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Abstract

Generation of electric power by the Nemst effect is a new
application of a semiconductor. A key point of this proposal
is to find materials with a high thermomagnetic figure-of-merit,
which are called Nernst elements. In order to find candidates
of the Nernst element, a physical model to describe its trans-
port phenomena is needed. As the first model. we began with
a parabolic two-band model in classical statistics. According
to this model, we selected InSb as candidates of the Nernst
element and measured their transport coefficients in magnetic
fields up te 4 Tesla within a temperature region from 270K to
330K. In this region. we calculated transport coefficients nu-
merically by our physical model. For InSb, expenimental data
are coincident with theoretical values in strong magnetic field.

Keywords: indium antimonide, two band moedel, Nernst effect,
power generation, strong magnetic field, transport coefficient.
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1 Introduction

One of the authors, S. Y., proposed [1] the direct electric
energy conversion of the heat from plasma by the Nemst ef-
fect in a fusion reactor, where a strong magnetic field is used
1o confine a high temperature fusion plasma. He called [1, 2]
the element which induces the electric field in the presence of
temperature gradient and magnetic field, as Nernst element. In
his papers [, 2], he also estimated the figure of merit of the
Nemst element in a semiconductor model. In his results [1, 2],
the Nemnst element has high performance in low temperature
region. that is, 300 — 500 K. Before his works, the Nemnst ¢le-
ment was studied in the 1960°s [3]. In those days, induction of
the magnetic field had a lot of loss of energy. This is the reason
why the Nernst element cannot be used. Nowadays an improve-
ment on superconducting magnet gives us higher efficiency of
the induction of the strong magnetic field. We started a mea-
suring system of transport coefficients in the strong magnetic
field to estimate efficiency of the Nernst element on a few vears
ago [4]. We need criteria to find materials with high efficiency.
The first model is one-band model which was proposed by S.
Y. [1] However his model cannot explain the temperature de-
pendence of the Nemst coefficient above the room temperature
for intrinsic mdium antimonide, InSb_X [4, 5]. We improved
the one-band model to the two-band model. In this paper, we
measured InSh.B which is doped Te heavier than InSb_X. Near
room temperature, the sample InSb_B transits from the extrinsic
region to the intrinsic region. To calculate transport coefficients

of InSb_B in a magnetic field, we use the two-band model, In
this paper, we report the calculations by the two-band model.
(In Ref. [6], we also measured and calculated transport coeffi-
cients of Ge in a magnetic field near room temperature.)

2 Theoretical calcnlations

As the physical model to describe transport phenomena of
the material in the Nemst element, we use a parabolic two-band
model in the classical statics. We have the following parameters
of this model;

» m, (my): effective mass of electron (hole),

® cp (£4): energy level of a donor (an acceptor),
o N (Na): concentration of donors (acceptors),
® Jin (j1p) - mobility of an electron (a hole),

e £g:energy gap, ep: fermi energy.

Using these parameters, we obtain concentrations of carriers
as follows:

n(T) = No(T)exp (%) (1)
WT) = NeDew (7). 2

where n(p) is the concentration of free electron (hole}. Here
Ne (Ny), the effective density of state in the conduction (va-
lence) band is given by

makT 2
Ne(T) = 2 3, 3
(1) (mg) 3
mo kT #
Ne(T) = 2D . 4
v(T) (zwﬁ?) )

where A is Planck’s constant, b = h/27. and k is Boltzmann’s
constant. We also obtain the concentration of electrons {holes)
in the donor (acceptor) level, np (pa ) as follows:

1
np = Np P s {3
1+ g exp (- 2=52F)
1
a = N — - 6
ba Al-l—?exp(——-:’“‘k}”') (©

We suppose the charge neutrality as

Np —np +p(T) = Na —palT) +n(T). (7



Substituting the concentrations of carriers with egs. (1)-(6) in
eq. (7), we obtain the following algebraic equation in value
z =exp (ep/kT) as

suz* + (u + Nas+ stu) z® + (Na — Np + ut — Nys)z?

