1o\ L0 (e EL>
+4nc<aCAl>+C< o (PL Fa) Y
1 0 E
_< {PIC - (P<Lp l> +4—;> : VAO(} (uy - VS)>H
_ Z<JdUJdqufDa3amanC>7 (77

where the right-hand side represents the external source of
the toroidal angular momentum and

1
~ 1. (ErcE) + Bi¢By)

(m©)’ = <JC+ JL)-VS (78)

is the radial flux of the toroidal angular momentum due to
collisions and finite gyroradii. In Sec. VIC, we derive the
ensemble-averaged toroidal angular momentum balance
equation from Eq. (77) in order to confirm that it is consist-
ent with the conventional result up to the second order in 0.

VI. ENSEMBLE-AVERAGED BALANCE EQUATIONS
FOR PARTICLES, ENERGY, AND TOROIDAL
ANGULAR MOMENTUM

In this section, the particle, energy and toroidal angular
momentum balance equations derived in Secs. IV and V
are ensemble-averaged for the purpose of verifying their
consistency with those obtained by conventional recursive
formulations.>**~3° In the same way as shown in Sec. VI of
Ref. 18, we divide an arbitrary physical variable Q into the
average and turbulent parts as

Q= (Q)ens + 9, (79)

where (---),, represents the ensemble average, and we
immediately find (Q),,. = 0. We identify the zeroth fields
Ap and By with the ensemble-averaged parts to write
Ao = (A)» A1 = A, By = (B),,, and B; = B. Regarding
the electrostatic potential ¢, it is written as the sum of the
average and fluctuation parts, ¢(X, 1) = (P(X,1))ens +¢ (X, 7).
Here, assuming that (¢(x,1)).,, 7 0, the background E x B
flow is retained and its velocity is regarded as O(dvr), where
0 and vy represent the drift ordering parameter and the
thermal velocity, respectively. Then, using Eq. (33), we have

lpa = <wa>ens + {pa, where
<wa>ens = <¢>ens7 lAp (}5 - A (80)

We assume that the ensemble average (Q).,, of any
variable Q considered here has a slow temporal variation
subject to the so-called transport ordering, 0ln(Q),,,/0t =
O(6%*vr/L) and that it has a gradient scale length L which is
on the same order as gradient scale lengths of the
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equilibrium field and pressure profiles. We also impose the
constraint of axisymmetry on (Q). . that is written as
0(Q) ens /O = 0 even though Q itself is not axisymmetric.
On the other hand, the turbulent part Q of Q is assumed to
vary with a characteristic frequency w = O(vr/L) and have
gradient scale lengths L and p in the directions parallel and
perpendicular to the equilibrium magnetic field By,
respectively.

The ensemble-averaged part (F,)... of the distribution
function F, for species a consists of the local Maxwellian
part and the deviation from it

<Fd>ens

The local Maxwellian distribution function is written as Fy;
= ngo[ma /) (27T 40)]*? exp[— (maU? /2 + uBo) /T o), where the
equilibrium density 7,0 and temperature T, are regarded as
uniform on flux surfaces. The first-order ensemble-averaged
distribution function (Fg1).,, is determined by the drift
kinetic equation, which can be derived by substituting Eq.
(81) into the ensemble average of Eq. (23). The derived
equation agrees, to ((9), with the well-known linearized
drift kinetic equation, on which the neoclassical transport
theory is based.>'*
The fluctuation part F, is written as

. ea(,)
Fa:_ aM aT :

=Fan + <F >ens (81)

+ hy. (82)

Substituting Eq. (82) into the fluctuation part of the gyroki-
netic equation in Eq. (23) yields

ha,H,
o Ve Ha}
€q 8<‘La>é ~(gc) €q
= Fau [ o =28 55 (VInpag +
M T.o 01 v <V npa + T v<¢>ens

+ CE, (83)

1 2

EmaU +,UB() 5

27 TR0 2 VnT,
+< TaO D) n 1 g0

where CL represents the linear collision term defined by

> _{Ch,(halx

b
+Cop(Fam, Iy (x — Po)lx=x1p,)c," (84)

Ci(X) = pa)vaM)

Equation (83) is valid to the lowest order in  and agrees
with the conventional gyrokinetic equation for the nona-
diabatic part h, of the perturbed distribution function
derived from using the WKB representation.'®** On the
right-hand side of Eq. (83), the turbulent part ffégc) of the

gyrocenter drift velocity V&) = dX,/dt = {X,,H,}
written as
v = —b X V(i (X + pg, 1) + 0. (89)

It is shown by using Eq. (82) and the WKB representa-
tion that, to the lowest order in ¢, the turbulent parts of
Egs. (36) and (37) agree with the gyrokinetic Poisson
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equation and the gyrokinetic Ampere’s law derived by con-
ventional recursive formulations.®>°

A. Ensemble-averaged particle balance equation

Taking the ensemble average of Eq. (57) and subse-
quently its flux surface average, we obtain

ot V' Os

_ <JdUJd,quéDaSa>, (86)

where (n(8)) = n, + O(J), and ({---)) represents a dou-
ble average over the flux surface and the ensemble. Here,
ngo 1s the equilibrium density which is a flux-surface func-
tion and characterizes the Maxwellian distribution function
F - On the right-hand side, the source term S, is regarded
as of O(6%) as well as all other terms in Eq. (86), and it is
assumed to have no turbulent component so that
Sll = <Sll>ens'

