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Abstract

Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by
comparing the simulation results of neoclassical transport. The two codes are the drift-kfngtimte Carlo code
(FORTEC-3D) and the gyrokinetic full-Vlasov code (GT5D), both of which solve radially-global, five-dimensional
kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical
radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and
temperature gradient, are compared between these two codes, and their results are also compared with the local
neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage
of plasma collisionality parametet = 0.01 ~ 10 and also agree with the theoretical estimations. The time evolution

of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide
very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper
neoclassicalfects of collisional dtusion and equilibrium radial electric field.
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1. Introduction

Kinetic approach to simulate transport phenomena in toroidal plasmas is the essential way in recent research. Two
well-known models are the basis of these transport simulations. The one is the drift-kinetic model which mainly
treats the dtusive process of particle and heat transport by Coulomb collisions among charged patrticles, or so-called
neoclassical transport[1, 2, 3], and the other is the gyrokinetic model[4, 5] which is mainly applied to study plasma
turbulent transport caused by short wave-length electrostatic perturbations. Usually in experimental observations,
the radial (direction across the minor radius of a toroidally confined plasma) heat transport level is one order higher
compared to the prediction from neoclassical transport theory, which gives the irreducible minimal level of transport in
atoroidally confined plasma. An explanation for this deterioration of plasma confinement is the micro-scale turbulence
which is generated essentially in plasmas by thermodynamic forces like temperature gradient. The turbulence is also
regulated by itself though a self-organized formation of a sheBred flow, or zonal flow in a plasma, and such
non-linear microscopic turbulence in plasmas is described by the gyrokinetic model.

Although these two kinetic models have usually been treated separately in plasma transport analysis, the basic
equations of these two models are derived from the same kinetic equation: the Boltzmann equation for a plasma
distribution functionf in the six-dimensional phase spage\),
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whereC(f) denotes the Fokker-Planck collision operator. Both drift-kinetic and gyrokinetic models reduce one di-
mension from Eq. (1) by averaging over rapid gyration motion of charged particle around the magnetic field. Then
particle motions in electromagnetic field is represented by the guiding-center motion. The ffexiendie of these

two models is that, in the gyrokinetic equation, the short scale perturbation of electrostatic potential, of which wave
length is as short a3(p; ¢) Wherep; (0e) is the ion (electron) Larmor radius, is taken into account in the guiding-center
equation of motion and in solving the Poisson equation, while such a short wave-length perturbation is neglected in a
drift-kinetic model. On the other hand, macro-scale and slowly time-dependent physics such as toroidal rotation, flux-
surface averaged radial electric field, and the bootstrap current, of which scale lengths are comparable to the plasma
temperature and density gradient scale lengithsL, = |VInT|™%, |VInn|™%, are well described by the neoclassical
transport theory. The equilibrium radial electric fidkd, which is determined self-consistently by the neoclassical
process so that the plasma satisfies the quasi-neutrality, or the ambipolar condition, is also an important element to ex-
plain the plasma confinement especially in non-axisymmetric toroidal configurations[6, 7]. TheEStkdhgotation

reduces the radial ion flux, which is enhanced by the broken symmetry, to maintain plasma neutrality.

Recent progress in theory and simulation studies of plasma transport processes now turn their attention to the com-
bination of these two models that can treat multi-scale transport phenomena rangir@(fidmo O(Lr ). Idomura
et al. [8] has developed a gyrokinetic simulation code GT5D which includes neoclassical physics by adopting the
full- f approach and introducing a conserved form linear Fokker-Planck collision operator[9, 10]. In the simulation
study of ion-temperature-gradient (ITG) turbulence transport by GT5D, it is found that the shear of the equilibrium
radial electric fielddE; /dr plays a critical role in dictating the directions of avalanche propagation and fiiside
momentum transport. Therefore, it is extremely important to determine experimentally relevant equilibrium radial
electric fieldsk; also in gyrokinetic simulations. It is shown from the neoclassical theoryEhaind the parallel
mean flow satisfy a balance relation (see Eq.(20) in Sec.3). In this paper, we will focus on benchmarking this relation
and the neoclassical heafidisivity. It is noted that within the framework of the neoclassical theory, the parallel flows
or the toroidal rotation is not determined in the lowest order theory because the particle flux is intrinsic ambipolar (In
contrast, in helical systemk; is dictated by the lowest order particle flux, which is not intrinsically ambipolar). In
Ref.[11], it was shown that to estimate the neoclassical momentum transport, one need to calculate the momentum
conservation with the toroidal viscosity up to higher order. However, in reality, one may need to determine parallel
flows by the balance between external torque and turbulent transport, which are normally larger than the neoclassical
momentum transport. These issues related to the momentum transport is out of scope in the present benchmark. It is
important to check that the radial electric field is determined in the simulations to satisfy the force balance relation,
no matter what parallel flow profile may appear.

