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Abstract

Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by
comparing the simulation results of neoclassical transport. The two codes are the drift-kineticδ f Monte Carlo code
(FORTEC-3D) and the gyrokinetic full-f Vlasov code (GT5D), both of which solve radially-global, five-dimensional
kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical
radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and
temperature gradient, are compared between these two codes, and their results are also compared with the local
neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage
of plasma collisionality parameterν∗ = 0.01∼ 10 and also agree with the theoretical estimations. The time evolution
of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide
very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper
neoclassical effects of collisional diffusion and equilibrium radial electric field.
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1. Introduction

Kinetic approach to simulate transport phenomena in toroidal plasmas is the essential way in recent research. Two
well-known models are the basis of these transport simulations. The one is the drift-kinetic model which mainly
treats the diffusive process of particle and heat transport by Coulomb collisions among charged particles, or so-called
neoclassical transport[1, 2, 3], and the other is the gyrokinetic model[4, 5] which is mainly applied to study plasma
turbulent transport caused by short wave-length electrostatic perturbations. Usually in experimental observations,
the radial (direction across the minor radius of a toroidally confined plasma) heat transport level is one order higher
compared to the prediction from neoclassical transport theory, which gives the irreducible minimal level of transport in
a toroidally confined plasma. An explanation for this deterioration of plasma confinement is the micro-scale turbulence
which is generated essentially in plasmas by thermodynamic forces like temperature gradient. The turbulence is also
regulated by itself though a self-organized formation of a shearedE × B flow, or zonal flow in a plasma, and such
non-linear microscopic turbulence in plasmas is described by the gyrokinetic model.

Although these two kinetic models have usually been treated separately in plasma transport analysis, the basic
equations of these two models are derived from the same kinetic equation: the Boltzmann equation for a plasma
distribution functionf in the six-dimensional phase space (x, v),

∂ f
∂t
+ ẋ · ∂ f

∂x
+ v̇ · ∂ f

∂v
= C( f ), (1)
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whereC( f ) denotes the Fokker-Planck collision operator. Both drift-kinetic and gyrokinetic models reduce one di-
mension from Eq. (1) by averaging over rapid gyration motion of charged particle around the magnetic field. Then
particle motions in electromagnetic field is represented by the guiding-center motion. The main difference of these
two models is that, in the gyrokinetic equation, the short scale perturbation of electrostatic potential, of which wave
length is as short asO(ρi,e) whereρi (ρe) is the ion (electron) Larmor radius, is taken into account in the guiding-center
equation of motion and in solving the Poisson equation, while such a short wave-length perturbation is neglected in a
drift-kinetic model. On the other hand, macro-scale and slowly time-dependent physics such as toroidal rotation, flux-
surface averaged radial electric field, and the bootstrap current, of which scale lengths are comparable to the plasma
temperature and density gradient scale lengthsLT , Ln = |∇ ln T |−1, |∇ ln n|−1, are well described by the neoclassical
transport theory. The equilibrium radial electric fieldEr , which is determined self-consistently by the neoclassical
process so that the plasma satisfies the quasi-neutrality, or the ambipolar condition, is also an important element to ex-
plain the plasma confinement especially in non-axisymmetric toroidal configurations[6, 7]. The strongE ×B rotation
reduces the radial ion flux, which is enhanced by the broken symmetry, to maintain plasma neutrality.

Recent progress in theory and simulation studies of plasma transport processes now turn their attention to the com-
bination of these two models that can treat multi-scale transport phenomena ranging fromO(ρi) to O(LT,n). Idomura
et al. [8] has developed a gyrokinetic simulation code GT5D which includes neoclassical physics by adopting the
full- f approach and introducing a conserved form linear Fokker-Planck collision operator[9, 10]. In the simulation
study of ion-temperature-gradient (ITG) turbulence transport by GT5D, it is found that the shear of the equilibrium
radial electric fielddEr/dr plays a critical role in dictating the directions of avalanche propagation and non-diffusive
momentum transport. Therefore, it is extremely important to determine experimentally relevant equilibrium radial
electric fieldsEr also in gyrokinetic simulations. It is shown from the neoclassical theory thatEr and the parallel
mean flow satisfy a balance relation (see Eq.(20) in Sec.3). In this paper, we will focus on benchmarking this relation
and the neoclassical heat diffusivity. It is noted that within the framework of the neoclassical theory, the parallel flows
or the toroidal rotation is not determined in the lowest order theory because the particle flux is intrinsic ambipolar (In
contrast, in helical systems,Er is dictated by the lowest order particle flux, which is not intrinsically ambipolar). In
Ref.[11], it was shown that to estimate the neoclassical momentum transport, one need to calculate the momentum
conservation with the toroidal viscosity up to higher order. However, in reality, one may need to determine parallel
flows by the balance between external torque and turbulent transport, which are normally larger than the neoclassical
momentum transport. These issues related to the momentum transport is out of scope in the present benchmark. It is
important to check that the radial electric field is determined in the simulations to satisfy the force balance relation,
no matter what parallel flow profile may appear.