It is shown in Ref. 18 that the radial gyrocenter particle
flux is given by

(&)
<M> Lo (V'(TE) +TC) - Vs)))

(C)y" = (e

) -Vs)) = (YA + (T2, (87

where the nonturbulent part (I’ EA)S and the turbulence-
driven part (I'*)* are written as

02 = { o ezt 59)
— (b (7R )

+nao<BiO ((E)eps X b) - vs> +0(8%), (88

3= (oo fecnnaoo)
- <<Bi dU du dgpaﬁa(w}axb)vs»

+00 (89)

respectively. On the right-hand side of Eq. (88), PSIGL repre-
sents the first-order part of the pressure tensor in the
Chew-Goldberger-Low (CGL) form®' defined by PSIGL =
[dU [du [ dED,(F 1) ens[maU*bb + uBo(I — bb)], and the
ensemble- averaged electric field is given by (E),
= —V{h)eps — ¢ 'OA(/Ot. Thus, Eq. (88) expresses the neo-
classical radial particle flux and the radial E x B drift which
are well-known by the neoclassical transport theory.3 ' We
also find that Eq. (89) agrees with the turbulent radial parti-
cle flux derived from the conventional gyrokinetic theory
based on the WKB formalism.*
The radial classical particle flux is given by
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()" = ((rg - Vs))

- Z<Z“OJdUJd,qu (v X b) - Vs

X {CZ;; (Furs Fom) +C2 (FaM7fbl)}> +0(5%)

_ <e (R x ) Vs> L0, (90)

where F,; = fd3vmaVC{; is the collisional friction force. It is
well-known that the classical transport equation relating
(FC) to the gradient forces is immediately derived from Eq.
(90) because the first-order gyrophase-dependent part of the
particle distribution function in Eq. (90) is expressed in
terms of the gradient of the background Maxwellian distribu-
tion function as f a1 = —Pa - VFuu with the gradient operator
V taken for the fixed energy variable & = mqv* + e(¢).,.

In the same manner as in deriving Eq. (54) from Eq.
(53), the ensemble-averaged particle transport equation can
be obtained from Eq. (86) as

a, , O (it s
= (V) + 5 (V[(T)* = naolu, - Vs)))

_ <JdUJdqu§DaSa>, 1)

where the total radial particle flux is given by the sum of the
classical, neoclassical, and turbulent parts as

(Fa)" = (T 4+ (TC)
= (IM)" + ()" + (T9)" 92)
As shown above, the well-known expressions of the classi-
cal, neoclassical, and turbulent particle fluxes are included in
(L€Y", (TNA)°, and (T'2)’, respectively. The latter two fluxes

are evaluated by the solutions (F,),,, and &, of the first-
order drift kinetic and gyrokinetic equations, respectively.

B. Ensemble-averaged energy balance equation

The ensemble average of the energy density defined by
Eq. (64) is written as

<8 ens Z naOTaO + B + O((S) (93)

where the energy density of the electric field is neglected as
a small quantity of O(5%). It is shown in Ref. 18 that the ra-
dial components of the first two terms on the right-hand side
of Eq. (65) are double-averaged over the ensemble and the
flux surface to give

(oo 53 )
_Z[

Here, the radial particle flux (T&))* is given by Egs.
(87)—(89), and the radial heat flux (g,)" is written as

Tao(r( ) } + 0. (94)
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(qE) = (3™ + (@), 95)

which consists of the nonturbulent part,

(™) = <JdUJdquéD< Do (VEN g

1 5
X <2maU2 + ,LlBO _2Ta0)>

= ao< b x (V-05%)] -vs> +0(8%), (96)
ea 0

and the turbulence-driven part,

(4h)" = - <<§0JdUJdqu:Daﬁa(v¢a X b) Vs

X (;maUz + uBy — gTao) >> +0(8). 97

In Eq. (96), the heat stress tensor G)HCGL is defined by
T0OS = [aU [du [dEéDo(Fat)ens  (AmaU? + 1Bo —3Ta0)
[maU 2bb + pBo(I — bb)]. The expression of Eq. (96) coin-
cides with that of the neoclassical radial heat flux in terms of
the heat stress tensor.’! The turbulent heat flux in Eq. (97)
takes the same form as that given by the conventional gyro-
kinetic theory.*®
The radial component of Q°

averaged to yield
(Q° - vs)) = (¢°)° iT,,o( 10, 98

where the radial classical heat flux is given by

(a5) = < eaBOJdUJdﬂjdéDa[(V x b) - Vs

b

in Eq. (69) is ensemble-

X [CZh (Fats Fom) + Co (FaMfm)}

x <1 U? + uB 5T )
2ma 2220) 2 a0
- a0< ¢ (Fasz)-Vs>. (99)
e.Bo

Here, F» = [ d®v(m,v*/2T, — 5/2)m,vC? is the collisional
heat friction. The expression of the classical heat flux (¢)*
in Eq. (99) agrees with the conventional one,*" and it imme-
diately gives the classical heat transport equation relating
(¢$)" to the gradient forces in the same way as mentioned af-
ter Eq. (90) for the classical particle flux (I'$)".