In Ref.[8], a benchmark test of GT5D for the neoclassical transport calculation has been carried out, in which
neoclassical heat filusivity and the parallel force balance equation were tested against analytic formulae derived
by neoclassical transport theories[1, 12]. Though it has shown qualitatively good agreements, more strict, quanti-
tative test requires a strict drift-kinetic calculation as a counterpart, since analytic formulae use many conventional
assumptions such as large-aspect-ratio expansion (assurapileg 1, wherea andR are plasma minor and major
radius, respectively) and zero-orbit-width limit (neglect of guiding-center radial excursion). Keeping the finiteness of
the aspect ratio and orbit width of the radial guiding-center drift, which are called the finite-aspect-ratio and finite-
orbit-width (FOW) dfects, respectively, are related to the higher-order corrections of neoclassical transport which is
essentially included in the gyrokinetic equation that GT5D solves, and tiffestsawill be important in reactor-scale
tokamak plasmas where the core temperature is high and the aspect-ratio is not so large. Therefore, to prove the
applicability of GT5D to turbulence transport simulations with including neoclassftzdte in a general situation,
it is required to show that GT5D neoclassical transport simulation agrees with a drift-kinetic simulation which treats
these higher-orderfiects correctly.

In the present paper, we report a new benchmark results of GT5D withreeoclassical transport simulation
code FORTEC-3DJ[13, 14], which has been developed to solve the drift-kinetic equation including the finite-aspect-
ratio and FOW #ects both in axisymmetric tokamak and helical plasmas. Neoclassical heat transport and parallel
momentum balance are checked in the same way as shown in Ref. [8]. Not only the comparison of steady state
transport feature, transient phase of radial electric field towards steady state is also compared between two codes. It
will be shown that the frequency and Landau damping rate of geodesic acoustic mode (GAM), and the equ}ibrium
also coincides each other.

Brief explanation on GT5D and FORTEC-3D codes are shown in Section 2. The case used for benchmark of
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neoclassical transport calculation is described in Section 3, where the analytic formulae to be used for the comparisons
simulations with conventional neoclassical theory is also explained. The results and comparisons among two codes
and neoclassical theory are presented in Section 4. Conclusions are given in Section 5.

2. Calculation models

2.1. GT5D code

GT5D code is a five-dimensional fufl-Vlasov code which solves a gyrokinetic equation with collision and
sourcésink terms,

AN (ij)+—(:Tv||f) F(C(F) + Sare + Ssnid. @

where f(R, v, 1, t) is the guiding-center distribution function of iorR,is a position of the guiding centey, is the
parallel velocityu is the magnetic moment, agf is the Jacobian of the guiding-center coordinates. The nonlinear
characteristicsR, v;) are given by the gyro-center Hamiltonian as follows:

1
H o= SmV+uB+ed), (3a)
R=(R.H} = v||b+£bx(e(¢>a+mvﬁboVb +uVB), (3b)
I
Vi ={v,H} = "By - (&{@)a + VB), (3c)

whereB = Bb is the magnetic field3* = B+ (Bv)/Q)V xb, B« = b-B*, Q = eB/(mqg is the cyclotron frequency, and
the gyro-averaging operator is defineas = § da/27 wherea is the gyro-phase angle. The gyrokinetic Poisson
bracket operatojf, G} is defined as follows:
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The self-consistency is imposed by the quasi-neutrality condition or the gyrokinetic Poission equation

v, fz“ Vit L o- @
= 4ne[ f f5(R + p] = x)d®Z — nge|, (5)

whereR + p is a particle positiond®Z = JdRdy duda = n?B x; dRdy duda is the phase space volumsg, is the
Larmor radius evaluated with the thermal veloaity Ap;, Ape are ion and electron Debye lengths, dnd is a flux
surface averaging operator, respectively.
The Fokker-Planck collision operator is linearized and separated into the test-particle and field-particle parts as
C(f) = C+(f) + Pfm, whereCsy is given by a second-orderftirentiation operator in the velocity space[9],

Ci(f) = i(vLS\/zf)+ (vs”uf)+ (vl\/‘f)

2 832
(V||V2f) * 50 (V|uV3f) (6)
3
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wheres = 2uB/mandu = v; — U; are a moving frame with respect to the mean parallel flgwandv? = u? + s. The
field particle operatoP fy is explained in Section 2.2. Note that the collision operator used in GT5D is a drift-kinetic
limit, in which neither the finite-Larmor-radius (FLR}fect nor the gyrophase angle dependency is considered.

