
ISSN 8915-633X

NAT10NAL INSTITLITE FOR FUS10N SCIENCE

EにvcloPmcnt OfThreぃ DImensional Neociassica【TttnsPort Simulatlon
C o d e  w i t l l  H i g l l  P e r f o g n a c e  F o r t r a n  m  a  V c c t o I  P a r a lにl  C o m p uにr

S Satateo M Otamoo N NakaJim4 and H Tatamru

(Rcccivo』 ―oct 24. 2005)

NIF母 898 Nov 2005

智OK工 」APA酎



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

      
   
  Inquiries about copyright should be addressed to the Research Information Center,  

  National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan.  

  E-mail: bunken@nifs.ac.jp 

 
<Notice about photocopying> 
 In order to photocopy any work from this publication, you or your organization must obtain 
permission from the following organizaion which has been delegated for copyright for clearance by the 
copyright owner of this publication. 
 
Except in the USA 
 Japan Academic Association for Copyright Clearance (JAACC) 
 6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan 
 Phone: 81-3-3475-5618  FAX: 81-3-3475-5619  E-mail: jaacc@mtd.biglobe.ne.jp 
 
In the USA 
 Copyright Clearance Center, Inc. 
 222 Rosewood Drive, Danvers, MA 01923 USA 
 Phone: 1-978-750-8400   FAX: 1-978-646-8600 

 



Development of Three-Dimensional Neoclassical Transport
Simulation Code with High Performance Fortran on a

Vector-Parallel Computer

Shinsuke Satake[1], Masao Okamoto[1], Noriyoshi Nakajima[1] and

Hisanori Takamaru[2]

[1] National Institute for Fusion Science, Toki, Japan

[2] Department of Computer Science, Chubu University, Kasugai, Japan

Abstract

A neoclassical transport simulation code (FORTEC-3D) applicable to three-
dimensional configurations has been developed using High Performance Fortran
(HPF). Adoption of computing techniques for parallelization and a hybrid simula-
tion model to the δf Monte-Carlo method transport simulation, including non-local
transport effects in three-dimensional configurations, makes it possible to simulate
the dynamism of global, non-local transport phenomena with a self-consistent ra-
dial electric field within a reasonable computation time. In this paper, development
of the transport code using HPF is reported. Optimization techniques in order to
achieve both high vectorization and parallelization efficiency, adoption of a parallel
random number generator, and also benchmark results, are shown.

keywords : High Perfomance Fortran (HPF), parallel computing

1



1 Introduction

In research activities on magnetic confined fusion plasma, one of the basic and important

issues is to evaluate the confinement performance of the plasma. The loss mechanisms

of plasma can be classified roughly into two categories. One is caused by orbit motion

of charged particles and their diffusion by Coulomb collision, and the other is caused by

several types of instabilities occurring in plasmas such as MHD instabilities and micro-

turbulences. In this paper, we focus on the development of transport simulation code

for the former transport process, which is called “neoclassical transport”[1, 2] in fusion

research activities.

In Fig. 1, two typical configurations of plasma confinement devices are shown. The

nested surfaces shown in the figures are called “magnetic flux surfaces”, which consist of

twisting magnetic field lines around those surfaces. Fig. 1 (a) is a tokamak configuration,

which has a symmetry in the toroidal direction, and (b) is a helical configuration of

Large Helical Device (LHD)[3] in National Institute for Fusion Science (NIFS), Japan,

which is a typical configuration of so-called heliotron devices[4]. The coordinate system

(ρ, θ, ζ) (magnetic coordinates) we use here is also shown in Fig. 2. Here, ρ =
√

ψ/ψedge

is a normalized radius, θ is the poloidal angle, and ζ is the toroidal angle. ψ is the

toroidal magnetic flux inside a flux surface ρ =const, and ψedge is the value of ψ at the

outermost surface, respectively. The change of magnetic field strength |B| along a field

line is illustrated in Fig. 3. In the tokamak case, the modulation of |B| is caused by its

toroidicity. In a heliotron configuration, modulation of |B| caused by helically winding

coils is superimposed on the toroidal modulation.