Now, Eq. (68) is rewritten as

E;naOTaO +§_

o [3 N o/,
50’ n>+a<

+<s(Poynt1ng) VS ( ZnaOTaO+ ) us'vs>

; ((qa)" +§Tao(Fa)S>

)

V’Z<JdUJdquéD S, ( m,U +u30>>+0(53),

(100)

where the total radial heat flux is given by the sum of the
classical, neoclassical, and turbulent parts as
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(4a)" = (¢%) + (¢5)",
= (@) + (g0) + (45)°,

and S = (¢ /47)(E), . x By represents the nonturbulent
part of the Poynting vector. Using the relation (9(B3/8r)/0r)
= — (V) ta(v/(SPoming) 7)) /95 — (Jo - (E) shown in
Ref. 18, we also obtain

8 ( 3 o[
& (V E;HHOTQO> +& <V

)

=V {Jo- (E)ep) + V'Y < JdUJdqufD,,Sa

a

X (%maU2 + ,uBo>> +0(5).

(101)

ens >

za: ((qa)s + %TaO(Fa)X>

3
— EznaOT’IO <l]s . VS>

(102)

Equations (100) and (102) take the well-known forms of the
energy balance equations® except that the terms associated
with the electric field energy and the kinetic energies due to
the fluid velocities are neglected here as small quantities of
higher order in .

C. Ensemble-averaged toroidal angular momentum
balance equation

The ensemble-averaged toroidal angular momentum
balance equation is written as

9 , S(Poyming)
o V < [Za: Nna0My (I/ta”b + llE) + T] . e5>

0

+ (v' [z{myf\f + (A + (1)’
(Poynting)
—< [Z naoMmy (uaHb + llE> + ST] . eg(lls . VS)> }

(s [BuE BB 4 (V< BIA] )] )

i
=Y < JdUJdqufDaSamang> +0(8%), (103)

where u, represents the nonturbulent part of the parallel
fluid velocity for particle species a defined by nuou, =
[aU [du [ dE(F 1)U and ug = ¢(E),,; x b/By is the non-
turbulent part of the E x B drift velocity. Equation (103) is
derived from Eq. (77) following the same procedures as
shown in Ref. 18 except that the additional transport flux HS
defined in Eq. (107) and the external momentum source are
newly included in the present case.

On the left-hand side of Eq. (103), the terms includ-
ing (uqb +ug) and SPovnting) are of O(5*) although they
are written down to explicitly show the inertia-term
part. The nonturbulent and turbulence-driven parts of the
radial flux of the toroidal angular momentum are defined
by
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(TINA)* :< JdUJdquc’fDa<Fa1)ens

x maUbg (V&) vs>, (104)

and

(I12)* :<< JdU Jdu dea/%a

X ma(Ub + Voo ) - e (VE) - Vs)>>7 (105)

respectively. It is shown in Appendix D that Eq. (78) is
ensemble-averaged to give

(@©))) =Y " 1g + 05, (106)

where the radial transport flux of the toroidal angular mo-
mentum for species a due to the collision term and finite
gyroradii is defined by

HC:_Z M%Jdl}]dﬂjdél)u
“ 26030 Os “
X [CZh(<Fal>ens7FhM) + CZb(FaMy <Fb1>ens)]>' (107)

The expressions for the toroidal momentum fluxes
shown in Egs. (104)—(107) agree with those given by con-
ventional recursive formulations in Refs. 33-35. [Since the
so-called high-flow ordering is used in Refs. 33 and 34, the
expressions for the toroidal momentum fluxes in it reduce to
those in the present work in the low-flow-speed limit.]. As
argued in Refs. 18 and 35, when there exists the up-down
symmetry of the background magnetic field, all toroidal
momentum fluxes vanish to O(6?) and the nontrivial toroidal
momentum balance equation is of (’)(53). In this case, gyro-
kinetic systems equations of higher-order accuracy in ¢ are
required for the correct derivation of this O(5°) toroidal
momentum balance equation to determine the profile of the
radial electric field>® although we should note, at the same
time, that the radial electric field is not necessary to deter-
mine the particle and energy transport fluxes to the lowest
order in 6.%

VIl. CONCLUSIONS

In this paper, particle, energy, and toroidal momentum
balance equations including collisional and turbulent trans-
port fluxes are systematically derived from the gyrokinetic
Boltzmann-Poisson-Ampere system of  equations.
Considering an imaginary collisionless system, for which the
distribution functions and electromagnetic fields coincide
instantaneously with those for the considered collisional sys-
tem, and expressing the variation of the action integral for
the collisionless system in terms of the solution to the gov-
erning equations for the collisional system clarify effects of
the collision and external source terms on the collisionless
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conservation laws derived from Noether’s theorem. The
gyrokinetic collision operator is newly presented, by which
the collisional changes in the velocity-space integrals of the
gyrocenter Hamiltonian and the canonical toroidal angular
momentum can be written in the conservative (or diver-
gence) forms. It is confirmed that, to the lowest order in the
normalized gyroradius, the ensemble-averaged fluxes in the
derived particle, energy, and toroidal angular momentum
balance equations can be written by the sum of conventional
expressions of classical, neoclassical, and turbulent transport
fluxes. The extension of the present work to the case of the
high-flow ordering remains as a future task.
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APPENDIX A: COORDINATE TRANSFORMATION