In GT5D, the gyrokinetic Poisson bracket operator is discretized using the fourth order NDCFD[15], and the
gyrokinetic Poisson equation (5) is computed using toroidal mode expansion and a 2D finite element approximation
on the poloidal plane. The linearized collision operator is discretized using the sixth order centeredffereack.

The time integration is performed using the second order additive semi-implicit Runge-Kutta method[16] #hd a sti
linear term involving the parallel streaming is treated implicitly. An implicit part is solved using the generalized
conjugate residual method, and a typical time step width is givert as10Q1.

2.2. FORTEC-3D code
FORTEC-3D is a five-dimensionalf Monte Carlo code which solves the drift-kinetic equation for perturbed
distribution functiorv f = f — fy,

0 - 06 f

D
—of = 6f+(vH+Vd)-V6f+‘KW—CT(6f)

Dt~ 4t
.
= —(vd-V+7(—67()fM+$DfM. (7)

where fy is a time-independent local Maxwellian which has constaand T on a flux surfaceyy = R - v;b
is the drift velocity, and the independent velocity variables are chosen hetl as /2, u). The linearized
Fokker-Planck collision operator is the same one as used in GT5D. To be applicable to general non-axisymmetric
magnetic field configurations, FORTEC-3D adopts the Boozer magnetic coordinates[17] and a Hamiltonian formalism
of the guiding-center equation in the Boozer coordinates.[18, 19] The mi@ameadice between the drift-kinetic and
gyrokinetic equations is that the electrostatic potential in drift-kinetic model is the one evaluated on the guiding-
center position, not a gyro-averaged one. And for neoclassical transport calculation, only the radial electric field
E, = —d{¢)¢/dr is considered, wheredenotes the radial coordinate af#}+ is the averaged electrostatic potential
of a flux-surface = const. Therefore, the drift-kinetic model can be considered as an approximation of gyrokinetic
model by replacing¢), — (¢)s. Without any external source considered in FORTEC-3D, the time change of the
kinetic energy is given by = evy - E;. The termsvy - V6f andKdsf /0K represent the FOWfkects, which are
neglected in the local transport theory.

FORTEC-3D adopts a two-weight schemeyéfmethod[20, 21]. The perturbed distribution function is expressed
by simulation markers with its weight; 6f = w-g, whereg = >, §(Rx— R)6(Ki — K)d(uk — 1)/ T is the distribution
function of simulation markers an@x = 279 /(mivy|), while another weighp is defined so that it satisfies the relation
fm = p-g. The test-particle collision operator is expressed by random kicks of marker velocity i, thg){space[9]
so that it reproduce theffiision process described by Eq. (6). Since each simulation marker moves according to the
l.h.s. of Eq. (7), oiDg/Dt = 0, time evolution of marker weights are given by

. .0
w = —m Vd'V+7(ﬁ_P:| fM, (8a)
s = Py vedcl
b= 1 [Vd VK| (8b)

where the auxiliary weighp is used to replace/gj with p/fy. In the collisionless limit, we havp = —w and simple
one-weighté f method is reproduced. The two-weight scheme is required in a system with collisional dissipation
where the evolution of the marker distribution function cannot be described only by the Hamiltoniamyg/.2t = O
butag/ot+{g, H} # 0. Itis also noted that since the backgrouggis fixed in time, theyf scheme can be applied for

a shorter time scale than the plasma profiles of backgrowmt T changes substantially. For a magnetic confined
plasma, this time scale is usually much longer than the typical collision time at which neoclassical quasi-steady state
is achieved, and then tléd approach is held valid unless there is extremely steep gradient in the background plasma
profile.