The guiding center velocity of a charged particle can be decomposed as v = v‖b+vE +

vd, where v‖ is the parallel velocity, b = B/B, B is the magnetic field, vE = E×B/B2,

(a) (b)

Figure 1: Cut images of the magnetic flux surfaces (a) tokamak (two-dimensional) con-
figuration, (b) Large Helical Device (LHD) configuration.

2



ρ θ

ζ magnetic field lines

Figure 2: Illustration of a magnetic
coordinates (ρ, θ, ζ). Flux surface
ρ =const. is formed by twisting mag-
netic field lines.

(a)

(b)

B

length along field line

(i) passing

(ii) trapped

(i) passing

(ii) toroidally trapped

(iii) helically trapped

Figure 3: Illustrations of guiding cen-
ter motions in magnetic field : (a) in
a tokamak configuration and (b) in a
helical heliotron-type configuration.

E = −∇Φ is the static electric field in plasma, and vd is the drift velocity, which is caused

by the gradient and curvature of magnetic field. Since Φ is considered to be constant on

a flux surface, i. e., Φ = Φ(ρ), the E ×B direction is along the flux surface. Therefore,

only the drift velocity vd has a component in the radial direction. Usually the dominant

component of particle motion is the parallel motion v‖b. On the other hand, the magnetic

moment µ = mv⊥2/2B is a constant of the motion, where v⊥2 = v2−v‖2, mv2/2 = E−eΦ,

and E is the total energy of a charged particle. Since µB ≤ mv2/2, particles with large µ

are trapped in a weak-B region as illustrated in Fig. 3. Compared with passing particles,

trapped particles have a large excursion of orbit in radial direction, called “orbit width”

∆ρ, caused by the drift motion. Neoclassical transport theory treats the enhancement of

transport by these trapped particles in torus plasmas.

The radial electric field evolves in time so that the radial ion and electron particle

fluxes Γi, Γe satisfy the ambipolar condition Γi(ρ, Eρ) = Γe(ρ,Eρ), where Eρ = −dΦ/dρ.

Compared with tokamak cases, particle orbit in helical configurations becomes compli-

cated as shown in Fig. 3(b), and it is difficult to be treated exactly by an analytic way.

Since neoclassical ion flux in helical plasma strongly depends on vE, the self-consistent

radial electric field by treating properly the particle orbits in a three-dimensional mag-

netic field is a key to evaluate transport level correctly in helical plasma. Another point

which is difficult to treat in analytic way is the non-local effect on transport brought by

3



the finiteness of orbit width (finite-orbit-width (FOW) effect)[5]-[7]. Conventional neo-

classical theory has been established under the assumption of the local transport model

(small-orbit-width limit) in which ∆ρ is treated as a higher-order small value. In order to

evaluate precisely the neoclassical transport level in a realistic plasma, the FOW effect is

needed to be considered.

To simulate the dynamic transport process and formation of an ambipolar electric

field, including non-local effects in helical configurations, we have been developing the

δf Monte Carlo code FORTEC-3D[8]. The δf method[9, 10] directly solves the drift-

kinetic equation, which describes the time evolution of plasma distribution function, by

using a Monte Carlo technique. The outline of the code is explained in Sec. 2. 1.

Since electron motion is much faster than that of ions while the FOW effect on electron

transport is negligible, it is inappropriate to treat both ions and electrons by the δf

method, in practice. In our simulation model, only the ion transport is solved by the δf

method, while the electron transport is obtained from a reduced kinetic equation solver

GSRAKE[11, 12], which is more compact than FORTEC-3D but does not include the

non-local effect. The adoption of this hybrid simulation model enables us to simulate

neoclassical transport including the FOW effect of ions and self-consistent evolution of

Eρ within a reasonable computation time.