We consider the transformation of the phase-space coordi-
nates in this Appendix, where the subscript representing the
particle species is omitted as far as it is unnecessary. In terms
of the position x and the velocity v of a given particle, we
define the parallel velocity v = v - b(x,?), the perpendicular
velocity v, =v — v b, and the zeroth-order magnetic moment,

2
it

" 2B(x,0)] @D

Ho
where the equilibrium field at position x and time ¢ is
denoted by Bg(x,7) = Bo(x,7)b(x,7). We also define the
zeroth-order gyrophase by & = tan~'[(v-e;)/(v - €;) where
(e, €z, b) are unit vectors which form a right-handed orthog-
onal system at (x,7). Then, the gyrocenter coordinates Z =
(X, U, p, &) are represented in terms of the particle coordi-
nates z = (X, vy, o, &o) as

X, U, 1, &) = (X, v, ty, &) + (AX, Avy, Apg, Ay), (A2
part by the Japanese Ministry of Education, Culture, Sports, ( €)= (%01 Hoy o) + ( I Ato, Aco), - (A2)
Science and Technology (Grant No. 26820398). where
|
Ax = —p + 0(5?),
1
Avj = —vyb- Vb p = (3p-Vb-vi =V - Vb-p)+-—4y +0(?),
2

m Yl Ui e e 7 2
Ay = — |[v?b - Vb - 3p-Vb-v, —v, -Vb - —L ».VB v, -A = 5
Ho=p [U \Y P+4( p-Vb-vy —v, -V P)+ZBOP VB, +CBOV¢ 1¢+BO¢+O( ),
Ay = — (v, VB — 2y b pt Ly va+vi(bev) WL p+—b (A xV)

07 QBy 0 4vzlp P 47 T2 - vip P cmv?. :
e 3{# 2
—— | [77a& | + 0. (A3)
By (J Ao 0)
|

The formulas for Av| Apy, and A, in Eq. (A3) are AP (2) = (T°A%)(2) = A%(T (z)) = A%(z + Az)
obtained by combining the guiding center and gyrocenter < " A4 (z)
coordinate transformations.''"!**” Here, effects of the back- = Z—' Z Az - AL T (A6)
ground electric field and turbulent electromagnetic fields =0 " i, oo

are included through !/~/ [see Eq. (80)] and A;. When the
background electric field and turbulent electromagnetic
fields vanish, Avj Ay, and A, in Eq. (A3) agree with the
results in Ref. 37.

Denoting the coordinate transformation by 7, Eq. (A2)
is rewritten as

7Z="7T(z)=1z+ Az (A4)

An arbitrary scalar field A on the phase space can be
expressed in terms of either the gyrocenter coordinates
Z = (X,U,u,&) or the particle coordinates z = (X, v)|, o,

Co) as
A3(Z) = AP (z). (A5)

Using Egs. (A4), (AS), and the Taylor series expansion, we
obtain

where 7*A% denotes the pullback transformation of A% by
7. Using the inverse transformation 7° ~! we also have
A(Z) = (T " A)(Z) = AT \(2)).

The Jacobians D” and D? for the two coordinate systems
z and Z are related to each other by

o(Z)

DP(z) = det [— DS (Z), (A7)

9(z)

where 0(Z)/0(z) denotes the Jacobian matrix. Then, we use
the following formula:

z+Az—17)
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and partial integrals to derive the relation between the
expressions of the scalar density DA in the gyrocenter and
particle coordinate systems as

D*(Z)A(Z)

_ Jdﬁz’ 5z — 2)D*(2) A (2)),
J (2 + A1 — Z)D" (2) A (2),
K=" O"[Az'r - - AZhDP (z) AP (z)]
B Z n! Z Ozi - .. Ozin =7

n=0 ’ i1, 5in

(A9)

where the replacement of z with Z is represented by
[,z = [d°28°(z—Z) .

APPENDIX B: COLLISION OPERATOR IN
GYROCENTER COORDINATES

We can regard the collision term as a scalar field C on
the phase space. When using the particle coordinates, we
represent the collision term for collisions between species a
and b by C,. A well-established collision operator
C?. (fa,f») for the particle distribution functions f, and f;, is
known as the Landau operator [see, for example, Eq. (3.22)
in Ref. 32]. Then, the collision term C%, represented in the
gyrocenter coordinates is related to C?, by

C8y(FayFy) =T, Cl (TiF 0, T3 Fy), (B1)

where the distribution function for species a (b) in the particle
coordinates is written as the pullback f, = 7, F, (f, = 7 ,F»)
of that in the gyrocenter coordinates F,, (F},) by the coordinate
transformation 7, (7 ,) described in Appendix A, and T;l*
transforms the collision term as a function of the particle coor-
dinates into that of the gyrocenter coordinates.

