
We have investigated how symmetry properties
of toroidal magnetic configurations influence mech-
anisms of determining the radial electric field such
as the momentum balance and the ambipolar parti-
cle transport [1]. Both neoclassical and anomalous
transport of particles, heat, and momentum in ax-
isymmetric and nonaxisymmetric toroidal systems are
taken into account. Results obtained in this work are
summarized in Table 1, where Γa, qa, and �(Pa)sθ�
(�(Pa)sζ�) represent the radial fluxes of particles, heat,
and poloidal (toroidal) momentum for species a, re-
spectively, and J� is the parallel current.
Generally, in nonaxisymmetric systems, the radial

electric field is determined by the neoclassical am-
bipolarity condition. Figure 1 shows an example
of nonaxisymmetric toroidal systems with stellarator
symmetry. We see from Fig. 1 that there exists an
axis lying on the equatorial plane such that the sys-
tem looks unchanged by a rotation about it by 180
degrees. When defining the origin (θ, ζ) = (0, 0) at
the position where this symmetry axis intersects the
flux surface, the magnetic field strength B(s, θ, ζ) has
the same value at the points (s, θ, ζ) and (s,−θ,−ζ):
B(s, θ, ζ) = B(s,−θ,−ζ). In axisymmetric systems
with up-down symmetry, B(s, θ) = B(s,−θ) is sat-
isfied. It is shown by using a novel parity transfor-
mation that, for axisymmetric systems with up-down
symmetry and quasisymmetric systems with stellara-
tor symmetry, the particle fluxes are automatically
ambipolar up to O(δ2) and the determination of the
radial electric field Es requires solving the O(δ3) mo-
mentum balance equations, where δ denotes the ratio
of the thermal gyroradius to the characteristic equi-
librium scale length.
In axisymmetric systems with large E×B flows on

the order of the ion thermal velocity vTi, the radial
fluxes of particles, heat, and toroidal momentum are
dependent on Es and its radial derivative while the
time evolution of the Es profile is governed by the
O(δ2) toroidal momentum balance equation. In non-
axisymmetric systems, E×B flows of O(vT i) are not
generally allowed even in the presence of quasisym-
metry because the nonzero local radial current is pro-
duced by the large flow term in the equilibrium force
balance for which the Boozer coordinates cannot be
constructed.

Table 1. Remarks on the transport fluxes Γa, qa,
�J�B�, �(Pa)sζ�, �c1(Pa)sθ + c2(Pa)sζ�, the viscosity terms∑

a�∂x/∂ζ · (∇·Pa)�,
∑

a�(c1∂x/∂θ+c2∂x/∂ζ) · (∇·Pa)�,
the ambipolarity condition

∑
a eaΓa = 0, and the radial

electric field Es in toroidal systems with the E × B drift
velocity of O(δvT ). Here, �A is used to represent a measure
of up-down asymmetry or stellarator-symmetry breaking.

Axisymmetric system with up-down symmetry

Γa = O(δ2), qa = O(δ2), and �J�B� = O(δ0) are indepen-
dent of Es = O(δ). �(Pa)sζ� = 0 and

∑
a�∂x/∂ζ ·(∇·Pa)� =

0 holds up to O(δ2) for any Es = O(δ).
∑

a eaΓa = 0 holds
up to O(δ2) for any Es = O(δ). Es = O(δ) is determined
from the O(δ3) toroidal momentum balance equation.

Axisymmetric system without up-down symmetry

Γa = O(δ2), qa = O(δ2), and �J�B� = O(δ0) are
independent of Es = O(δ). �(Pa)sζ� = O(�Aδ2) and∑

a�∂x/∂ζ · (∇ · Pa)� = O(�Aδ2).
∑

a eaΓa = 0 up to
O(δ2) drives Es = O(�A) =⇒ requires treatment of the
large E × B drift velocity of O(�AvTi) when �A � δ.

Nonaxisymmetric system without quasisymmetry

Γa = O(δ2), qa = O(δ2), and �J�B� = O(δ0) are depen-
dent on Es = O(δ). �(Pa)sζ� = O(δ2) and �∂x/∂ζ · (∇ ·
Pa)� = O(δ).

∑
a eaΓa = 0 up to O(δ) determines Es.

Quasisymmetric system with stellarator symmetry

Γa = O(δ2), qa = O(δ2), and �J�B� = O(δ0) are in-
dependent of Es = O(δ). �c1(Pa)sθ + c2(Pa)sζ� = 0 and∑

a�(c1∂x/∂θ+ c2∂x/∂ζ) · (∇·Pa)� = 0 holds up to O(δ2)
for any Es = O(δ).

∑
a eaΓa = 0 holds up to O(δ2) for any

Es = O(δ). Es is determined from the O(δ3) momentum
balance equation.

Quasisymmetric system without stellarator symmetry

Γa = O(δ2), qa = O(δ2), and �J�B� = O(δ0) are inde-
pendent of Es = O(δ). �c1(Pa)sθ + c2(Pa)sζ� = O(�Aδ2)
and

∑
a�(c1∂x/∂θ + c2∂x/∂ζ) · (∇ · Pa)� = O(�Aδ2).∑

a eaΓa = 0 up to O(δ2) drives Es = O(�A) =⇒ requires
treatment of the large E × B drift velocity of O(�AvTi)
when �A � δ.

Fig. 1. A nonaxisymmetric toroidal system with stellara-
tor symmetry. The system looks unchanged by a rotation
about the shown axis by 180 degrees.
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