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Abstract. A classification of particle orbits near the magnetic axis 1n a tokamak is presented in a space of constants of
motion (COM), which 1s important to a2pply Lagrangian formulation of neoclassical transport theory to the region near the
axis. Orbit types are distinguished by the number of the turning pomts of o = vy /lv)| and oy = 8/(8] on each orbit, where

vy is the velocity paraliel to the magnetic field, and @ is the poloidal angular velocity. As a set of COM, (€, i, {r}) is taken,
where &£ is the energy of a particle, p = the magnetic moment, and {r) is the bounce-averaged miner radius position of a
particle orbit Compared with a familiar set of COM (v,£s,7s), where v is the particle velocity, rs is the minor radius at
which an orbit crosses the mid-plane, and £; = 'u”/'u evaluated at the crossing point, the set of COM (&, i, (r}) is more
suitable in practice for Lagrangian formulation of neoclassical transport theory, in which the particle diffusion is described
by the change of average position of particles {r} by collisions Near the magnetic axis, it is found that there are overlaps in
regions of orbit types in the (£, 4, {r}) space and that {r) has a minimum value for a given £,

PACS numbers: 32.20 Dqg, 52.25 |1
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Classification of particle orbits using constants of motion

1. Introduction

There have been many works which consider
neoclassical transport near the magnetic axis in
tokamaks. It is to be noted that particle orbits
passing near the axis are different from those
predicted by the conventional analysis which is valid
away from the axis. For example, a radial width
of a trapped particle, or a “banana width”, is
approximated in the conventional analysis as

Ab = 2\/gpp, (1)

where ¢ = r/R is the inverse aspect ratio and
pp = mu/eB, is the poloidal Larmor radius. (MKS
units are used in this paper.) The fraction of trapped
particles is giveu as

fo=V2e (2)

These characteristic quantities can be written by
local values such as ¢ and p, when an instant
radial position of a particle r is assumed to be
much larger than the banana width of the orbit Ay;
Ap/r < 1. However, aporoaching the magnetic axis,
a banana width increases because p, x 1/B, « 1/r.
Therefore, equations (1) and (2) are not valid near
the axis. Actunally, both the banana width and
the fraction of banana particles are finite on the
magnetic axis as found by Stix [1). The typical
orbit width of trapped particles passing near the
magnetic axis, which are called "potato” particles
[2], is ~ (¢?p%Ryp), where ¢ is the safety factor,
p = mv/eBy is the gyroradius, and Ry is the major
radius of the magnetic axis.

Detailed investigation about the properties of
particle orbits is the basis for neoclassical transport
theory. To make a classification of orbit types
near the magnetic axis, we introduce two signs with
respect to particle motions;

oo U
4
g = ﬁ) (4)

where v is the velocity component paraliel to the

magnetic fleld. The poloidal angular velocity 0 is
defined as

éEV-Vf):(V”—FV‘_{)-VG, (5)

where vy is the sum of the grad-B and curvature drift
velocity. Conventionally, orbit topology is classified
as “passing” or “trapped” depending on whether the
sign of parallel velocity o) reverses along an orbit
or not. However, particle orbits passing near the

magnetic axis are strongly affected by grad-B and
curvature drift, and there appear new types of orbit.

One of the new types of orbit has two turning
points of og but has no turning points of o). As
shown later, such orbits appear on the outside or
the inside of the magnetic axis. We call them
“outer-circulating” and “inner-circulating” orbits to
distinguish them from passing orbits which encircle
the axis. Whether a circulating particle is located on
the inside or the outside of torus is determined by the
sign o). There exists the other type of orbit which
encircle the magnetic axis and have two turning
points of ¢. This orbit is called “kidney”. We show
in the paper that all these orbit types can be properly
classified by counting the number of turning points
of both o) and oy.

Shaing et @l {3, 4], Helander [5}, and Lin et
al [6] have attempted to extend the neoclassical
transport theory to the region near the axis by
taking account of potato particles. These studies
are based on Eulerian representation of transport
equations. However, it has been noticed that
Lagrangian formulation of transport theory {7, 8, 9]
is more suitable to treat non-local nature of the
neoclassical transport, such as the effects of large
banana width, in the banana regime. Lagrangian
formulation is constructed by transforming the
independent variables of the Fokker-Planck equation
in Cartesian coordinates (z;,%;) (1 = 1,2,3) to
three constants of motion (COM) (C;,C%,C3) in
axisymmetric systems and the other three variables
(21,22, z3) describing fast motion of particles. One
can choose an arbitrary set of COM (Cy,C;, Ca).
However, to obtain a suitable transport equation, C;
and Cy must be velocity-like variables, while C5 must
be related to a radial coordinate, as remarked by
Bernstein {7]. In Lagrangian formulation, transport
processes are described by slow diffusion of COM
by collisions. Transport equation is obtained by
averaging the Fokker-Planck equation by z; and then
taking the moment over C; and C,. The particle
transport equation is given in the form

