NATIONAL INSTITUTE FOR FUSION SCIENCE

Anomalous Transport Theory for Toroidal Helical Plasmas

K. Itoh, M. Yagi, S.-I. Itoh, A. Fukuyama,
H. Sanuki and M. Azumi

(Received - Aug. 10, 1994)

NIFS-296 Aug. 1994

This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. This document is intended for information only and for future publication in a journal after some rearrangements of its contents.

Inquiries about copyright and reproduction should be addressed to the Research Information Center, National Institute for Fusion Science, Nagoya 464-01, Japan.

RESEARCH REPORT NIFS Series

This is a preprint of a paper which has not been submitted to a refereed journal. Because of the provisional nature of its publication, the preprint is made available on the condition that it not be used for distribution other than for personal study. The views expressed are those of the authors and not necessarily those of the Government of Japan. No part of the material reproduced in this paper may be reproduced or transmitted in any form without permission in writing from the publisher.
Anomalous Transport Theory for Toroidal Helical Plasmas

National Institute for Fusion Science, Nagoya 464-01 Japan
* Japan Atomic Energy Research Institute, Ibaraki 311-01, Japan
**Research Institute for Applied Mechanics, Kyushu University 87, Kasuga 816, Japan
†Faculty of Engineering, Okayama University, Okayama 700, Japan
Abstract

Anomalous transport coefficients in toroidal helical plasmas are studied, based on the innovative theoretical method. The self-sustained turbulence is analyzed by balancing the nonlinear growth due to the current diffusivity with the nonlinear damping by the ion viscosity and thermal conductivity. Interchange and ballooning mode turbulence is investigated, and the geometrical dependence of the anomalous transport coefficient is clarified. Variation of transport owing to the geometrical difference in toroidal helical plasmas is illustrated. The mechanism for confinement improvement is searched for.

To verify the nonlinear destabilization and the self-sustained state, the nonlinear simulation of the interchange mode turbulence is performed in a sheared slab. It is demonstrated that the nonlinear enhancement of the growth rate occurs when the fluctuation amplitude exceeds the critical level. In the saturation stage, the fluctuation level becomes higher associated with the enhanced nonlinear growth.

Keywords: Anomalous transport, Stellarator, Heliotron, Torsatron, Improved confinement, Nonlinear simulation, Current diffusivity, Self-sustained turbulence
1. Introduction

Anomalous transport is the dominant mechanism in determining the plasma confinement in toroidal helical devices [1]. It is worth while to understand how the differences in geometry affect the anomalous transport. This is a crucial task, because the improvement of the energy confinement is the most important issue for the toroidal helical systems. It is the fundamental issue of the plasma physics as well. In this article, we present the anomalous transport theory based on the self-sustained turbulence approach [2]. The impact of the geometry is clarified. The nonlinear numerical simulation is also performed to confirm this theoretical framework.

2. Transport Coefficient

2.1 Theory of the L-mode Confinement

A new theoretical approach, i.e., the method of the self-sustained turbulence has been developed [2,3]. It is found that the current diffusivity λ, which is enhanced by the fluctuations, can further enhance the growth of the mode. The stationary state is realized by the balance between this nonlinear destabilization effect and the nonlinear stabilization effect due to ion viscosity μ and thermal conductivity χ. By use of a renormalization on the reduced set of equations and the mean field approximation, the analytic expressions for the self-sustained turbulence and χ are obtained as [2-4]

$$\chi_L = G \left(-R\beta\right)^{3/2} \left(\psi/\alpha_p\right)^2 v_\lambda R^{-1}$$

(1)

where G represents the geometrical factor. Other notation: R is the major radius, β is the ratio of plasma pressure to magnetic pressure, $'$ denotes the derivative with respect to minor radius, c is the light velocity, α_p is the electron plasma frequency, v_λ is the Alfvén velocity, and the suffix L denotes the L-mode.