To carry out a simulation in the full volume of a helical configuration like LHD by the

δf method, a large amount of memory and high calculation performance are needed. We

have developed FORTEC-3D code by using High Performance Fortran (HPF)[13] in or-

der to achieve both high parallelization and vectorization efficiency as well as to develop

the code easily, on the SX-7 supercomputer system (NEC Corporation, Japan) at the

Theory and Computer Simulation Center, NIFS. The system has five nodes connected by

high-speed network switches, and each node has 32 PE (processor elements) and 256GB

memory. The total peak performance is 1412 GFLOPS/160 PE. Parallelization of codes

with HPF can be achieved by specifying the data mapping on the distributed memory and

instructing the parallel calculation by embedding HPF directives (in the form of !HPF$

distribute, !HPF$ independent, etc. ), which is easier than programming a paral-

lelized code using Fortran with Message Passing Interface (MPI). We have also adopted

a parallelized pseudorandom number generator with a preferable vectorization efficiency

because a non-parallelized random number generator will be a bottleneck of Monte Carlo

simulation. Since the Monte Carlo method itself is suitable for parallel computing, as it

basically treats independent events, we have achieved a high computation performance

4



on the SX-7 system, as fast as 30% of the peak performance at the full five-node, 160 PE.

The technique to optimize the code and some benchmark results, both in two-dimensional

and three-dimensional simulations, are shown in Sec. 2. 2 and 2. 3. Section 3 contains a

discussion and a summary.

2 Development of FORTEC-3D code with HPF

2.1 Outline of FORTEC-3D code

In FORTEC-3D, the drift-kinetic equation for the deviation of plasma distribution func-

tion from local Maxwellian, δf = f −fM , is solved by using the two-weight scheme[9, 10].

The flowchart of FORTEC-3D code is shown in Fig. 4. In the two-weight scheme, two

weights w and p are introduced which satisfy the relations wg = δf and pg = fM , where g

is the distribution function of simulation markers. Each marker moves like a charged par-

ticle in plasma, and time evolution of marker weights are solved. The effect of collisions

is implemented numerically by random kicks of marker velocity. In FORTEC-3D, the

time evolution of radial electric field Eρ is solved according to ∂Eρ/∂t = −e [Γi − Γe] /ε⊥,

where subscripts i and e describe particle species, ε⊥ is the dielectric constant in the torus

plasma. As mentioned in Sec. 1, the hybrid simulation model for evaluating neoclassical

particle fluxes is adopted, in which only Γi is solved by the δf method while the table

of Γe(ρ,Eρ), which is prepared by using GSRAKE, is referred to in FORTEC-3D. Since

the collisionality of fusion plasma is very low, collision operator is solved once after nss

times orbit calculation using 4th-order Runge-Kutta method. The field particle operator

is introduced to retain the conservation property of the Fokker-Planck collision term. The

marker weights w and p are averaged in the phase space (ρ, θ, ζ, v‖, v⊥) to reduce the sta-

tistical noise in the simulation. Markers escaped from the simulation region are recycled,

and the assignment procedure of new weights for the recycled markers is integrated into

the weight-averaging procedure[14]. The procedures with star marks in Fig. 4 contain a

part to take some ensemble averages and reflect them on the time evolution of the sim-

ulation, which make FORTEC-3D different from a simple Monte Carlo code that treats

completely independent phenomena. In parallel computing, as we will explain in the next

subsection, communication among parallel processes is needed in these procedures.

5



calculate radial fluxes
and electric field

time evolution of
marker orbits and weights

Orbit

every nss stepsCollision

assign markers into
(ρ, θ, ζ) cells

test particle operator

field particle operator

random number
generator

Weight average
Marker recycle

assign markers into
(ρ, θ ,ζ ,v  ,v   ) cells||

calculate averaged
weight field

marker 
recycling( )

modify weights toward 
the averaged value

Figure 4: Flowchart of FORTEC-3D code. Procedures with star mark involve reduction
calculation and communication between HPF processes.

2.2 Optimization

2.2.1 Parallelized random number generator.

On implementation of test particle collisions in a Monte Carlo way, a long sequence

of random numbers {Xi} is needed. Though there are many types of pseudorandom

number generators used in simulations, we need to use the one which has both a good

statistical properties as a random numbers and ability to generate random numbers as fast

as possible. Taking account of the above points, we have adopted Mersenne Twister[15]

(MT) in FORTEC-3D. We have also adopted the Dynamic Creation scheme[16] to create

independent sets of MT, which enables generating independent random number sequences

in parallel.

At first, we have tuned the subroutine of MT to achieve high vectorization efficiency.