Bng d

o+ 5T =0, (6)
where ng is the particle number per unit Cy and
the second term describes the particle flux. T is
expressed by the sum of the products of the transport
coefficients 7,(C3) and driving forces as follows,

d
T(Csy =14

d d
L mnst bt mT+L- %8 (7
ac; 27 g nT 4 Los-@, (7)

where T is the temperature of the plasma and @
is the potential. The thermal flux can be given by
similar equations like (6) and (7).
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Classification of particle orbits using constants of motion

A familiar choice of COM, which is often used
to classify orbit types, is (C1,Ca.Cs) = (v.&,,75),
where v is the particle velocity, 7, is the minor-radius
at which the orbit crosses the mid-plane Z = 0,
and §; = v)/|vy| is the cosine of the pitch angle at
that point. To estimate the transport coefficients
in the banana regime, one must know the trapped
particle region in the (v, &, 75 ) space, which has been
investigated by Chu [10] and Egedal [11]. In the
present paper, a simple analytic expression of the
boundary for each type of orbit is given. As shown
in section 3.1, classification of orbit in the (v, &, 7s)
space is rather complicated near the magnetic axis.
Moreover, because any particle cross the mid-plane
twice, there are a pair of points (v,£,,rs) which
correspond to one orbit. Therefore, the physical
meaning of the flux expressed by equation (6) with
C3 = r5 becomes ambiguous near the magnetic axis,
where the typical orbit width {difference between two
values of 7, for each orbit} is wide.

Another choice of COM is (€. x4, (r}) used by
Wang [9], where £ is the particle energy, u is the
magnetic moment, and (r) is the bounce-averaged
radial position of a particle. Particle transport is
described by the diffusion of average radial position
of orbits by collisions. Then this description is
physically more understandable than that in the
former choice of COM. In the {£,u, (r}) space, the
distinction between passing orbits and inner- and
outer-circulating orbits, as well as the distinction
between o) and op becomes important.

In the limit of zero-banana-width approxima-
tion, in which we assume r; >~ {r} >~ r, neoclassical
transport equations obtained by Lagrangian formu-
lation agree with those obtained by conventional Eu-
lerian formulation [12]. Then it is interesting to ap-
ply the Lagrangian formulation to the region near
the magnetic axis where the effect of finite orbit
width is really important. In the present paper,
we make a clear classification of orbit types near
the magnetic axis with two sets of COM variables
(C1,C32,C3) = (v,€s,75) and (&, y, {r)) and compare
these two representations. The classification is the
basis to extend the neoclassical transport theory by
Lagrangian formulation to the region near the axis.

The remainder of the paper is organized as
follows. In section 2, we analyze particle orbits using
the guiding-center equations of motion and three
constants of motion in an axisymmetric system, and
classify orbit types in terms of o and o). The region
of each type of orbit is shown in the (v,&;,r;) space
and in the {£, u, {r)) space in section 3. The results
of the paper are summarized in section 4.

2. Particle orbits

Let us consider an axisymmetric configuration like a
tokamak. Coordinates are chosen as in figure 1; r is
the minor radius, { the toroidal angle, and § the
poloidal angle. A general axisymmetric magnetic
field is written as B = IV{ + V{ x Vv, where
1 = RB, and ¢ is the poloidal flux. For simplicity, we
assume that the magnetic surfaces have concentric
circular poloidal cross sections and that the safety
factor g is constant near the magnetic axis. Then
the poloidal flux can be written as ¢ = (Bor?)/(2¢g),
where By = I/Ry is the magnetic field strength
at the magnetic axis # = Rp. Note that we take
j-B > 0, where j is the plasma current density. In
an axisymmetric system, there are three constants
of motion; £ = mv?/2 + ed is the total energy of a
particle, u = mv? /2B is the magnetic moment, and
Pr = ¢~ Iv,/Qis the toroidal canonical momentum.
Here, @ is the electrostatic potential and = eB/m
is the gyrofrequency. We assume that the variation
of the potential over an orbit is negligible compared
with &,

e i
EA,«- E
where A, represents a characteristic orbit width.