The analysis on the geometrical factor G requires the specification of the magnetic geometry. We choose the average magnetic curvature κ, safety factor q, and magnetic shear parameter $s = q/\kappa$. This set of parameters is the simplest one that discriminates Heliotron/torsatron (H/T), classical/advanced stellarators and tokamaks. Figure 1 illustrates theq and κ profiles. For the system of average hill (H/T system), we study the interchange modes. For stellarators (magnetic well), we investigate the ballooning modes [5]. Table 1 summarizes the result for Heliotron/torsatron and stellarator ($\alpha = q^2R\beta$). Result of tokamak is also added for a reference. Figure 2 shows the radial shape of the normalized geometrical factor, $G(r)/G(0.7a)$. The example for the H/T system has the magnetic well in the center, so that the geometrical factor is largest near edge. The stellarator has flatter profile.
From these results, following conclusion is derived. First, the increment of χ as a result of the enhanced pressure gradient is a generic nature of toroidal plasmas, causing the power degradation of the energy confinement time. The effects of the density profile and pressure profile lead to the general trend that χ increases near the edge. The radial form is affected by the q-profile or the magnetic hill.

2.2 Theory of the H-mode Confinement

Associated with the gradients of the radial electric field, the reduction of the anomalous transport has been discussed [6]. This method allows to search, in a quantitative manner, the geometry and plasma operation in the toroidal helical systems, which provide a reduced thermal conductivity. The formula is given as

$$
\chi = \frac{\chi_0}{\left[1 + g \frac{\omega_s}{\omega_E} \right]},
$$

where $\omega_E = E_t \tau_{Ap}/B$, $\tau_{Ap} = qR/v_A$ and the coefficient g is given explicit by the equilibrium plasma parameters. For H/T systems it is given as $g \approx (a/R)^2/K\beta^* [7]$. For stellarators, we have $g \approx 0.8/\alpha$ in the small α limit and $g \approx 1.56\alpha^2$ in the large α limit [8]. The improvement in the confinement is expected when E_t' is in the range of 100V/cm2. The formation of E_t' was analyzed in [9]. The quantitative analysis of the improved confinement in tokamaks is given in [10] and can be applicable to toroidal helical plasmas.

3. Nonlinear Simulation

3.1 Simulation Model

We study the electrostatic interchange mode in a slab plasma (x- and z-axes are taken in the direction of the pressure gradient and main magnetic field, respectively). We focus to investigate the nonlinear mechanism on electrons [3,11]. The Ohm's law which we use is given by

$$
\partial j/\partial t + [\phi, j] = -\nabla \phi + \lambda_c \Delta_{\perp} j
$$

The reduced set of equations [12] is employed. The equation of motion and the energy balance equation are given as $\partial \nabla^2 \phi/\partial t + [\phi, \nabla^2 \phi] = \nabla \cdot \Omega \nabla \phi + \mu_c \nabla^2 \phi$ and $\partial \rho/\partial t + [\phi, \rho] + \nabla \phi = \chi_c \Delta_{\perp} \rho$. In the simulation study, we normalize the length and time by c/ω_p and τ_{Ap}, respectively, operator $\nabla_x = \partial/\partial y$ denotes the influence of the equilibrium gradient in the x-direction, Ω is the drive by curvature, and $[\cdot, \cdot]$ is the Poisson bracket. The terms λ_c, μ_c and χ_c denote the transport coefficients due to the Coulomb collisions. (Here we regard them as constant numbers.) Simulation is done.
for the fixed background pressure gradient. Range in the x-direction is L, and M
Fourier modes in k_y are kept. Parameters L=80 (300 grids) and M=64 (k_y=0.10/64
and k_y=0.10) are usually taken for the two-dimensional simulation [13].

3.2 Nonlinear Growth and High Saturation Level

Figure 3 shows the time evolution of the perturbed pressure W_t = \langle p^2 \rangle, for the
case of \lambda_c=0.01. Average \langle \cdot \rangle is defined as \langle p^2 \rangle = (2L)^{-1} \int_0^L \int p(x,k_y)^2 dx M^{-1} \sum |p(x,k_y)|^2 .