In order to see collisional effects on conservation laws,
it is convenient to represent the collision term in the gyro-
center coordinate using the transformation formula for the
scalar density D,C,, rather than that for the scalar C,;, shown
in Eq. (B1). Using Eq. (A9), we can derive

Dg(Z )Ci [Fava]( a)Ai(Za>
=0 ”! I]ZI
(o[ - D () Cly il (20) A 2]
A7 ... Ozl _— ’
(B2)

where A, is an arbitrary scalar field depending on particle
species and f, = 7T ,F,, is rewritten by using Eq. (A6) as

WA i,,aF()
fol —Z P o (B9

n= I,,

Then, the gyrocenter representation of the collision operator
Cf;h acting on F, and F), is obtained by Eq. (B2) with put-
ting A* = A” = 1 and using Eq. (B3) to express f, and f;, in
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terms of F, and F), respectively. Integrating Eq. (B2) with
respect to (U, u, &) and taking the summation over species
b yield

JdUJdquéDg(Z)Cg(Z)Aﬁ(Z)

:Ud%CZ(z)A‘;(Z)} V.S, B4

z=7

where C§ =3, C%, and V = §/0X are used and [d’v =
fdvu jduo [ d&yDP(z) denotes the velocity-space 1ntegral
using the particle coordinates. Here, the transport flux J§, of
the quantity A, due to collisions and finite gyroradii of par-
ticles is defined by

o]

JAa Z

n=|

X{

_ Ud%AxaCﬂ(z)AZ(z)} b, (B5)

x=X

| Z 6Xl| e OXin

d*v Ax, A - Ax;”Cﬁ(Z)A’;(z)]

—_—

x=X

The integral of an arbitrary scalar field A, over the whole
phase space is written in either the gyrocenter or particle
coordinate system as

Jd6Z D3(Z)C4(Z)AS(Z) = JdﬁzDg(z)cg(z)AI;(z). (B6)
For the case of A, = 1, Egs. (B4) and (B5) reduce to

JdUJdquéDﬁ(Z)Cf;(Z) = -V -T$(X), (B7)

and

00 n

r (X :Z (n+1)! Z 3X’1- - OXn

n=

X Ud3v AX AX - - M;Cﬁ(z)]

z=7

= Ud3v AxaC’;(z)} + e (B8)
x=X

respectively, where [d*vCP(z) =0 is used. Here, IS is
regarded as the classical particle flux which occurs due to
collisions and finite gyroradii. In fact, using Ax, ~ —p,, we
see that the primary term of FS shown in the last line of
Eq. (B8) is identical to the conventional definition of the
classical particle flux FCI (c/e.Bo)Fa1 x b, where F, =
fd3vmang is the c0111s1onal friction force. Thus, we have
IS =T+ 0(9)).

Let us take the kinetic energy of the particle as A, and
put A = 1m,v = %mavﬁa + UoaBo(X4). Then, it is written in
terms of the gyrocenter coordinates as
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1
Ai = T;l* <§mal)§>

1
= iman + AuaBO(Xfl) + HaPy - VBO(X!I)
Ua(Boja), _y — (Atoa)y,—7,B0(Xa) + -+
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—my

= 22+ RBo(Xa) + ol (Z):, — (T, ) (2)
+0(3%), (B9)

where the inverse 7 ;1 of the transformation 7, given in
Eq. (A3) is used. In this case, taking the summation of
Eq. (B4) over species a and using the conservation property
> jd3v cr %malﬂ =0, we have

zﬂ: JdUJdquéDi(Z)Cg’(Z)T;'* Gmazﬂ) =-V-QF,
(B10)

where QF represents the transport flux of the total kinetic
energy due to collisions and finite gyroradii defined by

ey Ay
— = (n+ 1)! &= OX" - - OX*
X Ud3v Aquxg "'szlcﬁ(z)%mavz]
x=X

1
= Z Ud*vAxaC” )Zmavz} e

x=X

(B11)

To the lowest order in &, the collisional energy flux QC is
approximately written as Q€ ~ > (g2 + %Tal"fll). Here, the
classical heat flux for species a is defined by qgl
= (cTu/eaBo)Fa X b, where Fop = [d*v(mav? /2T, —5/2)
x mgvC?l is the collisional heat friction. We note from Eq.
(B9) that the expression of the kinetic energy in the gyrocen-
ter coordinates should be generally given by the infinite se-
ries expansion in ¢ in order for the gyrocenter velocity-space
integral of the collisional rate of change in the kinetic energy
to take the form of the divergence of the energy flux without
any local source or sink terms. In fact, this energy conserva-
tion property is broken if we keep only the lowest order
terms in Eq. (B9) and evaluate the gyrocenter velocity-space
integral 3, [dU [du [ dEDS(Z)C4(Z) (A m,U? + uBo(X)).
The above-mentioned subtle relation between expres-
sions of the collisional energy conservation properties in the
particle and gyrocenter coordinate systems is also found
when considering the collisional momentum conservation. It
should be recalled that the perturbative expansions in o are
truncated up to finite orders in deriving gyrokinetic equations
as shown in Sec. III although the conservative form of equa-
tions for the energy and the toroidal angular momentum are
obtained even from these approximate equations for the col-
lisionless case since they are constructed based on the varia-
tional principle. Thus, from the viewpoint of practical
applications, it is desirable for the approximate collision op-
erator in the gyrocenter coordinates to keep the conservation
properties. More rigorously speaking, we want the gyroki-
netic collisional velocity-space integrals >, [dU [du [d&
DYZ)CYZ)H(Z) and X, [dU [dy] dED3(Z)CH(Z)
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(P£)5(Z) to take the divergence forms and include no local
source or sink terms, where H,(Z) and (p§)j(Z)=
(ea/c)A’,(Z) are the gyrocenter Hamiltonian and the canoni-
cal toroidal angular momentum defined by Egs. (26) and
(72), respectively. Here, it should be noted that not only ki-
netic parts of energy and toroidal momentum but also contri-
butions from scalar and vector potentials are included in
H,(Z) and (e,/c)A;:(Z). In Appendix C, we find how to
construct the approximate gyrokinetic collision operator, by
which the two integrals mentioned above are written in the
divergence forms.

