§1. High W_p Operation in LHD

Nagayama, Y., Sakamoto, R., Ohyabu, N.

The diamagnetic energy (W_p) is one of the most important parameters representing the plasma performance, since the W_p is a volume integral of the product of density and temperature. We have tried to improve the W_p of LHD plasma by using the hydrogen ice pellet injection and the NBI heating. The operation scenario for the high W_p is as follows: (1) initiating the plasma by the first NBI; (2) injecting ice pellets into plasma; (3) heating the plasma by the second NBI; (4) recovering the plasma with the reheat mode. In order to deposit the fuel particle at the plasma center, the T_e should be reduced, and the useful technique is the multiple pellet injection into the plasma sustained by a single beam. This is also useful to deposit the heating power into the plasma center.

The first NBI starts at 0.3 s and the first pellet is injected at 0.6 s. Then 8 pellets are injected sequentially. Fig. 1(a) shows the W_p versus interval of pellet injection in the case of counter dominated NBI. Fig. 1(b) shows the W_p versus the timing of the second NBI. Fig. 1(c) shows the W_p versus the timing of the second NBI in the case of co dominated NBI.

Fig. 2 shows waveforms of the heating power, the electron temperature (T_{eo}), the line averaged electron density ($<n_e>$), and W_p. The plasma is initiated the residual gas and the first NBI. In the case of the sequential pellets are injected (solid line), the T_{eo} drops to bottom due to first a few pellets. So, several pellets can reach the plasma center. The W_p starts to increase when the second NBI starts. The W_p still increases at $t=1$ s with the sequential pellet, while it starts to decrease at $t=1$ s without sequential pellets (broken line).

This experiment indicates that the high W_p can be obtained by the second NBI heating just after the hydrogen ice pellet injection. As increasing the NBI power, high W_p plasma can be obtained by injecting additional hydrogen pellets. No significant instability has been observed in high W_p operations in LHD. Easy operation is an advantage of helical systems.