The case of the linear Ohm's law (i.e., [\phi, j] term is neglected in Eq.(3)) is also shown
by the dotted line. (Other parameters: \Omega=0.5, s=0.5, \chi_e = \mu_e = 0.2.) The linear
growth of the mode corresponds to the electron-inertial interchange instability. If the
convective nonlinearity works in the Ohm's law, the growth rate starts to increase when
the fluctuation level exceeds a threshold value. This level of threshold amplitude
coincides with the theoretical prediction of the nonlinear instabilities [2,3]. (The mode
shows a simple nonlinear saturation when the linearized Ohm's law is employed.) The
nonlinear destabilization is confirmed.

The saturation stage is also investigated. Figure 4 illustrates the result of the
longer time evolution: (a) nonlinear Ohm's law with \lambda_c = 0.01, (b) linear Ohm's law
with \lambda_c=0, and (c) nonlinear Ohm's law with \lambda_c = 0.2. In the time asymptotic limit, the
saturation is realized. The saturation level for nonlinear instability, (a) and (c), is much
higher than the case of the linear Ohm's law (b). It is confirmed that the convective
nonlinearity in the electron dynamics gives rise to the nonlinear acceleration of the
growth rate and the enhanced saturation level. By comparing (a) and (c), we see that the
enhanced saturation level is not influenced by the linear growth rate much. The
theoretical model of the self-sustained turbulence is confirmed. (Also confirmed is the
argument based on the scale invariance method [9].) The k_y spectrum in the case of (a)
is shown in Fig.5. In the phase of the nonlinear growth (t = 60), the growth takes
place associated with the normal cascade of the spectrum. This cascade works as the
effective dissipation of electron motion, leading to the nonlinear instability. When
amplitude grows enough, the inverse cascade takes place (t = 80 for (a)). In the
stationary state (t = 200), the largest amplitude component appears in the long-wave
length region, though the nonlinear excitation is stronger for the higher k_y components.

4. Summary

The influence of the magnetic geometry on the transport coefficient is
investigated for the L-mode as well as for the H-mode-like plasmas, and is summarized
as the geometrical factor G. The intrinsic feature of the anomalous transport, \chi \propto
(-R \beta)^{3/2} (c/\omega_p)^2 v_A R^{-1} , is also clarified. The nonlinear simulation is performed on the
interchange mode by keeping the electron nonlinearity in the Ohm's law. The
theoretical model of the self-sustained turbulence is confirmed. These studies provided
the basis for the future progress in improving the toroidal plasma confinement based on
the understanding of them.

Acknowledgements

This work is partially supported by the Grant-in-Aid for Scientific Research of
MoE Japan, by collaboration programme on fusion between universities and JAERI, by
the collaboration programme of the Advanced Fusion Research Center of Kyushu
University and by the collaboration programme of NIFS.

References

Figure Captions

Figure 1 Typical spatial profiles of the safety factor (a) and magnetic curvature (b). For Heliotron/torsatron (H/T), we take $q(a)=1$, $q(0)=2$, $a/R = 1/7$ and magnetic well for $r/a < 0.5$.

Figure 2 Radial shape of the normalized geometrical factor $G(r)/G(0.7a)$. Solid line for Heliotron/torsatron system and dashed line for stellarators. The case of tokamaks (dotted line) is also shown for the reference.

Figure 3 Temporal evolution of perturbed pressure energy, showing the nonlinear growth. Nonlinear Ohm's law (a), and linearized Ohm's law (b) are used.

Figure 4 Temporal evolution and saturation of the interchange mode turbulence. (a) nonlinear Ohm's law with $\lambda_c = 0.01$, (b) linear Ohm's law with $\lambda_c = 0$, and (c) nonlinear Ohm's law with $\lambda_c = 0.2$.