Particle motion averaged with respect to gy-
rophase is described by the guiding-center equations
of motion. To the lowest order in p/L, where p is
the gyroradius and L the gradient scale length of
the magnetic field, they are written as

< £,

. b ..
v =uyb+ —q % (VB + mvﬁb -Vb), (8)
duy M

N _ P vB

dat m vE, ©

where & is the unit vector parallel to the magnetic
field. The second term on the right-hand side of
equation (8) represents the drift velocity v;. Using
the large-aspect-ratio and low-3 approximations, we
can write

B Bo

~ ——— ~ By{l — ecosf),
I1+ecosf of ¢ )
1 g 1 5\ .
Vg o m(vli+§vL) Z,
where §}g = eBp/m. From these expressions, the
poloidal angular velocity is written as

f=v-Vo

LI U By - S
= !:L” ok (v” + 21))_) cos@] ,

which shows that the contribution of vy to §
increases proportional to 1/r near the magnetic

(10)
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axis. Particle orbits can be analyzed with the three
constants of motion and equations (8) — (10).

Examples of orbits near the axis numerically
calculated by equations (8) and (9) are shown in
figures 2 — 5. In these figures, orbits of hydrogen ions
with £ = 10keV are plotted, where other parameters
are given as Ky = 4m, ¢ = 3, By = 4T. The arrows
in these figures represent the direction of the particle
motion. In the calculations, the minor radius of the
starting point v, on the mid-plane Z = 0 and the
cosine of the pitch angle of velocity at that point
&s = vy /v are given as initial conditions. Orbit types
are classified in this paper according to the number
of turning points of ¢ and oy defined in equations
{3) and (4), respectively.

Figure 2 shows the orbits of passing particies.
Both the signs ¢, and op are constant over the
orbits. The radial displacement of a passing orbit
{Ir(f =0) — r{f = x)|) has a minimum value for the
particles with £ = +1, as in the orbits B and D. Note
that v is constant for such particles because ¢ = 0
in equation (9). From the equation of conservation
of P, one can find the minimum displacement is
2gp. On the other hand, A and C are the passing
orbits which have the maximum radial displacement
staiting from the same positions as in B and D.
As shown later in figure 6, these particles are on
the boundary to other types of orbit. Though the
maximum displacemens of passing orbit near the axis
becomes as large as (g°0%Ro)Y/?, most of passing
particles still have a small displacement of the order
of 2gp.

Figure 3 shows banana orbits. We identify
banana orbits with those which have two turning
points for each of oy and gy, and then do not encircle
the magnetic axis. The banana width, which is
measured on the mid-plane, increases when the orbit
is close to the magnetic axis, but it remains finite
even if the orbit passes through the axis. The orbit
E in figure 3 represents the widest banana orbit. To
obtain the maximum banarz width, let us consider
a particle which starts from the magnetic axis rs = 0
with £ = vjo/v < 0. If the particle has the turning
point at {r,8) = {ry,®), then & = © on that point.

Therefore, from equation {10}, we obtain

q 2 1 2)
rr=— —— |vi; + =v
1 U]|190 ( fr T 3L

(11)

where vy; and v ; are the parallel and perpendicular
velocities at r = r; respectively, and we use an
approximation vﬁl < v%, at the turning point. On

the other hand, from the conservation of £ and F;
at r = 0 and ry, we have

v2 B

Yo, pBo _Yjs | pBo n

gt o=t (1+R0), (12)

Qo’f‘%
=y — . 1
Yo U Zom (13)
Solving equations (11) — (13), we obtain
r1 = (2¢°p* Ro)', (14)
3/ gp\Y?
a- -3 () - (15)

Note that we take p = v/l here and hereafter.
Solving similar equations for constants of motion
concerning (r,8) = (r,7) and {Appa0, 0), we cbiain
the maximum banana width Aymaz,

Aprmaz = 2(2° 0> Ro)Y? = 2r\. (16)

Lin, Tang, and Lee [6] showed a similar result, but
it has different numerical factors. It is because they
used vy = 0 as the condition of the turning point
on the poleidal cross section. Since the positions of
v =0 and 8 = 0 tend to deviate from each other on
banana orbits passing near the magnetic axis, using
8 = as the poloidal turning condition is correct.
Figure 4 shows circulating orbits. Circulating
particles have the constant oy but gy changes twice
on the orbits. They are located on the inside or the
outside of the torus. In the case of ion, o = +1 for
outer-circulating (solid lines) and ¢y = —1 for inner-
circulating {dashed lines). Note that this criterion
is reversed for electroms, or when the direction of
the parallel current is antiparallel to the magnetic
field. The maximum width of outer-circulating orbit
Agemar can be obtained by solving the equations of
motion for the particle with (r;,&;) = (0,0), which
corresponds to the orbit G. The result is

