
Introduction Hattori et al. 1) proposed a high-speed contact-
less method for measuring the distribution of the critical cur-
rent density jC in a high-temperature superconducting (HTS)
film. While moving a permanent magnet along an HTS film,
they measured the electromagnetic force Fz acting on the film.
As a result, the jC-distribution can be successfully determined
from the measured Fz-distribution. The proposed method is
called the scanning permanent-magnet method (SPMM).

The purpose of the present study is to numerically inves-
tigate the applicability of the SPMM to the crack detection in
an HTS film.

Governing Equations A schematic view of the SPMM is
shown in Fig. 1. A permanent magnet is moved along an HTS
film at a constant speed. Specifically, the magnet movement
is assumed as xA = ±(vt − l/2) ≡ x±(t), where v is a scanning
speed. Furthermore, the HTS film is assumed to contain a
crack whose cross section is a line segment connecting two
points, (xc ± Lc/2, yc), in the xy plane. In the following, j and
E denote the shielding current density and the electric field,
respectively.

Under the thin-plate approximation, there exists a scalar
function T (x, t) such that j = (2/b)[∇ × (Tez)], and its time
evolution is governed by the following equation 2) 3):

µ0∂t(ŴT ) + ez · (∇ × E) = −∂t⟨B · ez⟩. (1)

Fig. 1: A schematic view of the scanning permanent-magnet
method.

Here, B/µ0 is the magnetic field generated by the permanent
magnet. In addition, ⟨ ⟩ denotes an average operator over the
thickness and Ŵ is an operator defined by

ŴT ≡ 2T (x, t)
b

+

�
Ω

Q(|x − x′|) T (x′, t) d2x′,

where Q(r) = −(πb2)−1[r−1 − (r2 + b2)−1/2]. As the J-E con-
stitutive relation, the followng power law4) 5) is adopted:

E = E(| j|)[ j/| j|], E( j) = EC ( j/ jC)N ,

where EC denotes the critical electric field and N is a positive
constant.

By solving the initial-boundary-value problem of (1),
we can determine the time evolution of j. Throughout the
present study, the parameters are fixed as follows: v = 2 mm/s,
b = 1 µm, Lc = 2 mm, (xc, yc) = (3 mm, 0 mm), N = 20, and
EC = 1 mV/m.

Numerical Simulation On the basis of the virtual voltage
method 2) 3), a numerical code was developed for analyzing
the time evolution of j. By means of the code, we investigate
whether or not the SPMM is applicable to the crack detection.

As a measure of the crack detection, we define the fol-
lowing defect parameter: d ≡ sgn(∆F+z · ∆F−z )|∆F+z · ∆F−z |1/2.
Here, ∆F+z and ∆F−z denote a change in Fz due to a crack for
xA = x+(t) and that for xA = x−(t), respectively. The defect
parameter d is calculated as functions of the scanning posi-
tion xA. The results of computations show that |d| takes a
large value only for xA � xc and that it rapidly decreases with
an increase in |xA − xc|. In other words, a crack can be found
in the region where |d| exceeds a small positive constant. On
the basis of this result, we can approximately determine the
region Dc in which a crack is contained. The boundary ∂Dc
of Dc is depicted in Fig. 2.
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Fig. 2: The boundary ∂Dc and the gray-scale plot of the
defect parameter d. In this figure, a crack is denoted by a
thick line segment on y = 0 mm.
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