The original source code of MT returns one random number for each calling. We made a

subroutine grnd(rnd,n) returns n sequence of MT random number in the array rnd(1:n).

It is known that MT has a long period of pseudorandom number sequence, which is equal

to Mersenne prime number 2p − 1, where p = 521, 4423, 9941, 19937, and so on. It is

found that, as the index p becomes larger, the vector length becomes longer. Therefore,

we decided to use p = 19937 version of MT, which is longest one available for generating

32 bits pseudorandom numbers. The vector length of grnd becomes 216 (max=256 on

SX-7), and the vector operation ratio is 99.5%.

For parallelization on our SX-7, 160 PE system, we have created 160 data sets which

specify the form of recurrences in MT. MT characteristic polynomials for each data set

are independent each other, and therefore the sequences of random number are also in-

dependent each other. It took about 4 days to create 160 independent MT data sets on

6



an Athlon XP desktop PC. Subroutine grnd is parallelized by using HPF. If one needs to

generate total n pseudorandom numbers in an HPF code, grnd(rnd,ni) is called, where

ni = n/ncpu. Then each HPF process refers to different data sets and creates ncpu

independent sequences of random numbers into rnd(1:ni,1:ncpu) at once in parallel,

where rnd is distributed on ncpu HPF processes. The running time of parallel MT to

generate total 1.924× 107 random numbers is shown in Fig. 5, where each PE generates

1.924 × 107/ncpu numbers. It can be seen that the overhead time cost for parallelizing

MT by HPF is small even if ncpu becomes larger. Because of the good parallelization

efficiency of the grnd routine, the ratio of time consumption of grnd on the total simu-

lation time of FORTEC-3D is suppressed as small as 0.2%. The statistical independence

of parallelized MT random numbers was not evaluated well. On purpose to check it, we

devised a test scheme, named “checker-board test”, which can check the independence

of two sequences of random numbers {Xi} and {Yi} which are uniformly distributed, as

illustrated in Fig. 6. In the test, N = n× n cells are considered, and the flag at the cell

(Xi, Yi) is turned on at i-th step and the number of cells m(i) which are remain off is

counted. If {Xi} and {Yi} are independent, the mean and variance of m(i) at i-th step

become

E[m(i)] = N

{
1−

(
N − 1

N

)i
}
' N exp(−t), (1)

σ2[m(i)] = N

{
N + (N − 1)

(
N − 2

N

)i

− (2N − 1)

(
N − 1

N

)i
}

, (2)

d(t) = {m(t)− E[m(t)]} /σ[m(t)], (3)

where t is the normalized time step t = i/N . By plotting d(t) as shown in Fig. 7, one

can easily check if two sequences {Xi} and {Yi} have an inappropriate correlation or

not. If {Xi} and {Yi} are independent, the amplitude of d(t) will not grow as the time

step goes on. We have checked every 160C2 combinations of independent MT created

from Dynamic Creation scheme in this way by using N = (214)2 checker-board and found

that there is no combination of random number sequences which has an inappropriate

correlation. Moreover, we have also checked some other statistical values such as the

average ratio of time steps on which the deviation of m(i) from the mean becomes larger

than ±σ, ±2σ, ±3σ, and the average steps tend to fill all the N cells. The results are

shown in Table. 1. One can see that the parallelized MT random numbers follow the

expected statistical properties.

7



0 32 64 96 128 16010−3

10−2

10−1

0

50

100

150

T
im

e 
[s

]

Number of PE (n)

T
im

e(1P
E

) / T
im

e(n P
E

)

Figure 5: Time consumption of pseudo-
random number generators to generate to-
tal 1.924 × 107 random numbers by the
parallelized Mersenne twisters of which
periods is 219937 − 1. Solid line is the cal-
culation time and dashed line shows the
speedup ratio; Time(1 PE) / Time(n PE),
respectively. Dotted line is the ideal max-
imum of the speedup.

n

n

total : N=n2

X

Y

i

i

Yi

X i

Yi

iX

(i) (ii)

(iii)(iv)

y

Figure 6: A diagram of the checker-board
test. (i) Initially, all the flags of the cells
are off. (ii) Generate two independent
random numbers {Xi}, {Yi} and turn on
the flag at (Xi, Yi). (iii) Continue the pro-
cedure and count the number of the flags
that are still off. (iv) The flag does not
change if (Xi, Yi) hits the cell of which flag
has already been turned on.