Aermaz = (4g%p2 Rg) Y2, (17)

On the other hand, the widest inner-circulating orbit
H corresponds to the inner part of the widest banana
orbit E in figure 3. Thus we obtain

Diemar =T1 = (2q2P2R0)1/3- {18)
The minimum width of circulating orbits is zero.
Such particles satisfy € = 0 and 7 = 0 on the mid-

plane, and move only in the toroidal direction. From
equation (10), this condition is written as

_4qp 2
Ts = z(l + ‘Es)’ (19}

where the domain of r; is extended to negative
values, and r; < 0 represenis the starting point of
a inner-circulating orbit (r, 8) = (jrs], 7).
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A remarkable difference between outer- and
inner-circulating orbits is the region in which each
type of orbit can exist. Like the orbit I, inner-
circulating orbits can exist only in the region
—Aemer < Ts < 0 enclosed by the widest one; the
orbit H. On the other hand, outer-circulating orbits
can exist away from the axis r, 2 Ageonaz like the
orbit 1. Orbits like I are conventionally classified as
“deeply-trapped” banana, but in fact they have no
turning point of oy.

Figure 5 shows orbits which encircle the
magnetic axis but o changes twice on these orbits.
We divide these orbits further into two types. One
type consists of the orbits which have four turning
points of o5 like the orbit L in figure 5. The
other consists of the orbits which have no turning
point of gy like the orbit M. We name the former
“concave-kidney” to distinguish it from the latter
called “kidney” by Chu [10]. Concave-kidney crbits
have a larger radial displacement than kidney orbits.

The summary of the classification of orbits is
shown in Table 1. Orbits are clearly classified by the
number of turning points of o and gg. One can see
that all the orbits which cannot encircle the magretic
axis {banana and circulating orbits) have two turning
points of op.

3. Classification of orbit types by constants
of motion

8.1, Classification m (v, 5,75, space

In this subsection, we classify orbit types in the
{v,£s,7s) space, where ry and ; is defined in section
2. This set of COM is often used to classify orbit
types, and a similar set of COM is used in Lagrangian
formulation of transport theory by Zaitsev et al [8].

The regions and the boundaries in the (rs.&;)
plane for each type of orbit of ions with £ = 10keV in
in figure 6, and the regions near the origin and near
the concave-kidney region are magnified in figures 7
and &, respectively. We foliows the way of showing
orbit regions by Egedal [11], and negative v, means
the crossing points of particle orbits on the mid-plane
Z = 0 at the inside of the torus; (r,8) = (|re|, @)
The points (r,, &) which correspond to the orbits
A to M m figures 2 — 5 are plotted in figures 6 - &.
Note that there are two different points in the (r,, &)
plane corresponding to the same orbit, because any
orbit crosses the mid-plane twice. In figure 6,
G and H correspond to orbits with

+ha nninte &
VELL  BARALLILG Ay Ulila &

maximurn width of banana Apmas, OUuter-circulating

Agemar. and inner-circulating A,cmes, respectively.
We newly distinguish the region of concave-kidney
(vi) from the region kidney (v). This distinction
becomes important in the next subsection in which
orbits are classified in (£, p, {r}) variables.

Though Egedal have shown a method to obtain
boundaries in general configurations, it is still useful
to give simple expressions for boundaries in the
model configuration used here. Dotted lines in the
circulating regions in figure 6 correspond to the
orbits stagnated at re given by equation (19) and
Z = 0. The other boundaries are given as follows.

First, the boundary b1 which lies between the
outer-circulating and co-passing region and between
the mner-circulating and counter-passing regions is
obtained from equations like {12) and (13) for a

particle passing through the magnetic axis. The
result is
1
§s= ¢ |i“&qes(l +2fs)
21gp
Ro\?
+ (—) €2(1 + 3, + 3e2) — 4(1 + 2¢4) |,
gp
(20)
where ¢, = r,/Ry and we choose — for 2gp <

Ts < Agemaz (the boundary of the outer-circulating
region) and + for —A,cma: < s < —-2gp (the
boundary of the inner-circulating region). This
equation also represents the boundary between
the banana and concave-kidney regions E-G at
Aocmaz‘ <rs < Abmaz;-

Second, to obtain the boundaries between the
concave-kidney and kidney regions G-X in figures 6
and 8, let us consider a concave-kidney particle which
starts from the point (r,Z) = {(r;,0) and turns at
(r,8;). The equations of the constants of motion
are written as

i+#BG{1_€ ):ﬁi_{_&(l—e cos &)
2 m ° 2 m ' v
(21)
Qor? Qorf
The — = 0Fs = vy — ﬁo_t’ (22)
2qHy 2qfty

where the subscripts s and t mean the values at the
points r == p, and 7y respectively. From the condition
6 =0 at (r,8;), we obtain