In Ref.[8], a benchmark test of GT5D for the neoclassical transport calculation has been carried out, in which
neoclassical heat diffusivity and the parallel force balance equation were tested against analytic formulae derived
by neoclassical transport theories[1, 12]. Though it has shown qualitatively good agreements, more strict, quanti-
tative test requires a strict drift-kinetic calculation as a counterpart, since analytic formulae use many conventional
assumptions such as large-aspect-ratio expansion (assumptiona/R≪ 1, wherea andR are plasma minor and major
radius, respectively) and zero-orbit-width limit (neglect of guiding-center radial excursion). Keeping the finiteness of
the aspect ratio and orbit width of the radial guiding-center drift, which are called the finite-aspect-ratio and finite-
orbit-width (FOW) effects, respectively, are related to the higher-order corrections of neoclassical transport which is
essentially included in the gyrokinetic equation that GT5D solves, and these effects will be important in reactor-scale
tokamak plasmas where the core temperature is high and the aspect-ratio is not so large. Therefore, to prove the
applicability of GT5D to turbulence transport simulations with including neoclassical effects in a general situation,
it is required to show that GT5D neoclassical transport simulation agrees with a drift-kinetic simulation which treats
these higher-order effects correctly.

In the present paper, we report a new benchmark results of GT5D with aδ f neoclassical transport simulation
code FORTEC-3D[13, 14], which has been developed to solve the drift-kinetic equation including the finite-aspect-
ratio and FOW effects both in axisymmetric tokamak and helical plasmas. Neoclassical heat transport and parallel
momentum balance are checked in the same way as shown in Ref. [8]. Not only the comparison of steady state
transport feature, transient phase of radial electric field towards steady state is also compared between two codes. It
will be shown that the frequency and Landau damping rate of geodesic acoustic mode (GAM), and the equilibriumEr

also coincides each other.
Brief explanation on GT5D and FORTEC-3D codes are shown in Section 2. The case used for benchmark of
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neoclassical transport calculation is described in Section 3, where the analytic formulae to be used for the comparisons
simulations with conventional neoclassical theory is also explained. The results and comparisons among two codes
and neoclassical theory are presented in Section 4. Conclusions are given in Section 5.

2. Calculation models

2.1. GT5D code

GT5D code is a five-dimensional full-f Vlasov code which solves a gyrokinetic equation with collision and
source/sink terms,

∂J f
∂t
+ ∇ · (JṘ f ) +

∂

∂v∥
(J v̇∥ f ) = J(C( f ) + Ssrc + Ssnk), (2)

where f (R, v∥, µ, t) is the guiding-center distribution function of ions,R is a position of the guiding center,v∥ is the
parallel velocity,µ is the magnetic moment, andJ is the Jacobian of the guiding-center coordinates. The nonlinear
characteristics (̇R, v̇∥) are given by the gyro-center Hamiltonian as follows:

H =
1
2

mv2
∥ + µB+ e⟨ϕ⟩α, (3a)

Ṙ ≡ {R,H} = v∥b +
c

eB∗∥
b × (e⟨ϕ⟩α +mv2

∥b · ∇b + µ∇B), (3b)

v̇∥ ≡ {v∥,H} = − B∗

mB∗∥
· (e⟨ϕ⟩α + µ∇B), (3c)

whereB = Bb is the magnetic field,B∗ = B+ (Bv∥/Ω)∇×b, B∗∥ = b ·B∗,Ω = eB/(mc) is the cyclotron frequency, and
the gyro-averaging operator is defined as⟨·⟩α =

∮
· dα/2π whereα is the gyro-phase angle. The gyrokinetic Poisson

bracket operator{F,G} is defined as follows:

{F,G} ≡ Ω

B

(
∂F
∂α

∂G
∂µ
− ∂G
∂α

∂F
∂µ

)
+

B∗

mB∗∥
·
(
∇F

∂G
∂v∥
− ∇G

∂F
∂v∥

)
− c

eB∗∥
b · ∇F × ∇G. (4)

The self-consistency is imposed by the quasi-neutrality condition or the gyrokinetic Poission equation

−∇⊥ ·
ρ2

ti

λ2
Di

∇⊥ϕ +
1

λ2
De

(ϕ − ⟨ϕ⟩ f )

= 4πe

[∫
f δ([R + ρ] − x)d6Z − n0e

]
, (5)

whereR + ρ is a particle position,d6Z = JdRdv∥dµdα = m2B ∗∥ dRdv∥dµdα is the phase space volume,ρti is the
Larmor radius evaluated with the thermal velocityvti , λDi , λDe are ion and electron Debye lengths, and⟨·⟩ f is a flux
surface averaging operator, respectively.

The Fokker-Planck collision operator is linearized and separated into the test-particle and field-particle parts as
C( f ) = CT( f ) + P fM, whereCT is given by a second-order differentiation operator in the velocity space[9],

CT( f ) =
∂

∂s
(ν⊥sv

2 f ) +
∂

∂u
(νs∥u f) +

1
2
∂2

∂s2
(ν⊥v4 f )

+
1
2
∂2

∂u2
(ν∥v

2 f ) +
∂2

∂s∂u
(ν∥⊥v3 f ), (6)
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wheres= 2µB/mandu = v∥ −U∥ are a moving frame with respect to the mean parallel flowU∥, andv2 = u2 + s. The
field particle operatorP fM is explained in Section 2.2. Note that the collision operator used in GT5D is a drift-kinetic
limit, in which neither the finite-Larmor-radius (FLR) effect nor the gyrophase angle dependency is considered.