The linearized Fokker-Plank collision operator in GT5D and FORTEC-3D is made to satisfy the following rela-
tions

fd3vM (Cr(f) + Pfw) = 0 for M = {1, v, V?}, (9a)
Cr(f) +Pfy = 0forsf = (Co + Crvy + C2V¥) fw, G € R, (9b)

which describe the conservation property and the H-theorem for linearized collision operator, respectively. Note
that Cr(f) in Eq. (9) is replaced b1 (6f) in the §f-method, and as it is mentioned in Sec. 2.1, no FifRes

is considered and an identificatighdyjduda ~ d®v is used in Eq. (9a). Though numerical implementation of the
test-particle operator is filerent between GT5D Vlasov code and FORTEC-3D Monte Carlo code, the field particle
operator is given in the same form as follows[10, 20]:

P = —%[aF(x)+bG(x)§+cH(x)], (10a)
FOO = 1-3,/2x 003 - 4(9), (100)
G(x) = 3\/§x1/2¢(x), (10c)
HO) = 3\/§x-1/2(¢(x)—¢(x)'), (10d)

wherex = V22, & = vj/v, andg(X) = (2/ V) fox dt X v/x’ is the Maxwellian integral, respectively. The factors
(a, b, c) are determined by the change of particle number, momentum, and energy caused by the test-particle operator,
e.g.,

fa. b o) = {on 26P/vin, 26E/(3v3)). (11)

{6n, 6P, SE} = f V{1, v, VVICr(f). (12)

In practice, however, this field-particle operator does not exactly satisfy the conservation property Eq. (9a) either in
Vlasov code with a finite velocity grids or in Monte Carlo code with a finite number of simulation markers. Then an
iterative operation of the field-particle operator is usually taken in simulation codes[8, 20] to reduce the numerical
error, but it is time consuming. In FORTEC-3D, the accuracy of collision operator is improved by solving the factors
(a b, ¢) as functionals ofdn, 6P, §E) instead of using their theoretical values given by Eq. (11) so that the linearized
collision operator exactly satisfies the conservation law[14]. By substituting Egs. (10) and (12) into Eq. (9a) and
using the relatiorfy, = p- g, we have

a Frpx GréiPx Hipx on
b [=-> | Fam Go’eZoc Ho*ame | | 0P/ (13)
c k Fiox P G Xiék Px HiXk Px SE/VZ,

where the summation is taken over markers (inklewithin a small volume cell, and abbreviatioRg = F(x) and
so on are used. Note thah etc. are also evaluated by integrating Eq. (12) over the same small cell. With this
improved field-particle operator, the numerical error in collision operator is suppressed to the rounding-error level in
FORTEC-3D[14]. Recently GT5D has also adopted the same idea for the field-particle operator (in GT5D, Eq. (13)
is computed at each spatial grid with the summation over markers replaced by an integral over the velocity space) and
succeeded in reducing calculation time compared to the previous iterative operation.

The time evolution of the radial electric field is solved according to the radial current as follows,

2
I L LS
<4ne/1§,i>f - =Ti-Te, (14a)
T = < f jKdeuvd~Vr6fi> : (14b)
f
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Note that the local Maxwelliarfyy does not contribute radial flux. Since it is time consuming to solve electron dy-
namics and the FOWtkect is negligible for electron transport, FORTEC-3D only solves the ion drift-kinetic equation
(7) using thes f method. For electrons, a reduced local neoclassical transport model for helical magnetic field config-
urations is adopted[13, 22]. In axisymmetric tokamak case here, we simply neglect the electron rabiaivthich
is O(V/me/m) smaller tharT; in any case. Similarly, since the ion-electron collision is @%$a/me/m;) smaller than
the ion-ion self collision, the ion-electron collision term is neglected in Eq. (7).

In FORTEC-3D, time integral is performed in twofiirent time steps, one is for marker guiding-center motion
and radial electric field, and the other is for collision operator. Typical time steps are givep asqRy/(100v;)
for the former and\t. ~ 7;;/1000 for the latter, respectively, wheges a safety factor of the magnetic fieldy is
the major radius of the magnetic axis, aryds a typical 90-degree scattering time of ion-ion collisions. The marker
orbital motion is solved by fourth-order Runge-Kutta method and the radial electric field is integrated by a first-order
modified Euler method. Time integral 6 and® fy are performed by first order Euler method. To reduce statistical
noise unavoidable in any Monte Carlo methods, an averaging scheme of marker weights[21] in the phase space, a
filtering scheme for nonphysically large weights[14, 23], and a marker recycling scheme for those markers filtered out
are introduced, which are deliberately operated noffiecathe conservation properties or time-averaged observable
values such aB; andU.