2ri&,
- 0).
gp(1 + £7) (<0

Combining equations (21) - (23}, we obtain

cosd, = (23)
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—(1_6’)§f+3£3—4(53—&63)a

1-¢2 2gqp
(ff — fs} _
+ w =10 (24)

The necessary condition for a concave-kidney
particle to exist is that equation (24) has a real
solution for &. Therefore, the boundaries G-X
in the (r;, &) plane are approximately given by
the discriminant of equation (24) (neglecting O(£})
term),

Ro ) 3(62 —<s)
Doafe -2y &)
(g 2gp (1-€3)
Third, solving equations for a particle which
passes the mid-plane Z = 0 with £ = 0, we obtain

£ — 2,(1 —€.)é + 2}%’ = 0. (26)

This equation, which corresponds to the boundary
b2 in figures 6 and 8, has two real solutions
& > 0 in the region ry > L15(¢g%p?Ro)Y/3.
One solution represents the boundary between the
banana and outer-circulating regions, while the other
corresponds to the boundary between the kidney and
passing regions. As shown in figure 8, the kidney
region 1s very narrow and then the latter solution
is almost the same as the upper boundary of the
banana region b3 at r, > Appas. In particular, away
from the magnetic axis, two solutions of equation
(26) are approximated as & ~ gp/ry ~ 0 and &, =~
V2¢5, which give the conventional representation of
the banana region.

Finally, the upper and lower boundaries of the
banana region b3 are obtained from equations for
a particle which has the turning point § = 0 at
(re, 0 = ﬂ')' Taking r; = £Aicmaz (.’E = 1) and using
the approximation r:/Hp < 1, these boundaries
(rs,&s) can be given in terms of  as

Ts = 33(1 + x_s/z)Azcmax,

a0 \ 3 ) 1
— _ar ' 1/2 _
Es (QRQ) (:1:23: +2$>’

where we choose + [(—) for the upper (lower)
boundary. When z » 1, these equations result in
& ~ ++/2e;. Applying these equations to z < 1,
they represent the boundary E-X in figures 6 and
8. In figure 6, three boundaries, which are given by
equations {19}, (25), and (27), respectively, converge
on the point X at ry < (. This point is given by
solving equation (27) for |rs| = r; as

[re €] = {— (gip;—R”)m,— (%)1/3} , (28)

(25)

(27)

and the other pair of the point X at r, > 0 is written
as

fre, €] = [3 (quiR")w, > (—2;—0’3)1/3] @)

Let us discuss the results of this subsection.
As shown in equation (15), the banana region have
the finite fraction |§y| (~ 0.16 for the parameters
used in figures 2 — 5) at the magnetic axis. We
can see from figure 6 that a considerable fraction
of particles which have been regarded as bananas
are actually identified as outer-circulating particles.
Within r < A, = 2gp (~ Zcm), nearly half of
particles are circulating ones. The deviation of
the banana-passing boundary from the conventional
expression in equation (2) is significant for 7 <
Aprmaz (~ 20cm). Since &, A, and Ay, increases
with gp, the modification on orbit classification is
significant for high energy particles and in high ¢-
value configurations. It is also noted that because
Pef 0 X \/Tie/m; € 1 for the two species with the
same energy. the modification on the particle orbits
near the axis is more significant for ions than that
for electrons.

Recently, neoclassical transport theory has been
extended by taking account of potato particles.
Potato particles are defined by Porcelli et ol [2]
as those which have the typical orbit width A, ~
(®0*Ry)/®. In the (r,,&) plane, we find that
any particle which has ome of a pair of points
(rs, &) around the origin in the range about |rs| <
(¢*p*Ro/2)1/® and |&| < (gp/Ro)"/* has this
characteristic orbit width. Therefore, potato orbits
are not only banana orbits passing through near the
magnetic axis but cousist of many types of orbit
appearing around the origin in the {r,,&;) plane
in figure 6, and all of them will contribute to the
neoclassical transport near the axis.

There are some difficulties in using the set of
COM (v,&,,rs) for Lagrangian iransport theory in
practice. The position r; jumps when a particle
changes from passing to banana particle, and from
inrer-circulating to concave-kidney particles. Such
a discontinuity is unfavorable to construct transport
equations. Moreover, since there are two values of
rs for each orbit and the difference between them is
large for potato particles, the transport equation in
the form like equation (6) is not simply connected to
the transport phenomena in real space if C3 is taken
as r;. Though the classification of orbit types in the
{v,&,7s) space is a useful way in itself, it seems not
to be suitable to apply Lagrangian formulation in
the (v, &,7,) space to the region near the magnetic

_6_
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axis.

