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Abstract: Pellet injection has been used as a primary fueling scheme in Large Helical Device (LHD). Pellet
injection has extended an operational region of NBI plasmas to higher densities with maintaining preferable
dependence of energy confinement on density, and achieved several important data, such as plasma stored
energy (0.88 MIT), energy confinement time (0.3 s), B (2.4 % at 1.3 T) and density (1.1x10" m®). These
parameters cannot be attained by gas puffing.

Ablation and subsequent behavior of plasma has been investigated. Measured pellet penetration depth that is
estimated by duration of the Ho emission is shaltower than predicted penetration depth from the simple neutral
gas shiclding (NGS) model. The penetration depth can be explained by NGS model with fast ion effect on the
ablation. Just after ablation, redistribution of ablated pellet mass was observed in short time (~ 400 ps) The
redistribution causes shallow deposition and low fueling efficiency.

1. Introduction

Through the study of inter-machine scalings of energy confinement time [1,2],
confinement in currentless helical plasmas has been proved to be comparable to in tokamaks
while preferable dependence on electron density is more pronounced than in tokamaks. The
international stellarator scaling 95 (ISS95) is described as follows.

IS5 95 221 nes - 5% = 051 0483 40
Ty =0.079a, "R, "Fu, T n, By Tay, .

Gas puffing has been successful for building up and sustaining the plasma density in the
past generation fusion plasma experiments. However, inevitability of gas puffing is
questionable in large-scale, high-temperature and steady state fusion plasmas since the plasma
sources are strongly localized at the plasma surface Especially gas puffing is not efficient in
LHD, because the core plasma region is surrounded with the thick ergodic layer that connects
to the divertor. Efficient fueling to the core plasma would be mandatory in large plasmas.
Hydrogen ice pellet injection is one of the important techniques used for core plasma fueling.
In the LHD experiment, pellet injector is placed as a fundamental tool since deterioration of
fueling efficiency by gas puffing is a concern.
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The ablation mechanism and the subsequent density redistribution affect fueling efficiency
and fueling depth [3,4]. Since a dramatic increase in pellet velocity, which can enhance deep
fueling, poses a difficult problem in technology, optimization based on physical understanding
of the mechanism of these processes is required.

The main aim of the present study is to reveal pellet ablation behavior and effect of pellet
injection on plasma, and to examine the validity of the pellet fueling in LHD.

2. Experimental set-up

Experiments were carried out on Large Helical Device (LHD), a heliotron type magnetic
confinement device with super conducting coils [5,6]. The major radius, averaged minor
radius, magnetic field and plasma volume are 3.9 m, 0.6 m, 2.9 T and 30 m’, respectively.

The pellet injector used on LHD is a pneumatic pipe-gun type accelerator with a GM
cycle refrigerator [7]. The injector is equipped with five barrels and can inject independently
any desired time. The mass and velocity of pellets are 0.4 — 1.0x10" atoms per pellet and 900
— 1200 m/s, respectively. Cylindrical pellets formed from high purity hydrogen gas were
injected horizontally from the outer side mid-plane of LHD. Pellet mass was measured by a
microwave cavity mass detector, and velocity was measured by the time of fright method. The
injected pellets were check by a shadow graph system, which consists of a fast flash lamp and
a CCD camera at the exit of the injector.

Pellet injection experiment has been carried out mainly for NBI heated plasmas. LHD is
equipped with two negative-ion based neutral beam injectors. The range of beam energy and
port through power is 120 — 150 keV and 1 — 4.5 MW, respectively.

Pellet ablation was measured by a fast photo diode (500 kHz sampling) and a CCD
camera (each 33 ms exposure) with a Ho (656.5 nm) filter. A variety diagnostics were used to
investigate the plasma behavior after pellet
injection. For instance, line-averaged electron grpasla S Baketjsiinn . e w0
densities 7. were measured by a 13-chord | #15440 W
vertical view far-infrared (FIR) laser ;
interferometer [8], which was installed at the
distance 168° in the toroidal angle from the
pellet injection port. Profiles of electron
temperature 7. and electron density »n. were
measured by the multi-point (200) Thomson
scattering system [9], which was installed at
the distance 30° in toroidal angle. Electron
density profile based on Thomson scattering
was calibrated by Abel inverted FIR
interferometer data just before pellet
injection.
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density increases sharply at each pellet injection
and a burst in the Ha intensity and divertor flux is
observed simultaneously. Figure 2 shows plots of
the normalized maximum stored energy versus the
density when the stored energy achieved to
maximum. Predicted dependence by the
international stellarator scaling 95 (ISS95) is
shown with dashed lines. Since systematic
enhancement in energy-confinement time from the
scaling has been observed in LHD [10], 1.7 times
of the prediction is also shown. In the case of gas
puffing, confinement degradation was observed at
density above 0.35x10*” m™ and the maximum
density is 0.5x10*° m™. On the other hand, in the
pellet  injection  discharges no  obvious
density-related confinement degradation has been
observed beyond predicted the density limit, and
the stored energy reaches to 0.88 MJ.