Figure 5 k_y spectrum of the fluctuations for the case (a) of Fig.4 in the nonlinear growth phase ($t = 60$, dotted line) and in the saturation phase ($t = 200$, solid line).
<table>
<thead>
<tr>
<th></th>
<th>H/T Systems</th>
<th>Stellarators</th>
<th>Tokamaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>bad</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>Curvature</td>
<td>(except center)</td>
<td></td>
<td>(if (q>1))</td>
</tr>
<tr>
<td>Magnetic Shear</td>
<td>strong</td>
<td>weak</td>
<td>strong</td>
</tr>
<tr>
<td>Mode</td>
<td>interchange</td>
<td>ballooning</td>
<td>ballooning</td>
</tr>
<tr>
<td>Formula of G</td>
<td>((kR/a)^{3/2}q^2s^{-2})</td>
<td>(q^2f(s,\alpha)^{-1})</td>
<td>(q^2f(s,\alpha)^{-1})</td>
</tr>
</tbody>
</table>

Table 1 *Summary of the turbulence mode and form factor of \(\chi\) (Explicit form of \(f(\alpha,s)\) is given in [3]).*
Recent Issues of NIFS Series

NIFS-252 Y. Tomita, L.Y. Shu, H. Momota,
Direct Energy Conversion System for D-3He Fusion, Nov. 1993

NIFS-253 S. Sudo, Y. Tomita, S. Yamaguchi, A. Miyoshi, H. Momota, O. Motojima,
M. Okamoto, M. Ohnishi, M. Onozuka, C. Uenosono,
Hydrogen Production in Fusion Reactors, Nov. 1993

NIFS-254 S. Yamaguchi, A. Miyoshi, O. Motojima, M. Okamoto, S. Sudo, M. Ohnishi,
M. Onozuka, C. Uenosono,
Direct Energy Conversion of Radiation Energy in Fusion Reactor;
Nov. 1993

NIFS-255 S. Sudo, M. Kanno, H. Kaneko, S. Saka, T. Shirai, T. Baba,
Proposed High Speed Pellet Injection System "HIPEL" for Large Helical
Device; Nov. 1993

NIFS-256 S. Yamada, H. Chikaraishi, S. Tanahashi, T. Mito, K. Takahata, N. Yanagi,
M. Sakamoto, A. Nishimura, O. Motojima, J. Yamamoto, Y. Yonenaga,
R. Watanabe,
Improvement of a High Current DC Power Supply System for Testing the
Large Scaled Superconducting Cables and Magnets; Nov. 1993

NIFS-257 S. Sasaki, Y. Uesugi, S. Takamura, H. Sanuki, K. Kadota,
Temporal Behavior of the Electron Density Profile During Limiter
Biasing in the HYBTOK-II Tokamak; Nov. 1993

NIFS-258 K. Yamazaki, H. Kaneko, S. Yamaguchi, K.Y. Watanabe, Y.Taniguchi,
O.Motojima, LHD Group,
Design of Central Control System for Large Helical Device (LHD);
Nov. 1993

NIFS-259 S. Yamada, T. Mito, A. Nishimura, K. Takahata, S. Satoh, J. Yamamoto, H.
Yamamura, K. Masuda, S. Kashihara, K. Fukusada, E. Tada,
Reduction of Hydrocarbon Impurities in 200L/H Helium Liquefier-
Refrigerator System; Nov. 1993

NIFS-260 B.V.Kuteev,
Pellet Ablation in Large Helical Device; Nov. 1993

NIFS-261 K. Yamazaki,
Proposal of "MODULAR HELIOTRON": Advanced Modular Helical
System Compatible with Closed Helical Divertor; Nov. 1993

NIFS-262 V.D.Pustovitov,
Some Theoretical Problems of Magnetic Diagnostics in Tokamaks and
Stellarators; Dec. 1993
NIFS-263 A. Fujisawa, H. Iguchi, Y. Hamada
A Study of Non-Ideal Focus Properties of 30° Parallel Plate Energy Analyzers; Dec. 1993

NIFS-264 K. Masai,
Nonequilibria in Thermal Emission from Supernova Remnants; Dec. 1993

NIFS-265 K. Masai, K. Nomoto,
X-Ray Enhancement of SN 1987A Due to Interaction with its Ring-like Nebula; Dec. 1993

