§11. Observation of Nonlocal Electron Temperature Rise in the LHD Plasma Right after a Tracer-Encapsulated Solid Pellet Injection

The clarification of electron heat transport in magnetically confined plasmas is still one of the important issues, since the performance of a probable fusion reactor should be determined by an electron heating as a result of the interaction between electrons and alpha particles as a fusion reaction product. One of the significant issues found in electron heat transport studies is nonlocal transport phenomena observed in transient transport experiments on many tokamaks and few helical systems. In particular, a perverse change (especially rise) of core electron temperature T_e invoked by the rapid cooling of edge plasma is the most typical and mysterious feature in the nonlocal transport phenomena, which observed in various tokamaks. There seems to be no changes of the thermodynamic forces, such as those due to the temperature gradient and/or the density gradient, in the core plasma at the onset of the core T_e increase. Consequently, the phenomenon observed implies the aberration of local transport paradigm and is considered as a result of the nonlocality in the electron heat transport. On the contrary, the core T_e rise responding to the edge cooling has not been observed so far in helical systems.

In the last LHD experimental campaign, as shown in Fig. 1, we observed an instantaneous rise of the core T_e when a tracer-encapsulated solid pellet (TESPEL) is injected to induce a rapid cooling of the edge plasma in the LHD. A presumable reduction of electron heat transport does not depend on local variables and those gradients, since no appreciable change of the electron density, electron temperature and those gradients in the plasma right before the core T_e increase. Therefore this experimental result shows evidence of the nonlocal transport phenomenon in helical plasma. Figure 1(b) shows the dependence of a normalized electron temperature gradient R/L_{Te}, where R and L_{Te} is a major radius and the scale length of the T_e gradient respectively, on the ECH power normalized by a line averaged electron density n_{eav} for the plasmas as shown in Fig. 1(a). A clear transition of the R/L_{Te} can be seen when an electron internal transport barrier (ITB) is formed in the core region. When the nonlocal T_e rise resulting from the edge cooling appeared, the R/L_{Te} inside the ITB region increased accompanied by the lower ECH power normalized by the n_{eav}. From the comparison based on the same ECH power normalized by the n_{eav}, the R/L_{Te} increased approximately by 31%.

Therefore the ITB in the LHD plasma is enhanced by the nonlocal T_e rise. The onset mechanism of the nonlocal T_e rise in response to the edge cooling is not correlated with the neoclassical bifurcation property of a radial electric field for the electron ITB formation in the LHD plasma, since the ECH power normalized by the n_{eav} is decreased (that is, the collisionality is increased) by the TESPEL introduced electron density.

Nevertheless the experimental result shown here produces evidence that the nonlocal T_e rise can take place in toroidally confined plasmas, not only in tokamak plasmas. The physical mechanism invoking a presumable reduction of electron heat transport still remains an open question.

Fig. 1. (a) An example of the nonlocal T_e rise observed in the LHD plasma. A TESPEL is injected at the time of ~ 1.4 s. (b) Comparison of normalized electron temperature gradient R/L_{Te} of the plasma at $\rho = 0.15$ between with (closed circles) and without (closed square) the TESPEL injection as a function of ECH power normalized by the line averaged electron density P_{ECH}/n_{eav}. 15