2.3. Drift-kinetic limit of gyrokinetic system

In considering a way of benchmarking between gyrokinetic and drift-kinetic simulations, it is to be noted that the
gyrokinetic Vlasov-Poisson system, equations (2) and (5) reduces to the drift-kinetic system equations (7) and (14), in
the limit only the macroscopic radial electric fidld = —d(¢)+/dr is considered. Firstly, for the macroscopic pertur-
bationk, L,t ~ O(1), the FLR dfect is negligible and the gyrokinetic equation (2) reduces to the drift-kinetic equation
(7). The apparent fierence between Egs. (2) and (7) can be resolved by transforming the drift-kinetic equation in the
conserved form using the incompressible condition of the Hamiltonian flgw.,/ot + V - (T« R) + (T %K) /0K = 0,
which holds true both in the drift-kinetic and gyrokinetic equations with the Hamiltonian formulation of the guiding-
center motion[18]. Secondly, by taking a time derivative and flux-surface averaging of Eq. (5) and substituting Eq.
(2), we have

0 ,02i OE, | _
2 [_ <47ret/l%i >f 9& _ rl} _ <fjd\4|dpda/C(f)>f -0, (15)

where the source and sink terms, and electron radial flux are neglected for simplicity, and the conservation property
of collision term is used in the last equality. The ion radial flux is given by

T

< f d°Z f(Ro - V)S([R + p] - x)>
f

1R

<2ﬂfdvdujfi(Ro~Vr)>f

<f dKduJxofi(vq - Vr)> . (16)
f

In this equation, we use the approximatiBn: p ~ R andRy is the guiding-center orbit given by Eq. (3) with an

approximation(¢), =~ {(¢)¢, and one can see that the last form is identical to Eq. (14b). Thus gyrokinetic and drift-

kinetic is identical in the macroscopic perturbation limit. Therefore, to compare the neoclassical transport calculation

with FORTEC-3D, all the benchmarks of GT5D shown in Section 4 are conducted in plasmas where théeEt R e

is negligibly small,.e., pi/L < 1, and only the flux-surface averaged poteniak is solved.

It is also to be noted that the term € <¢>)f)//lzDe appeared in the l.h.s. of Eq. (5) vanishes in Eq. (15) in the
approximationp — (¢)¢. This means that the adiabatic response of electron along magnetic field lines is ignored in
the drift-kinetic limit. Then the drift-kinetic model can also be regarded @g/&; — 0 andp;/L < 1 limit of the
gyrokinetic model. This property is used in later in Section 3 to derive analytic estimation for GAM frequency and
damping rate in a drift-kinetic system.
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3. Case for benchmark

For the benchmark of neoclassical transport calculation, we set two types of circular cross-section concentric
tokamak geometries. The one has a relatively fat aspect igfio= Ry/a = 1.31my0.47m = 2.79. It is called
“the case 1" here and hereafter. Initial plasma distribution function is given by local Maxwellian, and the density,
temperature, safety factor, and the magnetic field are given by the following form

An (x - 0.5)]
nx) = ng|—-— tanh , 17a
(X) o| -1 AJa (17a)

= To|-2T tann( X202
Ti(xX) = T.o[ - tanh( Arja )] (17b)
q(x) = 0.854+2.184¢, (17¢)

_ BO Xé€a
B0 = 137 Xéa COSH (e{ " q(x)eg)’ (17d)

wherex = r/a, 6 is the poloidal angle, ang ande, are toroidal end poloidal unit vector, respectively. In the case 1,
we intend to check the radial dependence of neoclassical transport in a low-collisionality plasma, and the profile has
relatively broader ion temperature gradiefip(= 2.12keV, Lti = Ry/10.0, At; = 0.308, np = 5.0x 10°m~3, L, =
Ro/2.20, Ay = 0.30a) as shown in figure. 1. Theffective collisionality[1] is small in almost the entire plasma,
v. = V29Ry/(e%/%iivii) < 0.1, wherev; = V2T;/m ande = r/Ry. It corresponds to a banana regime plasma.

In the other case, we use a more slim configuration than the caRg/d,= 2.35m/0.47m = 5.0, in order
that comparisons of simulation results with the large-aspect-ratio limit neoclassical theory be more plausible. The
gradient and collisionality are set equal on the 0.5a surface both in GT5D and FORTEC-3D simulatiohsi(=
Ln = Ry/6.0, A1i = Ay = 0.20a, v, ~ 0.012) and itis called “the case 2”. To benchmark the collisionality dependence
of neoclassical transport, the collisionality is artificially multiplied by 100, and 1000 times from that of the case 2,
and these are called the case 3, 4, and 5, respectively. In the all cases above, electron temperature profile is properly
given but it is irrelevant to the benchmarks performed here, since no electron dynamics is involved. In each case,
typical Larmor radius scale is smaflj/a ~ 1/150, enough to apply the drift-kinetic model where the Flffe&
is regarded as negligibly small. However, it is to be noted that the physics concerning the finite-orbitffadth e
and finite-aspect-ratiofiect are retained in both gyrokinetic and drift-kinetic calculations and that the HeRtés
retained in solving the gyrokinetic equation in GT5D though it is small in the present cases.

