


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

   
  This report was prepared as a preprint of work performed as a collaboration research of the 
National Institute for Fusion Science (NIFS) of Japan.  The views presented here are solely those 
of the authors.  This document is intended for information only and may be published in a 
journal after some rearrangement of its contents in the future. 
  Inquiries about copyright should be addressed to the Research Information Office,  

 National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan.  
  E-mail: bunken@nifs.ac.jp 
 
<Notice about photocopying> 
 In order to photocopy any work from this publication, you or your organization must obtain 
permission from the following organizaion which has been delegated for copyright for clearance by the 
copyright owner of this publication. 
 
Except in the USA 
 Japan Academic Association for Copyright Clearance (JAACC) 
 6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan 
 Phone: 81-3-3475-5618  FAX: 81-3-3475-5619  E-mail: jaacc@mtd.biglobe.ne.jp 
 
In the USA 
 Copyright Clearance Center, Inc. 
 222 Rosewood Drive, Danvers, MA 01923 USA 
 Phone: 1-978-750-8400   FAX: 1-978-646-8600 
 

 



Molecular dynamics simulation of hydrogen isotope injection into graphene

Hiroaki Nakamura∗ and Arimichi Takayama†

National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292, Japan

Atsushi Ito‡

Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
(Dated: 22 May 2007)

We reveal the hydrogen isotope effect of three chemical reactions, i.e, the reflection, the absorption and the
penetration ratios, by classical molecular dynamics simulation with a modified Brenner’s reactive empirical
bond order (REBO) potential potential. We find that the reflection byπ−electron does not depend on the mass
of the incident isotope, but the peak of the reflection by nuclear moves to higher side of incident energy. In
addition to the reflection, we also find that the absorption ratio in the positivez side of the graphene becomes
larger, as the mass of the incident isotope becomes larger. On the other hand, the absorption ratio in the negative
z side of the graphene becomes smaller. Last, it is found that the penetration ratio does not depend on the mass
of the incident isotope because the graphene potential is not affected by the mass.

PACS numbers: 52.40.Hf, 52.65.Yy, 81.05.Uw

I. INTRODUCTION

Plasma-carbon interaction yields small hydrocarbon
molecules on divertor region of a nuclear fusion device[1–5].
Diffusing from divertor region to core plasma region of fusion
device, generated hydrocarbon takes energy from the core
plasma. Reduction of hydrocarbon diffusing from divertor
is the main aim of studies in plasma-carbon research. To
achieve the aim, researches with computer simulation have
been being done[6–9]. However, the creation mechanism of
the hydrocarbons has not been elucidated yet.

We, therefore, as the first step to clarify the creation mecha-
nism, investigated, by computer simulation, collision process
of hydrogen atoms and one graphene sheet, which is regarded
as one of basic processes of complex plasma-carbon interac-
tion in the previous works[7, 8]. From the previous works
in which an incident hydrogen kinetic energyEI is less than
100 eV to compare with experiments, it was found that an
hydrogen-absorption ratio of one graphene sheet depends on
the incident hydrogen energy, and that the collision mecha-
nism between a graphene and a hydrogen can be classified into
three types of processes: absorption process, reflection pro-
cess, and penetration process (see Fig. 2(a)). Moreover, it was
also found that when hydrogen atom is absorbed by graphene,
the nearest carbon atom overhangs from the graphene which
we called “overhang structure”.

Based on the above results, as the second step, simula-
tion model were extended[9] from a single graphene sheet
to multilayer graphene sheets, which is a more realistic sput-
tering process of graphene sheets and hydrogen atoms than
the previous work[7]. From the second work[9], we found
the following fact: breaking the covalent bonds between car-
bon atoms by hydrogen does not play an important role dur-
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ing destruction process of graphene structure, but momentum
transfer from incident hydrogen to graphene causes to destroy
graphene structure. Moreover, it was found[9], that almost all
fragments of graphene sheets form chain-shaped molecules,
and that yielded hydrocarbon molecules are composed of car-
bon chain and single hydrogen-atom.