NIFS-266 J. Uramoto
A Research of Possibility for Negative Muon Production by a Low Energy Electron Beam Accompanying Ion Beam; Dec. 1993

The Effect of Magnetic Field Configuration on Particle Pinch Velocity in Compact Helical System (CHS); Jan. 1994

NIFS-268 T. Shikama, C. Namba, M. Kosuda, Y. Maeda,

Formation and 'Self-Healing' of Magnetic Islands in Finite-β Helias Equilibria; Jan. 1994

NIFS-270 S. Murakami, M. Okamoto, N. Nakajima, T. Mutoh,
Efficiencies of the ICRF Minority Heating in the CHS and LHD Plasmas; Jan. 1994

NIFS-271 Y. Nejoh, H. Sanuki,
Large Amplitude Langmuir and Ion-Acoustic Waves in a Relativistic Two-Fluid Plasma; Feb. 1994

NIFS-272 A. Fujisawa, H. Iguchi, A. Tanilike, M. Sasao, Y. Hamada,
A 6MeV Heavy Ion Beam Probe for the Large Helical Device; Feb. 1994

Measurement of Profiles of the Space Potential in JIPP T-IIU Tokamak
Plasmas by Slow Poloidal and Fast Toroidal Sweeps of a Heavy Ion Beam; Feb. 1994

NIFS-274 M. Tanaka,
A Mechanism of Collisionless Magnetic Reconnection; Mar. 1994

NIFS-275 A. Fukuyama, K. Itoh, S.-I. Itoh, M. Yagi and M. Azumi,
Isotope Effect on Confinement in DT Plasmas; Mar. 1994

NIFS-276 R.V. Reddy, K. Watanabe, T. Sato and T.H. Watanabe,
Impulsive Alfven Coupling between the Magnetosphere and Ionosphere; Apr. 1994

NIFS-277 J. Uramoto,
A Possibility of π^- Meson Production by a Low Energy Electron Bunch and Positive Ion Bunch; Apr. 1994

NIFS-278 K. Itoh, S.-I. Itoh, A. Fukuyama, M. Yagi and M. Azumi,
Self-sustained Turbulence and L-mode Confinement in Toroidal Plasmas II; Apr. 1994

NIFS-279 K. Yamazaki and K.Y. Watanabe,
New Modular Heliotron System Compatiblle with Closed Helical Divertor and Good Plasma Confinement; Apr. 1994

NIFS-280 S. Okamura, K. Matsuoka, K. Nishimura, K. Tsumori, R. Akiyama,
S. Sakakibara, H. Yamada, S. Morita, T. Morisaki, N. Nakajima,
K. Tanaka, J. Xu, K. Ida, H. Iguchi, A. Lazaros, T. Ozaki, H. Arimoto,
A. Ejiri, M. Fujiwara, H. Idei. O. Kaneko, K. Kawahata, T. Kawamoto,
A. Komori, S. Kubo, O. Motojima, V.D. Pustovitov, C. Takahashi, K. Toi
and I. Yamada,
High-Beta Discharges with Neutral Beam Injection in CHS; Apr. 1994

NIFS-281 K. Kamada, H. Kinoshita and H. Takahashi,
Anomalous Heat Evolution of Deuteron Implanted Al on Electron Bombardment; May 1994

NIFS-282 H. Takamaru, T. Sato, K. Watanabe and R. Horiuchi,
Super Ion Acoustic Double Layer; May 1994

NIFS-283 O. Mitarai and S. Sudo
Ignition Characteristics in D-T Helical Reactors; June 1994

NIFS-284 R. Horiuchi and T. Sato,
Particle Simulation Study of Driven Magnetic Reconnection in a Collisionless Plasma; June 1994

NIFS-285 K.Y. Watanabe, N. Nakajima, M. Okamoto, K. Yamazaki, Y. Nakamura,
M. Wakatani,
Effect of Collisionality and Radial Electric Field on Bootstrap Current in LHD (Large Helical Device); June 1994