Figure 7: Example of the results of checker-board test (between parallel MT #1 and
#34 to 37). The horizontal axis is the normalized time step t = i/N and the vertical
axis is the normalized deviation of the number of remaining cells from the mean d(t) =
(m(t) − E[m(t)])/σ(t). The triplet on each graph are the proportions of time steps on
which m(t) deviates ±σ, ±2σ, ±3σ from the mean, respectively.

8



Table 1: statistical check for parallel MT

|m− E[m]| ≥ σ 2σ 3σ time steps tend

test result of 160C2 parallelized Mersenne Twisters

0.3191 0.04588 0.00288 19.992

expected value if two MT are independent

0.3173 0.04550 0.00270 19.408

2.2.2 Parallelization of FORTEC-3D.

On SX-7 5 node system, there are two cases to parallelize a code, as shown in Fig. 8.

In Fig. 8(a), an HPF process is executed on a PE with a distributed memory. On the

other hand, in the model (b), an HPF process is executed on multiple PEs with a shared

memory, and each HPF process is further parallelized among those PEs which shares

the memory. The shared memory parallelization in an HPF process is automatically

done (or using embedded directives like !CDIR PARALLEL DO) by SX-7 Fortran compiler.

Since non-distributed arrays in HPF program case (b) is shared by several PEs, memory

consumption and the number of communication events in the model (b) is expected to

be smaller than in the model (a). If we adopt the model (b), however, it is needed to

optimize the ratio of HPF processes to shared memory processes in a node (for example

16 : 2, 8 : 4, etc.) to achieve the best running performance of a parallelized code, and

coding such a hybrid parallel program is more difficult than in the one-by-one model (a)

to tune the parallelization. Moreover, there is a possibility that the bank-conflict will

increase in the shared memory parallelization. Therefore, we have adopted the model (a)

for FORTEC-3D with HPF. The consumption of memory in the one-by-one model would

be a problem if one is running a code which has large non-distributed arrays. We will

check the memory usage in FORTEC-3D in the next subsection.

In FORTEC-3D, all the parallel procedures and data distribution are assigned accord-

ing to the index of markers. In Fig. 9, an example source of HPF code is shown, in which

the total marker number is ntot, and the number of HPF processes is ncpu. We explicitly

added a extra dimension for parallelization to help the compiler to recognize the structure

of the source code. In the sample code, data distribution is defined by !HPF$ directives,

where !HPF$ TEMPLATE and !HPF$ DISTRIBUTE make a template pattern to distribute

arrays where dst is only a dummy array for the template. Then !HPF$ ALIGN instructs

9



PE

MEM

(b)

PE

MEM

(a)

1 1 1 1..... 1 1 1 1.....

..... .....

16 16 16 16

shared by 16 PE

1 HPF process1 HPF process

distributed for each PE

Figure 8: A diagram of distributing processors and memory in running HPF parallelized
code. (a) an HPF process is executed on a PE with a distributed memory.(b) HPF
processes with shared memory parallelization on each HPF process. Note that the diagram
is truncated to 2 nodes though actual system has 5 nodes.

that the second dimension of arrays w(:,:) and p(:,:) are distributed in the same way

as the template dst. Packing both the declarations of arrays and !HPF$ directives for

distribution together into a module is an easy way to write an HPF code; otherwise, one

has to write !HPF$ directives in the beginning of every subroutines that uses distributed

arrays in it.

Almost all of the communication occurring in FORTEC-3D is related to reduction cal-

culations to take some moments of marker weights, as shown in Fig. 9, where w(ni,ncpu)

and p(ni,ncpu) are summed up from all of the HPF processes to wpsum(1:2) at the do

loop with the directive !HPF$ INDEPENDENT, REDUCTION. Procedures that have reduction

calculation are marked in the flow-chart in Fig. 4. An optimization of communication is

taken in this example by summing up w and p not into a separate variable, as in the origi-

nal source, but into the same array wpsum. It serves to pack the data to be communicated,

and to reduce the overhead time on the communication.