What are observed and compared with neoclassical theory in the benchmarks are as follows: Firstly, neoclassical
radial ion heat dtusivity y; is compared. It is evaluated in GT5D and FORTEC-3D codes from radial heat flux,

Q= <fd\/|d/ldajfi(RO : Vr)(%mvz +,UB)> - gFiTh (18)
f

wheredyv,dudaeJ fi is replaced bydKduJ«df; in FORTEC-3D. With taking a time average Qf after it settled in
a quasi-steady statg; is given byy; = —Q;/(niVT;). Theoretic value of; is given by the Chang-Hinton model as
follows,

2
61/2@‘(2»
Tij
K - (O.66+ 1.8861/2—1.546) <B§>
2 1+1.03Y2 4031, ) \B?/,

,079( 074.67 B2 B2\ "

€2 \1+074v.e%2)1\B?[; \B3/,
wherepig = goyi/ € is the poloidal Larmor radius. This formula is constructed by using expansion in small parameter
and by connecting analytic solutions both in the« 1 andv. > 1 limits[12]. It contains the leading-order correction
of the finite-aspect-ratiofiect and the Shafranov shift[24]. However, the latt#eet is neglected in the benchmark

because a concentric flux surface configuration, which corresponds to the zero plasma-beta limit, is used.
7
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Secondly, we check the force balance relation among the parallel flow, the Pfirshie8élolw, and the neoclassi-
cal poloidal flow. A force balance relation in the local neoclassical theory[1] is given by

oo T (dg\ d __ d,__ eg
<U||| B)f = ? (a) [(k— 1)& In T| - —In ni + —:| , (20)

dr T;

wherey(r) is the poloidal flux and(r) = RB. The factoik is the same one agy, g,i) appeared in Eq. (6.134) in Ref.
[1], which depends on the collisionality. Approximate fit formula for a wide range of is given as follows:

‘ (1.17— 035012

T 2.1vfe3] @+ 2. (21)

This formula, however, is constructed in the- 0 limit for v. << 1. To check the finite-aspect-ratio correction, we
also use a more precise evaluatiorkdactor, which can be obtained by directly evaluatigg., €) from neoclassical
transport theory. According to the moment equation approach in Ref. [2], it is given as follows:

~ 2/

“ ’ 22
V2iy + (f/ fo) (s — f13) (22)

wheref; ~ 1.46+/e is the trapped particle fractiofi; = 1 f;, and the viscosity cdcientsuj(v., €) for ions are given
by

o= Ky o
fio = Kip=3Kn, (23)
gz = Kiz—5Kpp+ 2Ky,

Kij = {Xz(i+j_2)VtOtT ii}, (24)

wherex? = mv?/(2T;), {A(X)} = (8/3 ) f0°° dxexpx?)x*A(x), andvy is given by Eq. (4.73) in Ref. [2]. For the
benchmarksKij are numerically evaluated according to the definition above rather than using the fitting formula of
them as shown in Ref. [2] or [25]. We benchmark the force balance relation in the simulation by solving Eq. (20) for
k by the observed values ¢fJ; B); andE; with givenVn andVT; and comparing it with the theory.

Thirdly, to check the temporal behavior, the time evolution of the radial electric field and ion flux are compared
between two codes. An important feature we can see commonly in both these two kinetic systems is the geodesic
acoustic mode (GAM) oscillation and collisionless Landau damping of it. In a gyrokinetic analysis[26], the real
frequency and the damping rate of GAM in a circular tokamak geometry are approximately given as follows,

VT (w\ [, 46
weG = 7(%) 1"1‘@, (25)

| 46 \ 1 oy is o
y = _q\gRZ/;(1+4qu) [expE@d)iad + &3}

1 A ~6 4 i
+ 5 (alepu)? exp(—we/4){% I SwéH (26)

whereds = gRywe/ Vi, and the drift-kinetic limitre = To/T; — 0 is taken from the original analytic formula. The
benchmark cases, in which a drift-kinetic limit where the FLfReet and electron adiabatic response are neglected,
correspond to the casg — 0 limit is taken, as is explained Section 2.3. The first term on the r.h.s. of Eq. (26) is the
Landau damping in the zero-orbit-width limit and the second term is due to the resonance of passing particles with
the GAM atlv)| = Rqu/2 caused by the finiteness of orbit widths. We compare the real frequency and damping rate
of GAM between the theory and those evaluated by taking power spectrémasicillation observed in GT5D and
FORTEC-3D simulations.
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4. Benchmark results