In GT5D, the gyrokinetic Poisson bracket operator is discretized using the fourth order NDCFD[15], and the
gyrokinetic Poisson equation (5) is computed using toroidal mode expansion and a 2D finite element approximation
on the poloidal plane. The linearized collision operator is discretized using the sixth order centered finite difference.
The time integration is performed using the second order additive semi-implicit Runge-Kutta method[16] and a stiff

linear term involving the parallel streaming is treated implicitly. An implicit part is solved using the generalized
conjugate residual method, and a typical time step width is given as∆t = 10Ω−1.

2.2. FORTEC-3D code

FORTEC-3D is a five-dimensionalδ f Monte Carlo code which solves the drift-kinetic equation for perturbed
distribution functionδ f = f − fM,

D
Dt
δ f ≡ ∂

∂t
δ f +

(
v∥ + vd

) · ∇δ f + K̇ ∂δ f
∂K −CT(δ f )

= −
(
vd · ∇ + K̇

∂

∂K

)
fM + P fM . (7)

where fM is a time-independent local Maxwellian which has constantn and T on a flux surface,vd ≡ Ṙ − v∥b
is the drift velocity, and the independent velocity variables are chosen here as (K = mv2/2, µ). The linearized
Fokker-Planck collision operator is the same one as used in GT5D. To be applicable to general non-axisymmetric
magnetic field configurations, FORTEC-3D adopts the Boozer magnetic coordinates[17] and a Hamiltonian formalism
of the guiding-center equation in the Boozer coordinates.[18, 19] The main difference between the drift-kinetic and
gyrokinetic equations is that the electrostatic potential in drift-kinetic model is the one evaluated on the guiding-
center position, not a gyro-averaged one. And for neoclassical transport calculation, only the radial electric field
Er = −d⟨ϕ⟩ f /dr is considered, wherer denotes the radial coordinate and⟨ϕ⟩ f is the averaged electrostatic potential
of a flux-surfacer = const. Therefore, the drift-kinetic model can be considered as an approximation of gyrokinetic
model by replacing⟨ϕ⟩α → ⟨ϕ⟩ f . Without any external source considered in FORTEC-3D, the time change of the
kinetic energy is given bẏK = evd · Er . The termsvd · ∇δ f andK̇∂δ f /∂K represent the FOW effects, which are
neglected in the local transport theory.

FORTEC-3D adopts a two-weight scheme ofδ f method[20, 21]. The perturbed distribution function is expressed
by simulation markers with its weightw; δ f = w·g, whereg =

∑
k δ(Rk−R)δ(Kk−K)δ(µk−µ)/JK is the distribution

function of simulation markers andJK = 2πJ/(m|v∥|), while another weightp is defined so that it satisfies the relation
fM = p·g. The test-particle collision operator is expressed by random kicks of marker velocity in the (v∥, v⊥)-space[9]
so that it reproduce the diffusion process described by Eq. (6). Since each simulation marker moves according to the
l.h.s. of Eq. (7), orDg/Dt = 0, time evolution of marker weights are given by

ẇ = − p
fM

[
vd · ∇ + K̇

∂

∂K − P
]

fM , (8a)

ṗ =
p
fM

[
vd · ∇ + K̇

∂

∂K

]
fM , (8b)

where the auxiliary weightp is used to replace 1/g with p/ fM. In the collisionless limit, we have ˙p = −ẇ and simple
one-weightδ f method is reproduced. The two-weight scheme is required in a system with collisional dissipation
where the evolution of the marker distribution function cannot be described only by the Hamiltonian, e. g.,Dg/Dt = 0
but∂g/∂t+ {g, H} , 0. It is also noted that since the backgroundfM is fixed in time, theδ f scheme can be applied for
a shorter time scale than the plasma profiles of backgroundn andT changes substantially. For a magnetic confined
plasma, this time scale is usually much longer than the typical collision time at which neoclassical quasi-steady state
is achieved, and then theδ f approach is held valid unless there is extremely steep gradient in the background plasma
profile.
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The linearized Fokker-Plank collision operator in GT5D and FORTEC-3D is made to satisfy the following rela-
tions ∫

d3vM (CT( f ) + P fM) = 0 forM = {1, v∥, v2}, (9a)

CT( f ) + P fM = 0 for δ f = (c0 + c1v∥ + c2v2) fM , ci ∈ R, (9b)

which describe the conservation property and the H-theorem for linearized collision operator, respectively. Note
that CT( f ) in Eq. (9) is replaced byCT(δ f ) in the δ f -method, and as it is mentioned in Sec. 2.1, no FLR-effect
is considered and an identificationJdv∥dµdα ≃ d3v is used in Eq. (9a). Though numerical implementation of the
test-particle operator is different between GT5D Vlasov code and FORTEC-3D Monte Carlo code, the field particle
operator is given in the same form as follows[10, 20]:

P = −1
n

[
aF(x) + bG(x)ξ + cH(x)