Optimization for vectorization has also been taken. One of the most effective tunings

concerns orbit calculation, because about 80% of the total simulation time was consumed

in this procedure. In the Runge-Kutta routine to solve the marker motion, magnetic field

data on each marker’s position (ρi, θi, ζi) given by the form B =
∑

m,n Bm,n(ρ) cos(mθ−nζ)

need to be referred to. Here, Fourier spectrum data Bm,n(ρ) are given as a discrete set

of tables on the ρ-grid, and each marker refers to the data on the grid that is closest

to the marker position. However, marker radial positions {ρi} are not aligned in the ρ-

direction about the marker index number i. Therefore referring of the Bm,n-table becomes

10



a random access to memory, which causes the memory bank conflict and makes the vector

operation slower. Fortunately, as explained in the Introduction, the marker motion is

mainly directed to the field line, and the radial drift vd · ∇ρ is slow. Therefore, It is not

needed to refer to a different entry of the Bm,n-table on every steps in the Runge-Kutta

routine until the closest grid position for each marker moves to another grid. To reduce

the bank conflict, each marker holds the field data Bm,n(ρ) on the closest radial grid,

and renews it only when the closest grid has changed. This optimization makes orbit

calculation time almost twice faster compared with the original version.

11



Original source HPF parallel source

module VARIABLES module VARIABLES
real, allocatable(:) :: w,p real, allocatable(:,:) :: w,p
integer ntot integer ntot,ni

end module parameter :: ncpu=32
!HPF$ TEMPLATE dst(ncpu)

program main !HPF$ DISTRIBUTE dst(block)
use VARIABLES !HPF$ ALIGN (*,i) with dst(i) : w,p

. end module

.
read(5)ntot program main
allocate (w(ntot),p(ntot)) use VARIABLES

. real wpsum(2)

. .
call reduce_wp(wsum,psum) read(5)ntot

. ni=ntot/ncpu

. allocate (w(ni,ncpu),p(ni,ncpu))
.

subroutine reduce_wp(wsum,psum) .
use VARIABLES call reduce_wp(wpsum)
wsum=0.0 .
psum=0.0 .
do i=1,ntot subroutine reduce_wp(wpsum)

wsum=wsum+w(i) use VARIABLES
psum=psum+p(i) real wpsum(2)

end do wpsum(:)=0.0
return !HPF$ INDEPENDENT, REDUCTION(+:wpsum)

. do nd=1,ncpu

. do i=1,ni

. wpsum(1)=wpsum(1)+w(i,nd)
wpsum(2)=wpsum(2)+p(i,nd)

end do
end do
return

.

.

Figure 9: Example of HPF source code and its original code to parallelize some reduction
calculations. Here, ntot is the total marker number and ncpu is the total number of HPF
processes, respectively. This is a calculation of the sum of marker weights w and p, which
is a typical procedure in FORTEC-3D.

12



2.3 Benchmark results

In this section, benchmark results of simulations, both in 2D (tokamak) and 3D (LHD)

configurations, are shown. The total marker number is ntot = 1.344 × 107 for 2D cases

and 3.072×107 for 3D cases. The radial electric field is calculated on 60 radial mesh points.

(20, 20, 1) meshes in (ρ, θ, ζ) for 2D cases ((20, 20, 10) for 3D cases) and (20, 10) meshes

in (v‖, v⊥) are used. To benchmark FORTEC-3D by changing number of nodes, we have

chosen a somewhat small ntot here compared with that used in a practical run. In table

2, number of nodes and PEs, marker number per 1 PE (ni), total simulation time, total

FLOP count, and communication time are shown. These values were measured by using

FTRACE and PROGINF run-time options of the Fortran compiler on SX-7. The total

performance of floating point operation and total simulation time on each run are shown

in Fig. 10, where the GFLOPS value is total FLOP count/total simulation time. One can

see that the GFLOPS value is almost linearly growing with the number of PEs, which

indicates the good efficiency of parallelization of FORTEC-3D with HPF. The vector

length and vector operation ratio of the benchmark runs observed by FTRACE are about

254 and 98.0%, and they hardly change as the number of PEs changes. Therefore, it can

be said that HPF has good affinity for a vector computer. The maximum performance of

FORTEC-3D reaches 369 GFLOPS on run #9. In fact, GFLOPS value becomes higher

if more markers are used, because vector length becomes longer while the amount of data

communicated does not change much by changing ntot. The fastest run we had ever done

was the one in which ntot = 6.4×107 was used in a 3D case, and it reached 417GFLOPS,

which is about 30% of the peak performance.