3.2. Classtfication in (€, i, {r}) space

Let us consider a transformation from Carte-
sian coordinate system (z,,v.) to {(C,,z) =
(£,1,{r),6,(, ¢). Inaxisymmetric systems with drift
approximation, the toroidal angle ¢ and the gy-
rophase ¢ can be neglected, and the guiding-center
position is described by the minor radius r and the
poloidal angle 8. Three constants of motion are de-
fined as

£ E%mvz-l-e‘l’, {30)
2
mv
= — 31
Bo= g (31)
1 ad
)= — -, 32
)= §r5 (32)

where v, is the velocity perpendicular to the
magnetic field lines, and the integral in equation {32)
is carried out along one poloidal circuit of an orbit.
The poloidal bounce time 7, is given by
da

5

We can also use ¢ and (3 instead of r and {r) for a
radial coordinate as in the work by Wang [9], when
it is convenient.

Note that the definition of the orbital integral is
different according to orbit types. For passing orbits
and kidney orbits, # varies monotonously in time,
Then the orbital integral of & function F(r,4) along
these orbits is defined as

}(F(r, 8)d6 = o /0 " e )6,

where r is a function of (&, u, {r),8} and depends
on orbit types. On the other hand, as shown in
section 3.1, banana, outer-circulating, and inner-
circulating orbits have two turning points of oy at
which § = 0. Writing one of the turning points 8 = 8;
(0 < 6; < ), the orbital integral is defined as

(33)

Tp =

(34)

for banana and outer-circulating orbits, and

2T —86,
%F(r,f))d&: 3 09/9 F(r,0)d§

gg==%1

(36)

for inner-circulating orbits. Note that the integrand
F depends on the sign oy through r = r(C,,8;009)
as shown in figure 9, where og (not o)) indicates the
inner or outer part of a circulating (or a banana)

orbit. For concave-kidney orbits, the definition is
more complicated. As shown in figure 10, there are
four turning points f = 36,16, (7/2 < 8 <
#;; < w) at which § = 0. Therefore the orbital
integral is defined as

911 9!2
j{dezae(ezoy[/ do+ | de
—6ey &1

2#—9;_2 27\'—9“
+ ] dé + / d|, (37
[ 2n—0;n

where gg(f = 0) is +1 for ions and —1 for electrons
in the present configuration.

Next, let us show the region of each orbit
types in the (£, u, {r})} space. Here, introduce the
normalized magnetic moment Ag as

(38}

In figure 11, we classify the orbit types in the
{{r}, Ao) plane for hydrogen ions with £ = 10keV,
where the configuration is set the same as in section
3.1. Since some parts of regions are overlapped one
another in the ({r),Aq) plane, regions are shown
separately in three figures. Figures 11(a) and {b)
show regions of orbits which have positive and
negative oy, respectively. Since banana particles
take both signs of o), its region appears on both
figures. In figure 11(c), the kidney and concave-
kidney regions are shown. To compare with the
classification in the (r,, £5) plane, three characteristic
points E {(=H), G, and X, which corresponds to the
orbits with the same marks in figure 6, are plotted
in figure 11.

In the ({r},Ao) plane, these boundaries are
obtained by numerical methods. However, in
the present configuration with a constant g-value,
boundaries I and 12 in figure 11{a) and (b} can be
obtained analytically. These lines correspond to the
upper boundary of the outer-circulating region, and
the upper boundary of the inner-circulating region
which connects to the lower boundary of the banana
region, respectively. From equation (19), they are
written as

,\0=2(1t%)

1- (@_)2 1-4/1- (q—p)z , (39)
qp {r)
where we choose + (—) for the boundary {1 (i2).