]
, (10a)

F(x) = 1− 3

√
π

2
x−1/2(ϕ(x) − ϕ(x)′), (10b)

G(x) = 3

√
π

2
x−1/2ϕ(x), (10c)

H(x) = 3

√
π

2
x−1/2(ϕ(x) − ϕ(x)′), (10d)

wherex = v2/v2
th, ξ = v∥/v, andϕ(x) = (2/

√
π)

∫ x

0
dt e−x′

√
x′ is the Maxwellian integral, respectively. The factors

(a,b, c) are determined by the change of particle number, momentum, and energy caused by the test-particle operator,
e. g.,

{a, b, c} =
{
δn, 2δP/vth, 2δE/(3v2

th)
}
, (11)

{δn, δP, δE} =
∫

d3v{1, v∥, v2}CT( f ). (12)

In practice, however, this field-particle operator does not exactly satisfy the conservation property Eq. (9a) either in
Vlasov code with a finite velocity grids or in Monte Carlo code with a finite number of simulation markers. Then an
iterative operation of the field-particle operator is usually taken in simulation codes[8, 20] to reduce the numerical
error, but it is time consuming. In FORTEC-3D, the accuracy of collision operator is improved by solving the factors
(a,b, c) as functionals of (δn, δP, δE) instead of using their theoretical values given by Eq. (11) so that the linearized
collision operator exactly satisfies the conservation law[14]. By substituting Eqs. (10) and (12) into Eq. (9a) and
using the relationfM = p · g, we have a

b
c

 = −∑
k


Fkpk Gkξkpk Hkpk

Fkx1/2
k ξkpk Gkx1/2

k ξ2
k pk Hkx1/2

k ξkpk

Fkxkpk Gkxkξkpk Hkxkpk


−1

·

 δn
δP/vth

δE/v2
th

 (13)

where the summation is taken over markers (indexk) within a small volume cell, and abbreviationsFk = F(xk) and
so on are used. Note thatδn etc. are also evaluated by integrating Eq. (12) over the same small cell. With this
improved field-particle operator, the numerical error in collision operator is suppressed to the rounding-error level in
FORTEC-3D[14]. Recently GT5D has also adopted the same idea for the field-particle operator (in GT5D, Eq. (13)
is computed at each spatial grid with the summation over markers replaced by an integral over the velocity space) and
succeeded in reducing calculation time compared to the previous iterative operation.

The time evolution of the radial electric field is solved according to the radial current as follows,

−
⟨

ρ2
ti

4πeλ2
Di

⟩
f

∂Er

∂t
= Γi − Γe, (14a)

Γi =

⟨∫
JKdKdµvd · ∇rδ fi

⟩
f

. (14b)
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Note that the local MaxwellianfM does not contribute radial flux. Since it is time consuming to solve electron dy-
namics and the FOW effect is negligible for electron transport, FORTEC-3D only solves the ion drift-kinetic equation
(7) using theδ f method. For electrons, a reduced local neoclassical transport model for helical magnetic field config-
urations is adopted[13, 22]. In axisymmetric tokamak case here, we simply neglect the electron radial fluxΓe which
is O(

√
me/mi) smaller thanΓi in any case. Similarly, since the ion-electron collision is alsoO(

√
me/mi) smaller than

the ion-ion self collision, the ion-electron collision term is neglected in Eq. (7).
In FORTEC-3D, time integral is performed in two different time steps, one is for marker guiding-center motion

and radial electric field, and the other is for collision operator. Typical time steps are given as∆to ∼ qR0/(100vti)
for the former and∆tc ∼ τii/1000 for the latter, respectively, whereq is a safety factor of the magnetic field,R0 is
the major radius of the magnetic axis, andτii is a typical 90-degree scattering time of ion-ion collisions. The marker
orbital motion is solved by fourth-order Runge-Kutta method and the radial electric field is integrated by a first-order
modified Euler method. Time integral ofCT andP fM are performed by first order Euler method. To reduce statistical
noise unavoidable in any Monte Carlo methods, an averaging scheme of marker weights[21] in the phase space, a
filtering scheme for nonphysically large weights[14, 23], and a marker recycling scheme for those markers filtered out
are introduced, which are deliberately operated not to affect the conservation properties or time-averaged observable
values such asΓi andU∥.

2.3. Drift-kinetic limit of gyrokinetic system

In considering a way of benchmarking between gyrokinetic and drift-kinetic simulations, it is to be noted that the
gyrokinetic Vlasov-Poisson system, equations (2) and (5) reduces to the drift-kinetic system equations (7) and (14), in
the limit only the macroscopic radial electric fieldEr = −d⟨ϕ⟩ f /dr is considered. Firstly, for the macroscopic pertur-
bationk⊥Ln,T ∼ O(1), the FLR effect is negligible and the gyrokinetic equation (2) reduces to the drift-kinetic equation
(7). The apparent difference between Eqs. (2) and (7) can be resolved by transforming the drift-kinetic equation in the
conserved form using the incompressible condition of the Hamiltonian flow,∂JK/∂t+∇· (JK Ṙ)+∂(JKK̇)/∂K = 0,
which holds true both in the drift-kinetic and gyrokinetic equations with the Hamiltonian formulation of the guiding-
center motion[18]. Secondly, by taking a time derivative and flux-surface averaging of Eq. (5) and substituting Eq.
(2), we have