Figure 3 shows maximum line averaged
electron density versus NBI power. Solid line
indicate the predicted density limit in the
stellarator/heliotron device. The density limit can
be expressed as follows [2],

n' =0.25/PB/a*R.

where P, B, a and R are the heating power, the
magnetic field strength, the minor radius and the
major radius, respectively. In the case of gas
puffing, an envelope of the data conforms well to
the predicted density limit. In the case of pellet
injection, the maximum density reaches to high
density beyond predicted density limit.

4. Ablation behaviors and density redistribution

Neutral gas shielding (NGS) model [11][12],
which is the most widely adopted ablation model.
If one assumes pellet injection normal to the
plasma from the outside midplane and linear
profiles for electron temperature and density, the
penetration depth scaling of the NGS models 1s
expressed as follows [13],

4

/I/c/] — Te*% ngf}é mp%v vp%

where T,, n., m, and V), are the central electron
temperature, the central electron density, the pellet
mass and the pellet velocity, respectively. The
scaling suggests that the penetration depth
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depends mainly on the electron temperature.
Measured penetration depth is compared with
the NGS scaling in Figure 4. Measured
penetration depth of the pellet is estimated by
duration of Ha emission from ablating pellet on
the assumption that velocity of the pellet is
constant during ablation. The trend of the
measured penetration depth agrees
approximately with NGS scaling, but the
measured penetration depth is systematically
shallower than NGS scaling. This systematical
difference can be explained by effect of fast ions
on the ablation. There is no Ohmic heating in
LHD and the NBI is only heating source. Figure
5 shows the profiles before and after pellet
injection into 3.1 MW NBI heated plasma. (a)
shows the density and calculated beam
component density [14]. (b) shows the electron
temperature,. Since beam component density is
comparable to electron density in such a low
density plasma, effect of fast ions on the ablation
can not be ignored. Figure 5 (c) shows
deposition profiles that are calculated from the
NGS model using ABLATE code [15] which can
take effect of fast ions on the ablation, and the
Ho emission from ablating pellet mapped onto
the normalized minor radius is also shown.
Calculated deposited density profile with fast ion
ablation indicates a good agreement with Ho
emission measurement. On the other hand,
measured deposition peak is shifted outward as
compared with Ho emission peak, and majority
of pellet mass was deposited outside of p= 0.8.
As a result, a net fueling efficiency is 46 %. This
profile shift suggest redistribution of pellet mass
on the fast time scale. Similar phenomena has
been observed in DIII-D [4]. Figure 6 shows
high time resolution waveform at the timing of
pellet ablation. Line averaged electron density is
divided into two part, core density 7.°”" (0<0.7)
and boundary density 7,°""*? (5>0.7), using
multi-chord interferometer data. Ablation starts
at 0.511 s. About the same time boundary
density starts to increase, then core density start
to increase. Core density increase is stopped and
then starts to decrease at the same time the
ablation is finished (0.5114 s). Contrary to this,
boundary density increases further. The core
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density decrease and boundary density increase stop at 0 5118 s (400 us after ablation) These
phenomena can be explained as follows Though pellet penetrates into a certain depth that 1s
well predicted by the NGS with fast ion ablation, a noticeable part of pellet mass are spewed
out from the core region, pellet mass redistribute in a short time (~ 400 ps) On the other hand,
electron temperature at p=0 41 indicate the inverse behavior to core density evolution,
therefore pellet mass redistribute adiabatically How emission except for ablating pellet grows
in the core density decay phase which is distinct in the apart toroidal position, and divertor
flux also increase at the same time

5. Summary and future plan

Pellet injection has extended an operational region of NBI plasmas to higher densities
with maintaining preferable dependence of the energy confinement on the density beyond the
gas-flieling conditions At the current stage of experiment, attained density was restricted by
the supply mass of the pellet and/or the lack of heating power A hard density limit has not
been observed in LHD vet, it is a important issue to investigate on the confinement property
and density limit in the further high density regime in helical systems.

Though penetration depth of the pellet is explained qualitatively by a simple NGS model,
When fast ion effect on the ablation is considered in NGS model, a quantitative agreement
between measurement and calculation has been obtained However, expulsion of the pellet
mass was observed on the fast time scale (~several 100 us) just after ablation, which causes
degradation of fueling efficiency Because a same phenomenon is observed in tokamak, it is
consider that there is a general physical mechanics on density redistribution Improvement of
the pellet fueling by means of the magnetic high field side injection has been reported in
tokamak [3][4] We have plan of inner port injection in the coming LHD experimental
campaign which start at the beginning of October, 2000. The mechanism on density
redistribution will be revealed through comparative study in different magnetic
configurations.

The authors are grateful to the device-engineering group for their operational support.
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