T +tha Beit /o)l S ~2n aonaetian (201 results in
LLL Ldak, Ilrllal \l',' e l_ifl, u\iuu-uu.l.ta \Un.l’l oWl vo aar

Aoy = 1+ (r)/Ro and agree with the conventional
description for the banana region. DBecause any

_7__
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orbits on the boundary equation {39) are stagnated
on the mid-plane Z = (, their average position
are given by {r) = |r,;| from equation (19). Then,
positions of the points E (=H) is given analytically
as

2/3
), 3ol = [(2&#&)”3, -5 () ] , (40)

and the point X is also given as
0% Ry 1/3 L[ 2/3 ‘
2 ’ 4R
fl B ——%-_ ﬁ 2/3\ A
91/3 Ry :

To obtain the position of G, which corresponds
to the outer-circulating orbit with maximum width
Doemaz = (49°p2Ro)'/3, we need to calculate its
average position numerically. It is given by

G: [(r)hol = xR0}, 1]

where the numerical factor is ¥ ~ 058 We find

[{r), Aol =

(41)

(42)

that x is almost independent of particle energy and
g-value at the axis in the range 0.1keV < £ < 1MeV
and 1 < ¢ < 6 for ions. The Dependency of regions
on particle energy £ and magnetic field configuration
appears through gp and Ry in equations {39) to (42).
Then, the points E, (3, and X move outward in the
{r}-direction for higher energy particles.

There are no particles in the region above the
boundary {I. In particular, counter-passing and
inner-circulating particles, 1. e., particles with oy =
—1 = const, do not exist in the region above the
boundary {2. Therefore, there is a limitation on the
minimum value of (r} for a given £, which is obtained
from equation (39) as (r} > gp. This is because any
particle which passes through the magnetic axis has
a finite orbit width.

Overlaps of orbit regions occur around the
boundary 2. One can see in figure 11(a) and (c) that
the upper boundary of the co-passing region {3 ensers
the banana region and the gap between [2 and [3
corresponds to the kidney region. The kidney region
also overlaps with the concave-kidney region, which
is enclosed by the solid curve E-G-X in figure 11(c).
Such overlaps of regions are caused by the choice of
the “radial-like” variable C as {r}. It is possible that
some two orbits, of which orbit topology are different
each other, can simultaneously have the same £,
@ and (r). In contrast to the (&,u,(r)) space,
overlaps of orbit regions do not oceur in the (v, &, rs)
space, where any set of (v, &, 75} corresponds to one
definite orbit. The overlap of region in the (&£, g, {r})

space has not been noticed in the previous works.
However, we should take account of these overlaps
in Lagrangian formulation of transport theory even
if we apply it to the region away from the magnetic
axis, because the overlaps between the kidney, co-
passing, and banana regions still remain there. To
distinguish orbit topology definitely in the (£, p, {r})
space, additional information about the number of
turning points of o and oy must be retained when
we transform Cartesian coordinates to (€, y, (r}).

However, there are advantages in using the set
of COM (£, u,{r)). First, the physical meaning
of the flux which is described in the form like
equations (6) and (7) with C3 = {(r} is more
understandable than that with Cs3 = r.. In the
(E,p,{r}} space, particle flux in the {r}-direction
describes the change of average position of particles.
And Lagrangian description of transport equations
with (£, p,{r)) variables has an analogy to the
conventional neoclassical transport equations in
Eulerian description, in which the magnetic-surface
averaged fluxes are given. Second, the change of
COM is essentially continuous in the (£, 4, {r}} space
even when a particle crosses boundary (2, while rg
changes discontinuously in the (v,£&;,7:) space in
that case as pointed out in section 3.1. This is
because particles on the boundary 12 are stagnated
at (r,0) = (|rs|,7), where r, satisfies equation (19),
and the average radial positions of particles become
{r) — |rs} when they approach the houndary I2 from
both below and above the boundary. Last, any orbit
is represented by a point in the (£, pu,{r}) space,
while there are a pair of peints for each orbit in the
{v,&s,75) space.

To describe the diffusion process of particle in
the ({r},Ag) plane, the image of particle loci in
this plane are illustrated in fgures 12(a) and (b},
where only the pitch-angle scattering is assumed as
the effect of collisions. In figure 12(2), two ion
particle loci are shown for the case away from the
magnetic axis. One describes the change from co-
passing (P+) to banana {B) through kidney (K),
and the other is the locus from counter-passing
(P-—} to hﬂhﬂﬂ?_ (R

SALaRTALL =g -

Note that co-passing particles
cannot change into barana particles directly. The
diffusion process is more complicated for particles
passing near the magnetic axis. In the ({r},Ag)
plane, all particles which appear around (r} ~
(¢®0*Ro)"/? and {Xo — 1| ~ (gp/Ro)*'® (the region
around the points E (=H), G, and X) have the same
characteristic orbit width as potato orbits A, ~
{ry ~ (@®p*Ro)Y*. In figure 12(b), three loci of ion
particles passing through such “potato region” are

_8_
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showrn. A counter-passing particle (P- ) enters the
concave-kidney region (CK) via the inner-circulating
region (IC). There are two ways for a concave-kidney
particle to change into banana: (i) It changes into
kidney (K) at the boundary G-X first, and then
enters the banana region (B) at 12, or (ii) directly
changes into banana by crossing the boundary G-
E. It is alsc possible for a concave-kidney particle
1o enter the co-passing region {P+) via the kidney
region like the locus {iii).