We now consider the entropy per unit volume defined in
terms of the gyrocenter distribution functions as
S8 =—>",]dU [du [ dEDS(Z)log Fu(Z), in which the rate
of change is given by dS%/dt= -, [dU [du[d¢
D8(Z)[log Fy(Z) + 1)(dF,/dt). Then, the rate of change in
S due to collisions is obtained by putting A% = —[log F,(Z)
+1] in Eq. (B4) and taking the summation over species a as

_ zﬂ: JdU J du J dEDS(Z)CS(Z)[log Fu(Z) + 1]
--% Ud3vC” )logf, (2 >]

where [d®vCP(z) = 0 is used although we should recall that
[dU [du [ dEDE(Z)C8(Z) does not vanish generally as seen
from Eq. (B7). It is well-known that, when Landau’s colli-
sion operator is used for C?, the collisional entropy produc-
tion rate given by the first term on the right-hand side of Eq.
(B12) is nonnegative. This is Boltzmann’s H-theorem which
proves the second law of thermodynamics. The collisional
transport flux Jg of the entropy in Eq. (B12) is defined by

00 n+1
;Z | Z 8X11 e OXin

n

S v J§,
x=X

(B12)

X Ud3v AX AX - - AxinCP (z)[log f, (z) + 1]}

x=X

= - Z Ud3VAxan (z)[logf.(z) + 1}] o

x=X
(B13)

It is shown that, to the lowest order in 0, the collisional en-
tropy transport flux is written as J§ = > (S,ouS + q<'/T,)
where the lowest-order entropy density S,y for species a is
given in terms of the local Maxwellian distribution function
Fuuas S = — [dU [dp [ dEF gy 10g Fay, and uS is defined
by ut! = I'!/n,. Here, we note again that the infinite series
expansion in ¢ as given in Eq. (B2) is used in deriving Eq.
(B12). When the expansion is truncated to finite order, the
collisional entropy production term 1is represented by
> fd3v CP logf, plus residual error terms of higher order
in 0, and thus, the H-theorem is only approximately satisfied.

APPENDIX C: COLLISION OPERATOR RELEVANT FOR
GYROKINETIC CONSERVATION LAWS

In this Appendix, we consider an approximate gyroki-
netic collision operator instead of the one given in Eq. (B1)
[or Eq. (B2) with A°= 4" =1] in order to get the
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gyrokinetic collisional velocity-space integrals of energy and
canonical toroidal momentum to take desirable conservative
(or divergence) forms. The approximate collision operator is
written in the gyrocenter coordinates as

D4(Z, )<C§b[Fﬂ7Fb](Z e,
8" [pl - - piD2(2)CP [for ) ()]
(9

o {Ax D(z,) ﬁ,,[fu,f,,}(za)}

0
6v|

[A0aDf(20)Cop fur i) (20)]

[Aso, D5 (24) Zh%7fh](za)]] > , (Cl)
z,=Z ¢

Sa

aMOa

where Av), and Ay, are written as
Ax, = —p, + AxP | Av, =
Atigg = Anty + Augy), (€2)

(1) 2
AvHa + AvHa ,

and f, is given from F, by f,(z.) = Fu(Xs + AX4, )0,
+ Avq, Ho, + Aptg,). Here, Av‘(‘b), and A.“(()L) are the O(9)
parts of Av, and Apy, given in Eq. (A3). In this Appendix,

we do not derive expressions for the O(5%) parts Ax(?),

DS(Z4)(C3y[Fas Fo)(Za)) e, AS(Z )=<

D5 (20)Chy [far il (20) AL (2) + D

Phys. Plasmas 22, 082306 (2015)

Av‘(‘i), and A,u(()i) by the Lie perturbation expansion method

which is used to define the gyrocenter coordinates with the
well-conserved magnetic moment because it would unneces-
sarily give higher-order accuracy to the coordinate transfor-
mation than the accuracy of the gyrocenter motion equations
themselves shown in Egs. (28)—(31). Instead, we determine
these O(6%) terms from the conditions that the collisional
change rates of energy and canonical toroidal angular mo-
mentum per unit volume in the gyrocenter space can be
given in the conservative forms as shown below. Thus, the
(’)(52) terms are introduced not for accuracy of higher order
in 0 but for satisfying the conservation property of the colli-
sion operator.

