Collisionless Driven Magnetic Reconnection

R. Horiuchi and T. Sato

(Received – June 3, 1993)

NIFS-233

June 1993

RESEARCH REPORT
NIFS Series

This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. This document is intended for information only and for future publication in a journal after some rearrangements of its contents.

Inquiries about copyright and reproduction should be addressed to the Research Information Center, National Institute for Fusion Science, Nagoya 464-01, Japan.
COLLISIONLESS DRIVEN MAGNETIC RECONNECTION

Ritoku Horiuchi and Tetsuya Sato
National Institute for Fusion Science,
Nagoya 464-01, Japan

Abstract

Driven magnetic reconnection in a collisionless plasma is investigated by means of a two-and-one-half dimensional particle simulation. The dynamical compression by plasma inflow forms a peaked profile of current density in the neutral sheet. When the width of current layer is compressed as thin as the ion Larmor radius, the charge separation becomes distinct abruptly at the center of the current layer due to the finite ion Larmor radius effect. The charge separation in the central current region and the subsequent spatial modification of the current profile result in excitation of collisionless driven magnetic reconnection. In the case of collisionless driven magnetic reconnection an efficient energy conversion from field energy to particle energy is observed.

Keywords: driven magnetic reconnection, finite Larmor effect, collisionless plasma, particle simulation, energy conversion
Magnetohydrodynamic (MHD) studies1,2) have disclosed that driven magnetic reconnection plays an essential role on the energy relaxation and the self-organization of a magnetically confined plasma. Under the influence of a driving source and a small amount of electrical resistivity, magnetic reconnection takes place in a time scale much shorter than the resistive time scale and the reconnection rate is primarily determined by the driving electric field.3) This process can lead to fast energy conversion from the field energy to the particle energy as well as a topological change of magnetic field.1,3) On the other hand, energetically active phenomena4) triggered by magnetic reconnection are often observed in a high temperature, rarefied plasma in which binary collisions between particles are negligible, namely, in a collisionless plasma. It is not so easy to explain how an electric field along the equilibrium current is generated in the neutral sheet of collisionless plasma. The concept of an anomalous resistivity5) which originates from the wave-particle interaction or the stochasticity of particle orbit has been introduced to explain collisionless reconnection. But this is not confirmed in a self-consistent manner. Leboeuf et al.8) and Hewett et al.7) have also examined the collisionless magnetic reconnection by means of particle simulation. However, some of the assumptions done by them are not appropriate for the analysis of driven magnetic reconnection. Especially, it is quite important to describe the displacement current and a finite ion Larmor radius effect in the current layer in a self-consistent manner, as will be shown in this paper. The purpose of this letter is then to demonstrate the dynamical evolution of driven magnetic reconnection in a collisionless plasma by means of particle simulation and to clarify the mechanism leading to the excitation of driven magnetic reconnection and to the resultant fast energy conversion.

By solving the equations of motion and the Maxwell equations in a self-consistent manner we examine the dynamical evolution of physical quantities in an open system. Our code is two-and-one-half dimensional particle code which relies on the semi-implicit
method.8\textendash10) Physical quantities are assumed to have a translational symmetry along the z-axis in the Cartesian coordinates \((x,y,z)\). As an initial condition we adopt one dimensional Harris-type equilibrium with a magnetically neutral sheet along the mid-horizontal line \((y = 0)\) as

\[
B_x(y) = B_0 \tanh(y/L), \tag{1}
\]

\[
P(y) = B_0^2/8\pi \text{sech}^2(y/L), \tag{2}
\]

where \(L\) is the scale height along the \(y\)-axis. Since both an ion and an electron are loaded at the same spatial position, there should be no electric field in the initial profile. Particle temperature is assumed to be spatially uniform and isotropic. In order to drive magnetic reconnection at the center of simulation domain we adopt a free boundary condition,\textsuperscript{9) under which the plasma is smoothly supplied by an \(\mathbf{E} \times \mathbf{B}\) drift from two input boundaries \((y = \pm y_b)\), and the reconnected plasma can flow out smoothly through two output boundaries \((x = \pm x_b)\). The ratio \(x_b/y_b\) of the side lengths of the simulation domain is fixed to 3 in this study. The driving electric field at the input boundaries \(\mathbf{E}(x,t) = (0,0,E_{ex}(x,t))\) is initially zero and gradually increases until it reaches to a constant value. The spatial profile of \(E_{ex}(x,t)\) is determined so that the input flow velocity becomes maximum at the mid-point \((x = 0)\) of the input boundary. The maximum input velocity is fixed to 0.5 of the initial average Alfvén velocity \(v_A\). The total number of particles used here is 240,000 and the ratio of ion to electron mass is 50. The initial average ion Larmor radius is about 7.5 of a grid separation distance \(\Delta y\) along the \(y\)-direction, which is smaller than the scale height of the current profile \(L(=12.6\Delta y)\). The collisionless skin depth \(\delta_s = c/\omega_{pe}\) is equal to \(\Delta y\), where \(\omega_{pe}\) is the average electron plasma frequency.11)