Next, the ratio of communication time to the total simulation time is shown in Fig. 11.

It becomes larger as the number of PEs becomes larger. Although we have optimized the

reduction communications that appear in FORTEC-3D by packing the communication

data, the increase of the time consumption for communication in simulation runs with

many HPF processes is inevitable. It is to be noted that the ratio is very large in run

#1, in which only one node is used. It seems that the bank conflict or the imbalance of

calculation time among HPF processes at the orbit calculation increases in run #1, which

results in the increase of waiting time of the reduction communication at the subroutine

that solves the time evolution of radial electric field. We have not found the reason why

the bank conflict or the imbalance of calculation time increased so much in run #1, and

the problem is still under investigation.

Finally, the memory usage of FORTEC-3D is shown in Fig. 12. One can see that it

13



Table 2: Description of benchmark runs

two-dimensional case, ntot = 1.344× 107

run #1 run #2 run #3 run #4 run #5

# of node 1 2 2 3 5

# of PE (ncpu) 32 32 (16×2) 64 96 160

ni(×104) 42 42 21 14 8.4

tot. time (s) 3194 2499 1511 1126 762

tot. FLOP count (×1014) 2.259 2.259 2.260 2.261 2.262

comm. time (s) 502 71 157 206 195

three-dimensional case, ntot = 3.072× 107

run #6 run #7 run #8 run #9

# of node 2 2 3 5

# of PE (ncpu) 32 (16×2) 64 96 160

ni(×1014) 96 48 32 19.2

tot. time (s) 8563 5208 3500 2309

tot. FLOP count (×1014) 8.247 8.255 8.264 8.280

comm. time (s) 101 412 412 365

0 32 64 96 128 160
0

1000

2000

3000

0

200

400

0 32 64 96 128 160
0

2000

4000

6000

8000

0

200

400

Number of PE

T
im

e 
[s

]

G
F

LO
P

S

(a)
,

,

32PE/node

16PE/node

(b)

T
im

e 
[s

] G
F

LO
P

S

Number of PE

Figure 10: Total simulation time (solid line) and GFLOPS value (dashed line) of the
benchmarks for the two-dimension case (a) and three-dimension case (b). Filled marks
are the results of run #2 and #6 in the table 2 in which only 16 of 32 PE in a node were
used, while in the other runs full 32 PE in each node were used.

14



changes proportional to the number of PEs. Since the total number of markers is fixed

in changing the number of PEs, the total amount of memory used in the simulation is

expected to be described in the following form

total memory (GB) = α× ntot + β × ncpu, (4)

where the coefficients α and β are related to the memory usage by distributed data

(ex. marker positions and weights) and non-distributed common data (ex. the tables

of magnetic field Bm,n and electron flux Γe(ρ,Eρ); in HPF, all the variables without

distributing assignments are copied into the part of the memory region to which each

PE refers to), respectively. From the benchmark results, we found that α = 1.4 × 10−5,

and β = 2.26 (= 2.36) for the 2D (3D) case. In FORTEC-3D, memory consumption by

the distributed data; that is, α × ntot, is large. Therefore, using the one-by-one model

explained in Fig. 8 to run the HPF code does not bring about a problem of memory

shortage.

0 32 64 96 128 160
0.0

0.1

0.2

0.3

co
m

m
. t

im
e 

/ t
ot

al
 ti

m
e

Number of PE

2D, 32PE/node
3D, 32PE/node
2D, 16PE/node
3D, 16PE/node

Figure 11: Ratio of communication
time over total simulation time.