In Eq. (Cl), the expansions in (Axf),AvHa,A,an) are
truncated to the first order while the infinite series expansion
in Ax(!) = —p,, is retained because fluctuations” wavelengths
in the directions perpendicular to the equilibrium magnetic
field can be of order of the gyroradius p,. In the WKB (or
ballooning) representation, the above-mentioned infinite se-
ries expansion can be treated using the Bessel functions of
the gyroradius normalized by the perpendicular wave-
length.®®*° We should also note that the gyrophase average
() ¢, Is taken so that the gyrokinetic equation with the col-
lision term is solved only for the gyrophase-averaged part of
the gyrocenter distribution function.

For an arbitrary function A%(Z,) which is independent
of the gyrophase ¢,, we obtain the following formula:

=1

|
P n:

0" [l P DD (20) O fs ) (20) A (22

P Ol ... Ol
0 0 i
o {Axu D (24)Clop[fur o) (24) A (2 a)} oo, [AvuD? (24)Ch [fa o fo) (20) AS (24)]
0
o, [AttoaD4 (2a) Coplfarfi) (20) A% a)]LZ”L, (C3)

where A”(z,) and A”’(z,) are defined by

0 0
p _ PO ().
Al (20) = AV (24) + (Axa ox. + Ay, 5U\|a

+Aﬂ0a a ) A{, (Za)
AL (24) = AS(Xa

We should note that the function A”(z,) defined from
A3(Z,) in Eq. (C4) does not exactly coincide with that given
in Eq. (A6) in Appendix A by the second- and higher-order
terms in the series expansion with respect to Az,. Integrating
Eq. (C3) over the gyrocenter velocity space, we immediately
obtain

—Pa> UHa»HOa)' (&)

JdUJdﬂJdéDg(Z)Cﬁ(Z)Aﬁ(Z)

_ Ud3v cg(z)Af;(z)] R ()
x=X
where the transport flux Jga due to collisions and finite gyro-

radii is defined by

15,0 = | [ [0, + x|y 00|

x=X
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To the lowest order in §, Egs. (C3), (C5), and (C6) derived
from the approximate collision operator in Eq. (C1) agree
with Egs. (B2), (B4), and (B5) given in Appendix B, respec-
tively. The particle flux I' g due to collisions and finite gyro-
radii is given from Eq. (C6) with putting A”(z) =1 in the
same way as in Eq. (B8).

Now, let us take A$(Z) = H,(Z) in Eq. (C5). Here,
H,(Z) denotes the gyrocenter Hamiltonian defined by
Eq. (26). It is desirable that the gyrocenter velocity-space in-
tegral Y. [dU [du [dEDS(Z)C8(Z)H,(Z) takes the con-
servative form, which implies that the integral is expressed
by the divergence term only and

> Jd3v CP(z)HE(z) = 0 (C7)

a

AV (Xy + po))s + 2
2m, 2 1{&a T Pa)l /¢, 2B,

1
+ea{vab~Vb-pa+Z(3pa-Vb~vl—VLVb-pa)—

We find that the right-hand side of Eq. (C10) is of O(6%).
Then, as remarked after Eq. (C16), we can choose Axgz),

Av‘(‘?, and A,ué? which satisfy Eq. (C10) and are of O(5°) so

as to be consistent with Eq. (A3).
When we use Ax(?) = 0, Avy, = Aol and Ay, = A/l(()z)

fla >

for Eq. (C1) by putting A = A,u(()i) = 0, we have AH,(z,)

la
=0(8*) and Y, [d*vCh(z)HP(z) = O(6°)  because
Ch(z) = O(0) holds for the distribution function, the zeroth
order of which is given by the local Maxwellian. Therefore,
even for this case where Y [dU [du[dEDS(Z)
C8(Z)H,(Z) is not completely given in the conservative form,
the residual term >, [dvCE(z)H!(z) = O(5°) is smaller
by a factor of & than other transport terms of O(d%) in the
lowest-order energy balance equation given in Eq. (100) in
Sec. VIB.

We next put A$5(Z) = (pf)i(Z) in Eq. (C5). Here,
(p£)5(Z) denotes the canonical toroidal angular momentum
defined by

(v0)4(2) = AL(Z) = Z A0 (X) +mUb(X),  (C11)

S/Ja c S

where Ag; = —y and b;=1/By. We now see that
> JdU [du [ dEDS(Z)CS(Z)(pf)i(Z) takes the conserva-
tive form if
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holds. Here, using Eqgs. (26) and (C4), H(z) is given by
1
H(2,) = 5mauﬁa + uBo(Xa) + €ap(Xa) + AHy(24), (C8)

where

0 0 0
Ma(za) = (Axt(lz) . B_Xa =+ AUHa % + A‘an %>Ha(za)

+ Hoa [Bo(Xa — Pa) — Bo(Xa)]
+ e[ (Xa = Pus Vas oa) — P(Xa)]- (C9)

It is easily seen that Eq. (C7) is satisfied if AH,(z,) = 0.
Then, substituting Eq. (C2) into Eq. (C9) and using
AH,(z,) = 0, we have