∂

∂r

− ⟨
ρ2

ti

4πeλ2
Di

⟩
f

∂Er

∂t
− Γi

 = ⟨∫
Jdv∥dµdαC( f )

⟩
f

= 0, (15)

where the source and sink terms, and electron radial flux are neglected for simplicity, and the conservation property
of collision term is used in the last equality. The ion radial flux is given by

Γi ≡
⟨∫

d6Z fi(Ṙ0 · ∇r)δ([R + ρ] − x)

⟩
f

≃
⟨
2π

∫
dv∥dµJ fi(Ṙ0 · ∇r)

⟩
f

=

⟨∫
dKdµJKδ fi(vd · ∇r)

⟩
f

. (16)

In this equation, we use the approximationR + ρ ≃ R andṘ0 is the guiding-center orbit given by Eq. (3) with an
approximation⟨ϕ⟩α ≃ ⟨ϕ⟩ f , and one can see that the last form is identical to Eq. (14b). Thus gyrokinetic and drift-
kinetic is identical in the macroscopic perturbation limit. Therefore, to compare the neoclassical transport calculation
with FORTEC-3D, all the benchmarks of GT5D shown in Section 4 are conducted in plasmas where the FLR effect
is negligibly small,i.e., ρi/L ≪ 1, and only the flux-surface averaged potential⟨ϕ⟩ f is solved.

It is also to be noted that the term (ϕ − ⟨ϕ⟩ f )/λ2
De appeared in the l.h.s. of Eq. (5) vanishes in Eq. (15) in the

approximationϕ → ⟨ϕ⟩ f . This means that the adiabatic response of electron along magnetic field lines is ignored in
the drift-kinetic limit. Then the drift-kinetic model can also be regarded as aTe/Ti → 0 andρi/L ≪ 1 limit of the
gyrokinetic model. This property is used in later in Section 3 to derive analytic estimation for GAM frequency and
damping rate in a drift-kinetic system.
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3. Case for benchmark

For the benchmark of neoclassical transport calculation, we set two types of circular cross-section concentric
tokamak geometries. The one has a relatively fat aspect ratio,ϵ−1

a ≡ R0/a = 1.31m/0.47m = 2.79. It is called
“the case 1” here and hereafter. Initial plasma distribution function is given by local Maxwellian, and the density,
temperature, safety factor, and the magnetic field are given by the following form

n(x) = n0

[
−∆n

Ln
tanh

(
x− 0.5
∆n/a

)]
, (17a)

Ti(x) = Ti0

[
−∆Ti

LTi
tanh

(
x− 0.5
∆Ti/a

)]
, (17b)

q(x) = 0.854+ 2.184x2, (17c)

B(x, θ) =
B0

1+ xϵa cosθ

(
eζ +

xϵa
q(x)

eθ

)
, (17d)

wherex = r/a, θ is the poloidal angle, andeζ andeθ are toroidal end poloidal unit vector, respectively. In the case 1,
we intend to check the radial dependence of neoclassical transport in a low-collisionality plasma, and the profile has
relatively broader ion temperature gradient (Ti0 = 2.12keV, LTi = R0/10.0, ∆Ti = 0.30a, n0 = 5.0× 1019m−3, Ln =

R0/2.20, ∆n = 0.30a) as shown in figure. 1. The effective collisionality[1] is small in almost the entire plasma,
ν∗ ≡

√
2qR0/(ϵ3/2τii vti) < 0.1, wherevti ≡

√
2Ti/mi andϵ = r/R0. It corresponds to a banana regime plasma.

In the other case, we use a more slim configuration than the case 1,R0/a = 2.35m/0.47m = 5.0, in order
that comparisons of simulation results with the large-aspect-ratio limit neoclassical theory be more plausible. The
gradient and collisionality are set equal on ther = 0.5a surface both in GT5D and FORTEC-3D simulations (LTi =

Ln = R0/6.0, ∆Ti = ∆n = 0.20a, ν∗ ≃ 0.012) and it is called “the case 2”. To benchmark the collisionality dependence
of neoclassical transport, the collisionality is artificially multiplied by 10,100, and 1000 times from that of the case 2,
and these are called the case 3, 4, and 5, respectively. In the all cases above, electron temperature profile is properly
given but it is irrelevant to the benchmarks performed here, since no electron dynamics is involved. In each case,
typical Larmor radius scale is small,ρti/a ≃ 1/150, enough to apply the drift-kinetic model where the FLR effect
is regarded as negligibly small. However, it is to be noted that the physics concerning the finite-orbit-width effect
and finite-aspect-ratio effect are retained in both gyrokinetic and drift-kinetic calculations and that the FLR effect is
retained in solving the gyrokinetic equation in GT5D though it is small in the present cases.