First, benchmark results for the case 1 is shown. After a tjme~ 1, the neoclassical ion heat flux and the force
balance reach an equilibrium state. The radial profile of the ion h&fasiliity y; and the neoclassical force balance
factork in Eq. (20) are plotted in figures 2 and 3. The estimations of these values from conventional neoclassical
theory explained in the previous section are also plotted in the figures. Comparing the evglweatédhek-factor,
we find good coincidence between the two simulations almost the entire region of plasma minor radius. Concerning
i, these two simulation results agree very well, though the discrepancy from the Chang-Hinton’s formula is increasing
toward the two regions/a — 1 andr/a — 0. These diterences are attributed to the finite-aspect-ratio and finite-
orbit-width efects respectively, which are neglected or approximated in the analytic formula. In the outer region, the
inverse aspect ratie becomes largere(~ 0.3 in the case 1), and the analytic formula, which uses a expansion in
€, Is not a good approximation there. On the other hand, in the region close to the magnetic axis, it is known that
wide width guiding-center orbits called "potato orbits” appear. In Ref. [27], it is shown that the Hi2@#! ef potato
orbit affects the neoclassical heaffdsivity in the regiorr < 2(g?p?Ro)Y/3, which in the case 1 becomes: 0.20a,
and reduceg; inside the region if the temperature gradient near the magnetic axis is not steep. This potato-orbit
effect can explain the smallgt of kinetic simulations in the core region. Concerning the fakfdghese two kinetic
simulations agrees well with Eq. (22), which is direct evaluatioi(ef, €) from a finite-aspect-ratio theory, rather
than the Hinton-Hazeltine’s large-aspect-ratio limit (21). One can see the large discrepancy between simulation results
and the estimation by Eqg. (21), which suggests the importance of the finite-aspectiieatiama the force balance
relation in a low-collisionality plasma.

Second, collisionality dependencexafandk at ther = 0.5a surface are scanned for the cases 2 to 5, which are
shown in figures 4 and 5. Since the GAM damping rate is seldffected by the collisionality, it takes longer to
achieve a steady state value of transporfiicients as, increases, if it is seen in a normalized time uni t/;.

Then the timings we take the averaged valueg; @ndk are varied according te.. Very good agreements between

GT5D and FORTEC-3D results, as well as good coincidences with neoclassical theories, can be seen. In real plasma
confinement experiments, the plasma collisionalitysometimes varies largely toward the plasma edge, and it is
important for a global simulation code as benchmarked here to have an adaptability to a wide san@moterning

the force balance relation, as it is seen in the case 1, it is found that the finite-aspect-ratio correction to tkésfactor
effective for low collisionality cases, even with relatively sma# 0.1 for the cases 2 to 5.

Next, let us compare the temporal behavior of the simulations. Figures 6 and 7 show transient evolution of the ion
particle fluxI; and radial electric field, observed in two codes for the case 3r at 0.5a. Analytic estimation of
the GAM oscillation from Egs. (25) and (26) is also plotted in Fig. 6, wh&g = [, Sin(wst) expft) is assumed.

Here we omit the FOWfEect in the analytic estimation gfsince the cofficient gk py)? in Eq. (26) is expected to be

very small in the benchmark case. One can see the frequency and damping rate, aitd€; oscillation agree well

among two simulation results and the analytic estimation. Moreover, good agreements are also found in the amplitude
of the GAM oscillation, time evolution of non-oscillation partiBf, and the equilibrium value of it.

Finally, the radial profile of the GAM frequency is compared for the case 1. Figures 8 (a) and (b) show the power
spectrum ofg, oscillation in GT5D and FORTEC-3D, respectively. The power spectrum is taken between the range
0 < t/7ji < 0.32 and normalized on each flux surface. In both figures, the analytic evaluatighadfEq. (25) is also
shown. It can be seen that a peak of the power spectrum appears at the same frequency as the theory predicts. The peak
disappears in both simulations at the inside of the plasma, because strong Landau damping of GAM occurs at that
region where the safety factqris close to unity. These results concerning the GAM oscillation and damping prove
that both simulation codes can correctly solve not only the steady state neoclassical transport but also the transient
phenomena that are inherent in the drift-kinetic equation.