« 0¥ 2 o
2_08/10)] B ;_0 [D(%a) = (W(Xa+ pa))e, ] T

€, 0 maUHa 0
@Al] <av|a - By aﬂOa) ¥ (CIO)
> Jd3v CP(2)(pl)o(z) = 0. (C12)

a

Here, using Egs. (C4) and (C11), (pf),(z) is given by
: €q .
(PE)o(2) = (Ao (%) + Arc(X)] + mave + A(pf) (2), (C13)

where

. 9 o\ .
APS),(2a) = (AXff) ox, T Abla Wﬂ) (P)’ (Xa: 01)
+(P)5(Xa = Pas Vja)

_e?a [AO{(Xa) +A1§(Xa)] — MgV (C14)

Again, we easily see that Eq. (C12) is satisfied if
A(p),(za) = 0. The O(6?%) variables, Ax?) and Avlﬁ), which

meet the condition that A(pf),(z.) = 0, are given by

Ylla

Qab~(V><b)

o e,
APV ()% (2a) = —(Pa- V1) [

1
L, VBO} M€ Wi, (C15)

2B() €q

and
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0 :
Ay 5o () ()

lla )q
= mab;(Xa)Av])
= —MaVja [br(Xa = Pa) = br(Xa) + P - V]
eq 1
U = Pa) = 2(Xa) +Pa VL= 5PaPa VI

(C16)

where V=0/0x, and W:=—(VR-Vy)/(RBy)
+%bgb - (V x b). As a solution to Eq. (C15), we can assume
Ax((lz) to be given in the form Axfl2> = Axt(,i)VX. We should
note that Vy - V(pf)§ = O@6™") and o(ps)s/Ovya = mab;
= (’)(50) while the right-hand sides of Egs. (C15) and (C16)
are of O(8) and O(6?), respectively. Therefore, Egs. (C15)

and (C16) give Ax?) and Au‘(‘z), which are both of O(6%),

a

consistently with Eq. (A3). Then, these Axgz) and Av‘(‘za) are

substituted into Eq. (C10) to determine A/,téza) of O(5) as
well.

Thus, the collision operator, which has the desired
conservation properties as well as the accuracy required for
correct description of collisional transport of the energy and
the toroidal angular momentum, is given in Eq. (Cl), in
which Ax?) Av|,, and Ay, are defined by Egs. (C2), (C10),
(C15), and (C16). Using this collision operator, putting
AP (2) = 3mavf + poBo(x) + e,p(x) and  Af(z) = (eq/c)
[Aoc(x) + A1z (x)] + muue in Eq. (C6) and taking their sum-
mation over species a define the transport fluxes Q© and JSC
of the energy and the canonical toroidal angular momentum,
respectively, which appear in the energy and toroidal angular
momentum balance equations in Secs. V A and V B [see Egs.
(68), (69), (77), and (78)]. In the definition of Q¢ mentioned
above, the contribution of the potential energy part e,¢ is
written as ¢ >, eaFS, which is smaller than the contribution
of the kinetic energy part by a factor of é because the classi-
cal particle fluxes represented by the lowest-order part of I S
are intrinsically ambipolar. Therefore, the energy flux Q°
defined here agrees with Eq. (B11) to the lowest order in 9.
Regarding the entropy production discussed in Appendix B,
the positive definiteness of the entropy production rate
[corresponding to the first term on the left-hand side of
Eq. (B12)] is only approximately shown by using the present
model collision operator in Eq. (C5) with A%(Z) =
—[log Fo(Z) + 1] because A’(z) = —[logf,(z)+ 1] is not
rigorously derived from Eq. (C4) without the infinite series
expansion in Az, as in Eq. (A6).

APPENDIX D: DERIVATION OF EQS. (106) AND (107)

In this Appendix, it is shown how to derive Egs. (106)
and (107) by using the collision operator given in Appendix
C. On the right-hand side of Eq. (78) where the radial flux
(TT€)® of the toroidal angular momentum due to collisions and
finite gyroradii is defined, the two types of fluxes j© = D edrf
and Jgg => JSCa are evaluated by taking the summation of
Eq. (C6) over species a with putting A”(z) =e, and
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Al (z) = (p§),,(z), respectively. Here, (pf)}(z) = (ea/c)[Aoz(X)
+A1(x)] 4 m,v is used for the collision operator which con-
serves the toroidal angular momentum as explained in
Appendix C. Consequently, the ensemble average of (I1¢)*
is expressed explicitly up to O(d%) as

(1)), = <(J +Lif). v)

=2 Jf’13V<CZ(Z)>ens [26 Puba: VIVs

a

ens

—map,v. e Vs +0(5)
B mac|Vs|* dy

- Z; 2¢Bo astUJd“JdéD““

X [C2h<<Fal>ens7FhM) + Cﬁb(Fthv <Fb1>ens)}
+0(5%),

(D1)

from which Egs. (106) and (107) are immediately obtained.
It is noted that the O(5?) part of ((I1€)*),,, has no contribu-
tion from the gyrophase-dependent part of the distribution
function, the lowest-order part of which is given by
f a1 = —Pa - VFay with the gradient operator V taken for the

fixed energy variable & = 1m 1?2 + e(P),,.
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