What are observed and compared with neoclassical theory in the benchmarks are as follows: Firstly, neoclassical
radial ion heat diffusivity χi is compared. It is evaluated in GT5D and FORTEC-3D codes from radial heat flux,

Qi =

⟨∫
dv∥dµdαJ fi(Ṙ0 · ∇r)

(
1
2

miv
2
∥ + µB

)⟩
f

− 5
2
ΓiTi , (18)

wheredv∥dµdαJ fi is replaced bydKdµJKδ fi in FORTEC-3D. With taking a time average ofQi after it settled in
a quasi-steady state,χi is given byχi = −Qi/(ni∇Ti). Theoretic value ofχi is given by the Chang-Hinton model as
follows,

χi = ϵ1/2ρ
2
iθ

τii
K2,

K2 =

(
0.66+ 1.88ϵ1/2 − 1.54ϵ

1+ 1.03ν1/2
∗ + 0.31ν∗

) ⟨
B2

0

B2

⟩
f

+
0.79
ϵ1/2

(
0.74ν∗ϵ3/2

1+ 0.74ν∗ϵ3/2

) ⟨B2
0

B2

⟩
f

−
⟨

B2

B2
0

⟩−1

f

 , (19)

whereρiθ ≡ qρti/ϵ is the poloidal Larmor radius. This formula is constructed by using expansion in small parameterϵ
and by connecting analytic solutions both in theν∗ ≪ 1 andν∗ ≫ 1 limits[12]. It contains the leading-order correction
of the finite-aspect-ratio effect and the Shafranov shift[24]. However, the latter effect is neglected in the benchmark
because a concentric flux surface configuration, which corresponds to the zero plasma-beta limit, is used.

7



Secondly, we check the force balance relation among the parallel flow, the Pfirsh-Schlüter flow, and the neoclassi-
cal poloidal flow. A force balance relation in the local neoclassical theory[1] is given by

⟨U∥i B⟩ f =
ITi

e

(
dψ
dr

)−1 [
(k− 1)

d
dr

ln Ti −
d
dr

ln ni +
eEr

Ti

]
, (20)

whereψ(r) is the poloidal flux andI (r) = RBt. The factork is the same one as (β1,g2i) appeared in Eq. (6.134) in Ref.
[1], which depends on the collisionalityν∗. Approximate fit formula for a wide range ofν∗ is given as follows:

k ≃
1.17− 0.35ν1/2

∗

1+ 0.7ν1/2
∗

− 2.1ν2
∗ϵ

3

 /(1+ ν2
∗ϵ

3). (21)

This formula, however, is constructed in theϵ → 0 limit for ν∗ ≪ 1. To check the finite-aspect-ratio correction, we
also use a more precise evaluation ofk-factor, which can be obtained by directly evaluatingk(ν∗, ϵ) from neoclassical
transport theory. According to the moment equation approach in Ref. [2], it is given as follows:

k =
−
√

2µ̂2√
2µ̂1 + ( ft/ fc)

(
µ̂1µ̂3 − µ̂2

2

) , (22)

where ft ≃ 1.46
√
ϵ is the trapped particle fraction,fc = 1− ft, and the viscosity coefficientsµ̂ j(ν∗, ϵ) for ions are given

by 
µ̂1 = K̂11,

µ̂2 = K̂12 − 5
2 K̂11,

µ̂3 = K̂13 − 5K̂12 +
25
4 K̂11,

(23)

K̂i j =
{
x2(i+ j−2)νtotτii

}
, (24)

wherex2 = mv2/(2Ti), {A(x)} ≡ (8/3
√
π)

∫ ∞
0

dxexp(−x2)x4A(x), andνtot is given by Eq. (4.73) in Ref. [2]. For the
benchmarks,̂Ki j are numerically evaluated according to the definition above rather than using the fitting formula of
them as shown in Ref. [2] or [25]. We benchmark the force balance relation in the simulation by solving Eq. (20) for
k by the observed values of⟨U∥i B⟩ f andEr with given∇n and∇Ti and comparing it with the theory.

Thirdly, to check the temporal behavior, the time evolution of the radial electric field and ion flux are compared
between two codes. An important feature we can see commonly in both these two kinetic systems is the geodesic
acoustic mode (GAM) oscillation and collisionless Landau damping of it. In a gyrokinetic analysis[26], the real
frequency and the damping rate of GAM in a circular tokamak geometry are approximately given as follows,

ωG =

√
7

2

(
vti

R0

) √
1+

46
49q2

, (25)

γ = −qvti
√
π

2R0

(
1+

46
49q2

)−1 [
exp(−ω̂2

G){ω̂4
G + ω̂

2
G}

+
1
32

(qkrρti)
2 exp(−ω̂2

G/4)

 ω̂6
G

16
+
ω̂4

G

2
+ 3ω̂2

G


 , (26)

whereω̂G ≡ qR0ωG/vti , and the drift-kinetic limitτe ≡ Te/Ti → 0 is taken from the original analytic formula. The
benchmark cases, in which a drift-kinetic limit where the FLR effect and electron adiabatic response are neglected,
correspond to the caseτe→ 0 limit is taken, as is explained Section 2.3. The first term on the r.h.s. of Eq. (26) is the
Landau damping in the zero-orbit-width limit and the second term is due to the resonance of passing particles with
the GAM at|v∥| = Rqω/2 caused by the finiteness of orbit widths. We compare the real frequency and damping rate
of GAM between the theory and those evaluated by taking power spectrum ofEr oscillation observed in GT5D and
FORTEC-3D simulations.
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4. Benchmark results