In the present paper, we investigate hydrogen isotope ef-
fect for collision process of a single hydrogen isotope and one
graphene sheet. Information of dependence of the chemical
reaction on a type of isotope is necessary to realize plasma
confinement nuclear fusion system. In the present simula-
tion, we change only the mass of the injected isotope, without
changing the interaction potential. We used ‘classical’ molec-
ular dynamics (CMD) algorithm with modified Brenner’s re-
active empirical bond order (REBO) potential which we pro-
posed to deal with chemical reaction between hydrogen and
graphene in the previous simulations[7–10].
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FIG. 1: Simulation model. There are 160 carbon atoms and an in-
jected hydrogen isotope. The length of the covalent bond between
carbons is 0.142nm at temperatureT = 0K. The periodic boundary
condition is used inx andy directions. A hydrogen atom is injected
parallel to thez axis fromz =0.4nm.
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II. SIMULATION METHOD AND MODEL

We adapt CMD simulation with theNVE condition, in
which the number of particles, volume and total energy are
conserved. The second order symplectic integration[11] is
used to solve the time evolution of the equation of motion.
The time step is5× 10−18 s. The modified Brenner’s reactive
empirical bond order (REBO) potential[10] has the following
form:

U ≡
∑
i,j>i

[
V R

[ij](rij) − b̄ij({r}, {θB}, {θDH})V A
[ij](rij)

]
,

(1)

whererij is the distance between thei-th and thej-th atoms.
The functionsV R

[ij] andV A
[ij] represent repulsion and attrac-

tion, respectively. The function̄bij generates multi–body
force. (See details of the modified Brenner’s REBO potential
in Ref.[8].)

In order to investigate the difference of the isotopes, i.e., hy-
drogen (H), deuterium (D) or tritium (T), we clarify the mass
dependence of the injected isotope. The value of the mass for
H, D, or T is shown in Table I. The potential function is not
changed for each isotope.

Simulation model is shown in Fig. 1. We inject the hy-
drogen isotope into the graphene composed of 160 carbon
atoms. The center of mass of the graphene is set to the ori-
gin of coordinates. The surface of the graphene is parallel to
the x–y plane. The size of the graphene is 2.13 nm× 1.97
nm. The graphene has no lattice defects and no crystal edges
due to periodic boundary condition towardx andy directions.
The structure of the graphene is used to the ideal lattice of
graphene. Each velocity of carbon atoms of the graphene is
zero in the initial state, that is, the initial temperature of the
graphene is set to zero Kelvin.

The hydrogen isotope is injected parallel to thez axis from
z = 4 Å. We repeat 200 simulations where thex andy coor-
dinates of injection points are set at random. As a result, we
obtain three chemical reaction ratios for H, D, or T by count-
ing each a reaction.

III. RESULTS AND DISCUSSIONS

We observed three kinds of reactions between the single
hydrogen isotope atom and the graphene by CMD simulation,
which are absorption reaction, reflection reaction and penetra-
tion reaction (see Fig. 2). We found the following differences
of the reflection and the absorption ratios among three iso-
topes. On the other hand, the penetration ratio has almost the
sameEI dependence.

A. Reflection ratio

From the previous work[8], it was found that two kinds
of repulsive force work between the incident atom and the
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FIG. 2: Incident energy dependence of the absorption, the reflection
and the penetration ratios. Three types of injected atoms are hydro-
gen (a), deuterium (b) and tritium (c). Open triangles, open circles,
and open squares denote denote the absorption, the reflection and the
penetration ratios, respectively. Dash-dotted lines, solid lines, and
short-dashed lines are drawn as the guide for eyes for the absorption,
the reflection and the penetration ratios, respectively.

graphene. One is derived by theπ−electron over the graphene
and the other is done by nuclear of carbon.

As the result of the present simulation, theEI dependence
has the following properties. In the case ofEI < 0.5 eV, the
reflection ratio is almost one for all isotopes. This behavior is
explained by the fact that the reflection in this energy region is
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FIG. 3: The isotope massm dependence of the reflection ratio by
the nuclear repulsion. Filled circles, filled squares, and filled tri-
angles denote the reflection ratios for hydrogen, deuterium and tri-
tium, respectively. These plotted data are picked up from Fig. 2.
The estimated minimum nuclear-reflection-energiesEH, ED andET

are given in Table I. Dashed line, solid line and dash-dotted line are
drawn as the guide for eyes.

derived by the repulsive force ofπ−electrons over graphene
surface[8], which does not depend on the mass of the incident
isotope. AsEI is getting larger than 0.5 eV, the reflection ra-
tios are decreasing, and then it is increasing by the nuclear
repulsive force of the carbon atom. AroundEI ∼ 15 eV, they
have the peak (see Figs. 2 and 3). Then, without the mass de-
pendence, they decrease again and approach to zero (Fig. 3),
because the penetration reaction appears in the energy region
thatEI > 15 eV. The details of the penetration reaction will
appear in§III C.