— (Npt+ Ny + Npst)z — Nyt =0, &
where
s = 2ex b~ G
= Y ET 3
_ 1 EA
t = 3 exp (ﬁ) s
£
u = Ngexp (_E%) ; C)]

Using the fermi energy which is given from eqgs. (8) and (9}, we
can solve the Boltzmann equation of this model in a magnetic
field with a perturbation theory and the relaxation time approx-
imation. See Ref. [1] for details. Here we define the following
parameters to simplify formulation as

EA 2m. kT V. B B s
= Sy — = = — . 0
1 kT’ ! hz 3ﬁ0 4z ’ 8 4 s (1 )

We also define the following integrals as

L(G) = 47‘1f T epln —o), (11)
o 1+%1
® i-i _
J, (6o} = 167‘%f ks TR e
0 1+ 32

Using the above eqs. (10) - {12), we obtain transport coeffi-
cients in a magnetic field B, as follows:

I+ (80)°

3m2 nJi
ByB) = ——————, 14
H( ) zenIf—i—(ﬂJ}_}zi ( )
k LI +82J1J2
B = —{—— ", 15
- k Jila — I J:
A(B) = N(B)Bzg{m}, (16)

where ¢ is the conductivity, By the Hall coefficient , o the
thermoelectric power, and N the Nemnst coefficient for electron
(z = —1). For hole (z = 1), we must use p,n + =g, and
i insiead of n, 1, and #. Relations between these one-band
transport coefficients and the two-band ones are written as [7]

D
= - s 17
7 o1 (1+ B?Rj,03) + 02 (1 + B2RE,0})’ (D
Bu =%
x { Ru107 + Ru203 + B? Ry Rippo303 (Ru + Rua)},
(18)
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where the subscripts 1 and 2 denote the contribution from con-
duction and valence bands, respectively. The parameter D is
described as

D={o; + 0'2)2 + Bzafcrg (Bui + RH2)2 . 21)
By the above algorithm, we calculate the transport coefficients
in a magpetic field. In this calculations, we must prepare phys-
ical quantities i.e. effective masses, energy levels, concentra-
tions of impurities, mobilities and energy gap. From the previ-
ous works [8], we can get the following parameters:

my, = 0.0152m,,

my = 1.1140mg,

ez = 0.210eV,

ep = 0.0007eV,

£a = 0.002eV,

pn = 380007 °m/V/s,

e = 1056.867 17m/V /s,

Np = 21x10%2m3,

Na = 0, 22)

where my is the bare electron mass. Using eq. (22), we calcu-
late transport coefficients.

3 Comparison between experimental and theoretical re-
sults

We measured transport coefficients of indium antimonide in
a magnetic field. The sample X has the electron carrier concen-
tration 7 = 6.6 x 10°°m™? and mobility g, = 21m?/V/s at
77K. The sample B has n = 2.1 x 10%?>m 2 at 77K.

The conductivity and the Hall coefficient are measured by the
van der Pauw method. The thermoelectric power and the Nernst
coefficient are also measured for the bridge shaped sample [8].
in Fig. 1, we plot the thermoelectric power of InSb_X as a
function of magnetic field. The Nemst coefficient of InSb_X is
plotted in Fig. 2. These figures show that these transport coeffi-
cients can be calculated by the two-band model. For InSb_B, we
also measured the conductivity, the Hall coefficient, the ther-
moelectric power and the Nernst coefficient. These results are
plotted in Figs. 3-6. These transport coefficients given by the
theoretical calculations coincide with the experimental values.
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Figure 1: Thermoelectric power versus magnetic field of
InSb_X at 308K
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Figure 3: Electrical conductivity versus magnetic field of
InSb_B at 273K and 353K
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Figure 2: Nemst Coefficient multiplied by magnetic field N B
versus magnetic field of InSb_X at 308K
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Figure 4: Hall coefficient versus magnetic field of InSb_B at
273K and 353K
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Figure 5: Themmoelectric power versus magnetic field of
InSb B at 273K and 353K
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Figure 6: Nernst coefficient multiplied by magnetc field N B,
versus magnetic field of InSb_B at 273K and 353K

4 Discussion and conclusions

From comparison between the experimental and the theoret-
ical values, we conclude that the two-band model is an enough
good model to estimate the transport coefficient. We need to
measure thermal conductivity to estimate the thermomagnetic
(ie. Nernst ) figure-of-merit Zy = o(NB)?/«. The thermal
conductivity has phonon scattering mechanism. We, thercfore,
improve the physical model to include the phonon scattering
phenomena. This is a future probiem.
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