First, benchmark results for the case 1 is shown. After a timet/τii ∼ 1, the neoclassical ion heat flux and the force
balance reach an equilibrium state. The radial profile of the ion heat diffusivity χi and the neoclassical force balance
factor k in Eq. (20) are plotted in figures 2 and 3. The estimations of these values from conventional neoclassical
theory explained in the previous section are also plotted in the figures. Comparing the evaluatedχi and thek-factor,
we find good coincidence between the two simulations almost the entire region of plasma minor radius. Concerning
χi , these two simulation results agree very well, though the discrepancy from the Chang-Hinton’s formula is increasing
toward the two regionsr/a → 1 andr/a → 0. These differences are attributed to the finite-aspect-ratio and finite-
orbit-width effects respectively, which are neglected or approximated in the analytic formula. In the outer region, the
inverse aspect ratioϵ becomes larger (ϵ ∼ 0.3 in the case 1), and the analytic formula, which uses a expansion in
ϵ, is not a good approximation there. On the other hand, in the region close to the magnetic axis, it is known that
wide width guiding-center orbits called ”potato orbits” appear. In Ref. [27], it is shown that the FOW effect of potato
orbit affects the neoclassical heat diffusivity in the regionr . 2(q2ρ2

i R0)1/3, which in the case 1 becomesr ≃ 0.20a,
and reducesχi inside the region if the temperature gradient near the magnetic axis is not steep. This potato-orbit
effect can explain the smallerχi of kinetic simulations in the core region. Concerning the factork, these two kinetic
simulations agrees well with Eq. (22), which is direct evaluation ofk(ν∗, ϵ) from a finite-aspect-ratio theory, rather
than the Hinton-Hazeltine’s large-aspect-ratio limit (21). One can see the large discrepancy between simulation results
and the estimation by Eq. (21), which suggests the importance of the finite-aspect-ratio effect on the force balance
relation in a low-collisionality plasma.

Second, collisionality dependence ofχi andk at ther = 0.5a surface are scanned for the cases 2 to 5, which are
shown in figures 4 and 5. Since the GAM damping rate is seldom affected by the collisionality, it takes longer to
achieve a steady state value of transport coefficients asν∗ increases, if it is seen in a normalized time unitt̄ = t/τii .
Then the timings we take the averaged values ofχi andk are varied according toν∗. Very good agreements between
GT5D and FORTEC-3D results, as well as good coincidences with neoclassical theories, can be seen. In real plasma
confinement experiments, the plasma collisionalityν∗ sometimes varies largely toward the plasma edge, and it is
important for a global simulation code as benchmarked here to have an adaptability to a wide range ofν∗. Concerning
the force balance relation, as it is seen in the case 1, it is found that the finite-aspect-ratio correction to the factork is
effective for low collisionality cases, even with relatively smallϵ ≃ 0.1 for the cases 2 to 5.

Next, let us compare the temporal behavior of the simulations. Figures 6 and 7 show transient evolution of the ion
particle fluxΓi and radial electric fieldEr observed in two codes for the case 3, atr = 0.5a. Analytic estimation of
the GAM oscillation from Eqs. (25) and (26) is also plotted in Fig. 6, whereΓi(t) = Γ0 sin(ωGt) exp(γt) is assumed.
Here we omit the FOW effect in the analytic estimation ofγ since the coefficient (qkrρti)2 in Eq. (26) is expected to be
very small in the benchmark case. One can see the frequency and damping rate of theEr andΓi oscillation agree well
among two simulation results and the analytic estimation. Moreover, good agreements are also found in the amplitude
of the GAM oscillation, time evolution of non-oscillation part ofEr , and the equilibrium value of it.

Finally, the radial profile of the GAM frequency is compared for the case 1. Figures 8 (a) and (b) show the power
spectrum ofEr oscillation in GT5D and FORTEC-3D, respectively. The power spectrum is taken between the range
0 ≤ t/τii < 0.32 and normalized on each flux surface. In both figures, the analytic evaluation ofωG of Eq. (25) is also
shown. It can be seen that a peak of the power spectrum appears at the same frequency as the theory predicts. The peak
disappears in both simulations at the inside of the plasma, because strong Landau damping of GAM occurs at that
region where the safety factorq is close to unity. These results concerning the GAM oscillation and damping prove
that both simulation codes can correctly solve not only the steady state neoclassical transport but also the transient
phenomena that are inherent in the drift-kinetic equation.

5. Conclusion

In this work, detailed benchmark tests of neoclassical transport simulation in a tokamak plasma have been carried
out for GT5D gyrokinetic code by comparing calculation results with those from FORTEC-3D drift-kinetic code and
analytic estimations from neoclassical transport theory. On the whole, good agreements between the two simulations
are found in the neoclassical heat diffusivity, parallel force balance relation, and GAM frequency and damping rate in
a wide range of effective collisionality 0.01≤ ν∗ ≤ 10. The radial profile of transport coefficients such asχi , k-factor,
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and GAM frequency also coincide between two simulations. The simulation results are shown to agree with the
theoretic values of them, while we have also found the finite-aspect-ratio and finite-orbit-width effects in some cases,
which are neglected or approximated in analytic formulae but correctly taken into account in these two simulations.