Figure 1 shows five snapshots of magnetic flux contours (left) and vector plots of the average ion velocity (right) where the top, the second, the third, the fourth and the bottom panels correspond to the profiles at \(t = 0, t = 0.56t_A, t = 1.12t_A, t = 1.68t_A\) and
$t = 2.24 t_A$, respectively. Here, time is measured by the Alfvén transit time $t_A = 2y_0/v_A$ along the y-axis, and the magnetic flux contours less than the values at the mid-point ($x = 0, y = 0$) are plotted by the dotted line. A magnetically neutral sheet exists along the mid-horizontal line and no bulk ion flow is in the (x, y) plane at initial (top panel). Time proceeds from the top to the bottom in this figure. Magnetic reconnection sets in and an x-shaped structure of magnetic separatrix is formed at the period of $t \approx t_A$. The region occupied by the reconnected flux spreads over the whole simulation domain at this time. A fast directed flow arises from the x-point as a result of magnetic reconnection and it carries the reconnected flux toward the open boundaries. One can find in the bottom panel that the shock structure appears in the ion flow pattern.

Let us examine the reconnection process in more detail. Figures 2(a) and 2(b) show (a) the time histories of the z-components of the average electron velocity (solid line) and the average ion velocity (dotted line), and (b) those of the y-components of the electron thermal velocity (solid line) and the ion thermal velocity (dotted line) where the average velocities are observed at the x-point, and the thermal velocities are observed at the downstream side of the x-point. The equilibrium current is initially dominated by the diamagnetic component. The converging plasma flow creates a peaked profile for the mass density and current density as time goes on. Because the ions take a slightly broader spatial distribution than that of electrons due to the finite ion Larmor radius effect, the charge separation takes place along the density gradient and hence an electric field appears in the y direction. The resultant $\mathbf{E} \times \mathbf{B}$ drift has the same sign as the electron diamagnetic drift. Thus, the electron current becomes dominant over the ion current, as was shown in Fig. 2(a). The ion thermal velocity increases slowly in the initial compression phase, while the electron thermal velocity remains almost constant. As magnetic reconnection sets in, the electron thermal velocity increases suddenly. This phenomenon suggests that electron heating takes place actively through collisionless reconnection.
What is the trigger of magnetic reconnection in a collisionless plasma? Figures 3(a) and 3(b) show (a) the time histories of the half-width l_h of the mass density profile (solid line) and the ion Larmor radius λ_i (dotted line), and (b) those of the electron number density (solid line) and the ion number density (dotted line) at the x-point where the ion Larmor radius is defined by using the ion thermal velocity in the current layer and the magnetic field outside the current layer. In the vicinity of the magnetically neutral sheet an ion executes a meandering motion\cite{10} with the orbit amplitude of $l_m \approx \sqrt{l_h \lambda_i}$. The ion motion is free from magnetic field in the inner region ($r \leq l_m$) of the current layer. The mass density profile has initially the width about two times larger than the ion Larmor radius. The width l_h decreases with time faster than the ion Larmor radius λ_i. When l_h becomes nearly equal to λ_i, both l_h and λ_i tend to change slowly with the same rate. In other words, the current layer evolves slowly while keeping the width nearly equal to the ion Larmor radius after this period ($t > t_A$). This result is quite different from that of the numerical simulation done by Hewett et al.\cite{7} The number density at the x-point begins to increase at $t \approx 0.5t_A$. Both the electron density and the ion density increase with the same growth rate during the period of $0.5t_A < t < t_A$. After this period the growth of the number density slows down and the electron density becomes dominant over the ion density. Comparing Fig. 3(a) with Fig. 3(b), one can find that the charge separation becomes distinct after the width of the current layer becomes nearly equal to the ion Larmor radius. This phenomenon can be easily understood by the finite ion Larmor radius effect in the vicinity of the neutral sheet. That is, most of the ions in the current layer become unmagnetized when $l_h \approx \lambda_i$, while the electrons remain magnetized. Therefore, the compression by the input flow does not work on the ions but only on the electrons in the current layer. Consequently, the charge neutrality condition is violated in the central region of the current layer after this period. Note that this period is in good agreement with the starting time of magnetic reconnection and the width of the
current layer in the reconnection phase is much larger than that of the Rosenbluth sheath
$$\delta = (M_e/M_s)^{1/2} \lambda_s. \quad (11)$$