5. Conclusion

In this work, detailed benchmark tests of neoclassical transport simulation in a tokamak plasma have been carried
out for GT5D gyrokinetic code by comparing calculation results with those from FORTEC-3D drift-kinetic code and
analytic estimations from neoclassical transport theory. On the whole, good agreements between the two simulations
are found in the neoclassical heaffdsivity, parallel force balance relation, and GAM frequency and damping rate in
a wide range of #ective collisionality 001 < v, < 10. The radial profile of transport cfiieients such ag;, k-factor,
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and GAM frequency also coincide between two simulations. The simulation results are shown to agree with the
theoretic values of them, while we have also found the finite-aspect-ratio and finite-orbit-Welits én some cases,
which are neglected or approximated in analytic formulae but correctly taken into account in these two simulations.

The benchmark results shown here prove that GT5D code properly treats the neoclassical transport phenomena
in its gyrokinetic full-f Vlasov calculation, not only qualitatively, but also quantitatively. The conservation property
of the linear Fokker-Planck collision operator adopted in the code, which is essentially the same one as FORTEC-3D
uses, ensures capability of long-duration simulation required to see the steady state turbulence in a system with source
and sink terms. And the adaptability to a wide range of collisionality parametgrown here is also important for
the full-volume global transport code, singemay vary largely from the plasma core to the edge.

On the other hand, the benchmark results also shows that FORTEC-3D code can solve the time evolution the radial
electric field and the plasma distribution function according to the drift-kinetic equation, which change in as fast time
scale as the GAM oscillation. This guarantees the usage of the code to investigate the dependence of GAM frequency
and damping rate on magnetic field configuration as reported in Ref. [28]. Since it is usually time consuming to
conduct a global gyrokinetic simulation, especially in non-axisymmetric configurations, it is beneficial to replace a
gyrokinetic code with more simple FORTEC-3D code in researching the properties of GAM oscillation in realistic
magnetic field configurations.
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Figure 1: lon density, temperature, and the safety-facfoprofiles in case 1.
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Figure 2: The radial profile of the ion heatfflisivity y; in the case
1. A dashed blue curve shows the estimation by the Chang-Hinton's timated by Hinton-Hazeltine’s small-aspect-ratio formula (21), and a
dotted purple line is obtained from Hirshman-Sigmar’'s moment equa-
tion approach in Ref. [2], respectively.
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Figure 3: The radial profile of the force balance fadtoevaluated
from (U;;B) andE; in the case 1. A dashed blue curve shdwes-
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Figure 4: The collisionality dependence of the ion hefitdivity y; in
the cases 2 to 5 at= 0.5a. A dashed blue curve shows the estimation
by the Chang-Hinton’s formula.
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Figure 6: The comparison of radial ion particle fllixobserved in
GT5D and FORTEC-3D codes at= 0.5a flux surface in the case

3. The horizontal axis is a time normalized by the GAM frequency
wg, Which is evaluated by analytic formula Eq. (25). The vertical
axis is normalized by volume-averaged density and thermal velocity.
An analytic estimation of GAM oscillatiofi(t) = ['p Sin(wat) expt)

is also plotted here with dotted curve, where the damping yate
estimated by Eq. (26). In each simulation, GAM oscillation damps
toward the ambipolar conditidil = 0 with almost the same damping
rate and frequency with the analytic estimations.
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Figure 5: The collisionality dependence of the force balance factor
k evaluated from(U;iB) andE; in the cases 2 to 5 at = 0.5a. A
dashed blue curve shovksestimated by Hinton-Hazeltine's formula
(21), and a dotted purple line is obtained from Hirshman-Sigmar’s
moment equation approach in Ref. [2], respectively.
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Figure 7: The comparison of radial electric fi#@ldobserved in GT5D
and FORTEC-3D codes at= 0.5a flux surface in the case 3. The
horizontal axis is normalized as in Fig. 6, and the vertical axis is
normalized byRpe/T; whereT; is the volume-averaged value. Af-
ter transient damping phadg, reaches a equilibrium state where the
non-zero poloidaE x B flow is developed self-consistently to satisfy
the neoclassical force balance relation.
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Figure 8: The power spectra & oscillation for the case 1 in (a): GT5D and (b): FORTEC-3D, respectively. The frequency is normalized by
Ro/vii, wherev is a volume-averaged thermal velocity. The color contour shows the intensity of the spectrum, which is normalized on each radial
position, and a solid curve represents the analytic estimation for a tokamak, Eq. (25).
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