The benchmark results shown here prove that GT5D code properly treats the neoclassical transport phenomena
in its gyrokinetic full-f Vlasov calculation, not only qualitatively, but also quantitatively. The conservation property
of the linear Fokker-Planck collision operator adopted in the code, which is essentially the same one as FORTEC-3D
uses, ensures capability of long-duration simulation required to see the steady state turbulence in a system with source
and sink terms. And the adaptability to a wide range of collisionality parameterν∗ shown here is also important for
the full-volume global transport code, sinceν∗ may vary largely from the plasma core to the edge.

On the other hand, the benchmark results also shows that FORTEC-3D code can solve the time evolution the radial
electric field and the plasma distribution function according to the drift-kinetic equation, which change in as fast time
scale as the GAM oscillation. This guarantees the usage of the code to investigate the dependence of GAM frequency
and damping rate on magnetic field configuration as reported in Ref. [28]. Since it is usually time consuming to
conduct a global gyrokinetic simulation, especially in non-axisymmetric configurations, it is beneficial to replace a
gyrokinetic code with more simple FORTEC-3D code in researching the properties of GAM oscillation in realistic
magnetic field configurations.
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Figure 1: Ion density, temperature, and the safety-factor (q) profiles in case 1.
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formula.

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

k

r / a

Case1(t~τii)

GT5D
FORTEC-3D

H-H
H-S

Figure 3: The radial profile of the force balance factork evaluated
from ⟨U∥i B⟩ andEr in the case 1. A dashed blue curve showsk es-
timated by Hinton-Hazeltine’s small-aspect-ratio formula (21), and a
dotted purple line is obtained from Hirshman-Sigmar’s moment equa-
tion approach in Ref. [2], respectively.

11



0.001

0.01

0.1

1

10

0.01 0.1 1 10 100

χ i
 /(

v t
iρ

ti2  
/ L

n)
 (

r/
a~

0.
5)

ν*

Case2,3 (t~τii), Case4(t~2τii), Case5(t~8τii)

GT5D
FORTEC-3D

C-H

Figure 4: The collisionality dependence of the ion heat diffusivityχi in
the cases 2 to 5 atr = 0.5a. A dashed blue curve shows the estimation
by the Chang-Hinton’s formula.

-1

-0.5

0

0.5

1

1.5

0.01 0.1 1 10 100

k 
(r

/a
~0

.5
)

ν*

Case2,3 (t~τii), Case4(t~2τii), Case5(t~8τii)

GT5D
FORTEC-3D

H-H
H-S

Figure 5: The collisionality dependence of the force balance factor
k evaluated from⟨U∥i B⟩ and Er in the cases 2 to 5 atr = 0.5a. A
dashed blue curve showsk estimated by Hinton-Hazeltine’s formula
(21), and a dotted purple line is obtained from Hirshman-Sigmar’s
moment equation approach in Ref. [2], respectively.

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

4e-05

0 10 20 30 40 50 60 70

Γ 
/ v–

ti
n– 0

ωG t

Case3 (r/a~0.5)

GT5D
FORTEC-3D

Analysis

Figure 6: The comparison of radial ion particle fluxΓi observed in
GT5D and FORTEC-3D codes atr = 0.5a flux surface in the case
3. The horizontal axis is a time normalized by the GAM frequency
ωG, which is evaluated by analytic formula Eq. (25). The vertical
axis is normalized by volume-averaged density and thermal velocity.
An analytic estimation of GAM oscillationΓ(t) = Γ0 sin(ωGt) exp(γt)
is also plotted here with dotted curve, where the damping rateγ is
estimated by Eq. (26). In each simulation, GAM oscillation damps
toward the ambipolar conditionΓi = 0 with almost the same damping
rate and frequency with the analytic estimations.

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70

R
0e

E
r /

 T– i

ωG t

Case3 (r/a~0.5)

GT5D
FORTEC-3D

Figure 7: The comparison of radial electric fieldEr observed in GT5D
and FORTEC-3D codes atr = 0.5a flux surface in the case 3. The
horizontal axis is normalized as in Fig. 6, and the vertical axis is
normalized byR0e/T̄i whereT̄i is the volume-averaged value. Af-
ter transient damping phase,Er reaches a equilibrium state where the
non-zero poloidalE × B flow is developed self-consistently to satisfy
the neoclassical force balance relation.

12



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
 0

 1

 2

 3

 4

 5

(a) : GT5D, Er

ω
R

0 
/ v

- ti

r/a

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
 0

 1

 2

 3

 4

 5

(b) : FORTEC-3D, Er
ω

R
0 

/ v
- ti

r/a

Figure 8: The power spectra ofEr oscillation for the case 1 in (a): GT5D and (b): FORTEC-3D, respectively. The frequency is normalized by
R0/v̄ti , wherev̄ti is a volume-averaged thermal velocity. The color contour shows the intensity of the spectrum, which is normalized on each radial
position, and a solid curve represents the analytic estimation for a tokamak, Eq. (25).

13