Generation of electric field along the equilibrium current is needed for excitation of
magnetic reconnection. Figures 4(a) and 4(b) show (a) the z-component of the electric
field $|E_z|$ at the x-point versus time in the unit of the Alfvén transit time and (b)
that of the current density $|J_z|$ at the x-point. Note that the electric field is plotted
in the logarithmic scale, while the current density is plotted in the linear scale. The
current density J_z grows gradually in the compression time scale while the electric field
E_z remains at the noise level until magnetic reconnection starts ($t < t_A$). The electric
field begins to grow as soon as magnetic reconnection sets in ($t \approx t_A$). The inclination
of the growth curve becomes steeper as time goes on. The growth rate is estimated to be
$5/t_A$ in the first phase of reconnection and $20/t_A$ in the later phase. It is worthy to note
that the growth time is roughly explained by the compression time scale $t_c(= t_h/(0.5v_A))$
of the current layer which is nearly equal to the traveling time of the thermal electron over
the charge separation zone along the z-axis. The generation of the electric field means
that the constant acceleration of the electrons in the current layer by the electric field is
requisite for keeping the equilibrium current. In other words, the electrons which carry
the equilibrium current are constantly supplied into and move away from the current
layer. Accordingly, the ratio of the electric field to the current density, which can be
interpreted as representing an effective resistivity, is roughly estimated by introducing a
correlation time. 12 If we take the compression time scale $l_h/(0.5v_A)$ as a correlation time,
the normalized effective resistivity $\tilde{\eta}$ is estimated to
$$4\pi \omega_{ce}/\omega_{pe}^2 t_c \approx 3 \cdot 10^{-3}$$
in our case. This value is in good agreement with the observed value ($10^{-3} < \tilde{\eta}_{obs} < 5 \cdot 10^{-3}$).

Let us examine the mechanism that generates the neutral sheet electric field along
the equilibrium current and excites magnetic reconnection, in connection with the charge
separation in the central region of the current layer. The charge separation generates
the convergent electric field around the mid-point along the neutral sheet in the \((x, y)\) plane. The \(y\)-component of the electric field, \(E_y\), increases slowly while satisfying the force balance with the dynamic compression for the electrons. On the other hand, there is no such counter force in the \(z\) direction. Therefore, the convergent electric field resultantly pushes the electrons in the central region of the neutral sheet away from the center in the \(z\) direction, thus modifying the spatial distribution of the equilibrium current, the great part of which is carried by electrons (see Fig. 2(a)). The displacement current responds quickly to this modification and works to keep the equilibrium current in the central region of the neutral sheet. The neutral sheet electric field \(E_z\) along the equilibrium current is thus created by the displacement current. This can explain the observational fact that the growth time of the \(E_z\) field is roughly represented by the compression time scale \(t_e/(0.5v_A)\) of the current layer and that the growth time is also equal to the traveling time of the thermal electron over the charge separation zone.

From this consideration we can come to the conclusion that collisionless reconnection is triggered under the influence of a converging driving flow and that a dc type electric field leading to reconnection is created by the displacement current originated from the finite ion Larmor radius effect, instead of the wave-particle interaction induced resistivity.