By comparison with three isotopes, it is found that the peak
energy of the reflection ratio becomes larger as the mass is
getting larger, but the peak height becomes smaller (see Fig.
3). This behavior can be explained by the reflection mecha-
nism in the previous work[8], where the incident energyEI

has the following necessary condition for the reflection reac-
tion by the nuclear of carbon:

EI > Eref(m) ≡ 0.84
m

mH

mC + mH

mC + m
[eV], (2)

where the isotope massm dependence is modified from the
previous equation[8] in order to cover three isotopes. The hy-
drogen massmH is 1.00794 u, and the carbon massmC is
12.00000 u. The value ofEref(m) is given in Table I and Fig.
3 for all isotopes.

From Eq. (2) or Table I, it is found that, as the mass of the
incident atom becomes larger, it needs higher incident energy
for the isotope to be reflected by the graphene. The reflec-
tion reaction by the nuclear repulsion occurs atEI ∼ Eref,
and then it increases monotonically until the penetration re-
action becomes dominant among three reactions, as shown in
Fig. 3. Therefore, in the case that the starting energy of the

TABLE I: The mass and the reflection threshold energy by nuclear
repulsive forceEref for hydrogen, deuterium and tritium. The reflec-
tion threshold energyEref depends on the mass of the isotope as Eq.
(2). We use the unified atomic mass u as the unit of mass.

Hydrogen Deuterium Tritium

m [u] 1.00794(≡ mH) 2.01410(≡ mD) 3.01605(≡ mT)

Eref(m) [eV] 0.84(≡ EH) 1.56(≡ ED) 2.18(≡ ET)

reflection reaction by the nuclearEref is smaller, the reflection
ratio can reach a higher value at the peak energy. According to
the above mechanism, the peak energy of the reflection ratio
becomes larger and the peak height becomes smaller, as the
mass of the isotopes is getting heavier, as shown in Fig. 3.

B. Absorption ratio

The absorption ratio has two peaks atEI ∼ 5eV and 24
eV. One peak denotes the overhang state in the positivez side
of the graphite, and the other peak is the overhang state in the
negativez side[8]. From Fig. 2, the height of the second peak,
which is near 24 eV, becomes smaller, as the mass of the in-
cident isotope is increasing. On the other hand, the first peak
of the absorption ratio, which is around 5 eV, becomes large.
The origin of the mass dependence of the absorption ratio is
the same one as that of the reflection ratio in§III A. The ve-
locity becomes slower as the mass becomes large. Therefore,
it becomes easier for the graphene to trap the isotope in the
positivez side.

C. Penetration ratio

From Fig. 2, it is found that the penetration ratio does not
depend on the mass of the incident isotope, i.e., H, D and
T. The incident atom must overcome the graphene potential
to penetrate the graphene sheet. The graphene potential does
not depend on the mass of the incident atom. Therefore, the
penetration ratio does not depend on the mass of the isotope.

IV. SUMMARY

We reveal the hydrogen isotope effect of three chemical re-
actions, i.e, the reflection, the absorption and the penetration
reactions, by CMD simulation with the modified Brenner’s
REBO potential. From the previous work[8], the reflection
process is divided into two processes, that is, reflection by
π−electron and by nuclear. In the present work, we find that
the reflection byπ−electron does not depend on the mass of
the incident isotope, but the peak of the reflection by nuclear
moves to higher side ofEI . In addition to the reflection, we
also find that the absorption ratio in the positivez side of the
graphene becomes larger, as the mass of the incident isotope
becomes larger. On the other hand, the absorption ratio in the
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negativez side of the graphene becomes smaller. Last, it is
found that the penetration ratio does not depend on the mass
of the incident isotope because the graphene potential is not
affected by the mass.
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