0 32 64 96 128 160

400

800

M
em

or
y 

[G
B

]

Number of PE

2D, 32PE/node
3D, 32PE/node
2D, 16PE/node

3D, 16PE/node

Figure 12: Memory used in the bench-
mark calculations. Solid and dashed
lines are obtained from the fitting for-
mula eq. (4).

15



3 Summary

In this paper, we have reported the development of a neoclassical transport code FORTEC-

3D on a vector-parallel supercomputer. It is shown that, because of the good paralleliza-

tion efficiency of the code written in HPF language and the high affinity of HPF language

for vector supercomputer, we have succeeded to obtain high performance in running a large

scale simulation on the multi-node system of SX-7 supercomputer. We have also adopted

and optimized a scheme to generate parallel random number generator to avoid one of

the bottlenecks for parallelized Monte Carlo simulation. Owing to the high performance

of FORTEC-3D, we can investigate several issues in neoclassical transport phenomena in

torus plasmas such as non-local effect on transport and time evolution of radial electric

field in a complicated three-dimensional configuration[8, 14, 17], which cannot be treated

properly by the other conventional methods.

We have benchmarked the memory usage in the HPF code which assigns one HPF

process to one PE in Sec. 3. Although we have not suffered from shortage of memory so

far, some measures should be taken to reduce the memory consumption if we develop the

transport code further. Moreover, the largeness of the number of HPF processes would

degrade the parallelization efficiency because of the increase of the communication time.

In future, we will transform our code by adopting a hybrid parallel model using both HPF

and shared memory parallelization as shown in Fig. 8 (b), and the performance of these

codes will be compared with the present version of FORTEC-3D.

Acknowledgements

One of the authors (S. S.) would like to thank Prof. C. D. Beidler in Max-Planck In-

stitute for offering us GSRAKE code, and Mr. Yasuharu Hayashi in NEC Corporation for

offering helpful information about HPF compiler and SX-7 system. This work is performed

under the auspices of the NIFS Collaborative Research Program, No. NIFS05KDAD004

and No. NIFS05KNXN040.

References

[1] P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasma (Cambridge

Univ. Press, Cambridge, UK, 2002).

16



[2] R. Balescu, Transport Process in Plasmas vol. 1 and 2 (Elsevier Science Publishers,

Amsterdam, Netherlands, 1988).

[3] A. Iiyoshi et al., Fusion Technol. 17, 169 (1990).

[4] M. Wakatani, Stellarator and Heliotron devices (Oxford Univ. Press, New York, USA,

1998), p. 291.

[5] K. C. Shaing, W. A. Houberg and P. I. Strand, Phys. Plasmas 9, 1654 (2002).

[6] P. Helander, Phys. Plasmas 7, 2878 (2000).

[7] S. Satake, M. Okamoto and H. Sugama, Phys. Plasmas 9, 3946 (2002).

[8] S. Satake et al., Conference Proc. 20th IAEA Fusion Energy Conf. Villamoura, Portu-

gal, Nov. 1-6, 2004, TH/P2-18 (International Atomic Energy Agency, Vienna, Austria,

2005) (CD-ROM).

[9] W. X. Wang et al., Plasma Phys. Control. Fusion 41, 1091 (1999).

[10] S. Brunner et al., Phys. Plasmas 6, 4504 (1999).

[11] C. D. Beidler et al., Plasma Phys. Control. Fusion 37, 463 (1995).

[12] C. D. Beidler and H. Maaßberg, Plasma Phys. Control. Fusion 43, 1131 (2001).

[13] High Performance Fortran Forum, High Performance Fortran Language Specification

Version 2.0 (Springer-Verlag Tokyo, 1997)

[14] S. Satake et al., ”Non-local Simulation of the Formation of Neoclassical Ambipolar

Electric Field in Non-axisymmetric Configurations”, submitted to J. Plasma Fusion

Res.

[15] M. Matsumoto and T. Nishimura, ACM Transactions on Modeling and Computer

Simulation 8, 3 (1998).

[16] M. Matsumoto and T. Nishimura, ”Dynamic Creation of Pseudorandom Number

Generators”, (Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer, 2000, pp

56–69.)

[17] S. Satake et al., “Non-local neoclassical transport simulation of geodesic acoustic

mode”, to be published on Nuclear Fusion.

17