The \(E_z\) field not only acts to accelerate electrons along the \(z\)-axis but also results in reconnecting magnetic field lines. Consequently, the \(y\)-component of magnetic field \(B_y\) appears along the neutral sheet in accordance with the growth of the \(E_z\) field. Figures 5(a) and 5(b) show (a) the spatial distribution of the \(y\)-component of the magnetic field \(B_y\) along the neutral sheet at \(t = 2.0t_A\) and (b) that of the electron temperature \(T_e\) where the electron temperature is estimated by assuming that the electron distribution can be approximated by the shifted Maxwellian. The \(B_y\) field grows on both sides of the reconnection point along the mid-horizontal line. Electrons accelerated along the \(z\) direction by the electric field \(E_z\) are quickly trapped by the \(B_y\) field and thus it appears
that the electrons are thermalized. Comparing Fig. 5(a) with Fig. 5(b), one can find that
the electron heating takes place most efficiently at the downstream side of the reconnection
point. This result is consistent with the observation that the electron thermal velocity at
the downstream side increases rapidly, say, by factor 5, as magnetic reconnection sets in (Fig 2(b)). In this way the energy conversion from the field energy to the particle energy
is realized through collisionless driven magnetic reconnection.

One of the authors (R.H.) is grateful to Professors W. Horton and T. Tajima for their
interests in this work.

References

Lett. 63, 528(1989); M. Yamada, Y. Ono, A. Hayakawa, M. Katsurai, and F. W.

Watanabe, R. Horiuchi, M. Tanaka, N. Sawairi and K. Kusano, Phys. Fluids B 4,

4. E. R. Priest, Solar Magnetohydrodynamics (Dordrecht,Reidel,1982); A. Nishida, Geo-
magnetic Diagnostics of the Magnetoshpere (Springer-Verlang, New York, 1978);
A. Hasegawa and T. Sato, Space Plasma Physics 1 (Springer-Verlang, New York,
1989).

Figure captions

Fig. 1. Magnetic flux contours (left) and vector plots of average ion velocity (right) at five different time periods where five panels correspond to the profiles at \(t = 0, 0.56t_A, 1.12t_A, 1.68t_A, \) and \(t = 2.24t_A \), respectively.

Fig. 2. (a) Time histories of the \(z \)-components of average electron velocity (solid line) and average ion velocity (dotted line) at the x-point, and (b) those of the \(y \)-components of the electron thermal velocity (solid line) and the ion thermal velocity (dotted line) at the downstream side of the x-point where the thermal velocities are plotted in the logarithmic scale and the average velocities are plotted in the linear scale.

Fig. 3. (a) Time histories of the half-width \(l_h \) of the mass density profile (solid line) and the ion Larmor radius \(\lambda_i \) (dotted line), and (b) those of the electron number density (solid line) and the ion number density (dotted line) at the x-point where the ion Larmor radius is defined by using the ion thermal velocity in the current layer and the magnetic field outside the current layer.

Fig. 4. (a) The \(z \)-component of the electric field \(| E_z | \) at the x-point versus the time normalized by the Alfvén transit time and (b) that of the current density \(| J_z | \). Notice that the electric field is plotted in the logarithmic scale while the current density is plotted in the linear scale.

Fig. 5. (a) Spatial distribution of the \(y \)-component of magnetic field \(B_y \) along the neutral sheet at \(t = 2.02t_A \) and (b) that of the electron temperature \(T_e \).
Figure 2

(a) $\langle V_{ze} \rangle$

(b) V_{te}, V_{ti}
Figure 3

(a)

\(l_h \)

\(\lambda_1 \)

(b)

\(n_e \)

\(n_i \)

Time \(t / t_A \)
Figure 4

(a) E_z

(b) J_z

Time t / t_A
Recent Issues of NIFS Series

NIFS-201 G. Gnudi and T. Hatori, Hamiltonian for the Toroidal Helical Magnetic Field Lines in the Vacuum; Nov. 1992

NIFS-203 Y. Hamada, Y. Kawasaki, H. Iguchi, A. Fujisawa, Y. Abe and M. Takahashi, Mesh Effect in a Parallel Plate Analyzer; Dec. 1992

NIFS-206 T. Yabe and F. Xiao, Tracking Sharp Interface of Two Fluids by the CIP (Cubic-Interpolated Propagation) Scheme, Jan. 1993

NIFS-224 M. Tanaka, *HIDENKE: An Implicit Particle Simulation of Kinetic-MHD Phenomena in Three-Dimensional Plasmas*; May 1993

NIFS-227 T. Yamagishi, *Anomalous Cross Field Flux in CHS*; May 1993