The rate of the displacement of {r) by pitch-
angle scattering, which is measured by 9{(r}/0Ao in
the {{r}, Ag) plane, is an important factor which
indicates the degree of contribution of each type of
particle to neoclassical transport. It is convenient to
use ) /Oy instead of 8{r}/dAy in analysis. since
from the conservation of P, we obtain

(ot (7)o

and then 8} /Ou can be written as follows
oWy _ov o) _ B o) )
Ou  6u BV

mey Sy
It has been shown [7, 9] for particles away from the
magnetic axis, that

ow) | %
O 0

b, (43)

: passing particles,

: banana particles. (45)

Therefore, passing parsicles scarcely change their
average position (¢ by collisions and do not
contribute to neoclassical transport, except for those
very close to the boundaries {2 or 13 We find
from numerical calculation of 8{3»)/dv| that inner-
cireulating, outer-circulating, kidney, and concave-
kidney particies have a finite 8{«)/0ry ~ O/ o}
Then, not only banana particles but also all types
of particle other than passing particles contribute

£C neoclassical transport described in the (£, o, (r}))
space. That is the reason why inner- and outer-
circulating particles are distinguished from passing
particles.

We must pav atteniion to the change of orbit
topology at the boundary 2. There are two
possibilities for banana particles approaching the
boundary 2 to enter the inner-circulating region
or the kidney region. It depends on the position
on which the collision makes a banana particle out
of the banana region. As shown in figure 13(a}, if
the collision occurs on the outer part of the banana
orhit, then the narticle changes into kidney. On the
other hand, if the collision occurs on the inner part,
it changes into counter-passing. A similar change

occurs for concave-kidney particles as in figure 13(h).
A concave-kidney particle approaching its lower
boundary 12 (the line E-X in figure 11(c}) changes
into kidney or inner-circulating particle according to
the position of the last collision. Such bifurcations in
change of orbit topology by collisions make particles
random walk in the {r)-direction and cause the
neoclassical transport in the (€. y, {r)) space.

4. Conclusions

We have investigated in detail the particle motion
near the magnetic axis to give a basis of Lagrangian
formulation of neoclassical transport theory in this
region. Classification of orbit types is made by two
sets of constants of motion (COM) (v,&s,r:) and
(E.p, (r)}, where orbit types are determined by the
number of turning points of the signs oy = v /|zy]
and oy = 0/|6| on each orbit. In applying Lagrangian
formulation to neoclassical transport theory, it is
physically understandable to use the latter set of
COM. However, it is found that there are overlaps
of regions between different types of orbit in the
(€.41.(r)) space, and there is a limitation on the
minimum value of (r) for a given £. These feature
must be treated with care when applying Lagrangian
representation of transport to the region near the
magnetic axis, in which non-standard particle orbits
(potato orbits) contribute to neoclassical transport.
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Tables and table captions

Table 1. Classification of particle orbits

orbit type turning pomnts of oy and ¢p  sign of o} encircle the axis
passing o, 0 + or - yes
banana 2, 2 T no
outer-circulating 0, 2 +* no
inner-circulating 0o, 2 -2 no
kidney 2, 0 + yes
concave-kidney 2, 4 + yes

2 For ions The sign is opposite for electrons.
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Figure captions

Figure 1. Coordinate system.

Figure 2. Orbits of passing particles. Solid lines represent
co-passing orbits (v > 0) and dashed lines counter-passing
orbits (v < Q). The maximum radial displacement of
passing orbit near the axis is shown by the orbit A or
C, which Is as large as ~ (g¢2p?Ro)!/® However, most
of passing orbits have small displacement ~ 2gp as shown
by the orbits B and D

Figure 3. Orbifs of banana particles. The circles and the
bars represent the turning points of the sign oy (poloidal
angular velocity} and oy (parallel velocity) respectively.
Near the magnetic axis, these two types of turning point
tend to deviate from each other The orbit E is the
widest banana of which the radial width is Appge given
by equation (16}.

Figure 4. Orbits of cuter—circulating particles (sohd lines)
and inner-circulating particles (dashed lines). The sign oy
is positive for outer-circulating orbits, while it 15 negative
for inner-circulating orbits Orbits G and H are the widest
ones for cuter- and inner-circulating orbits, respectively.
Iener-circulating orbits exist only in the region enclosed by
the orbit H. Outer-circulating orbits can exist away from
the magnetic axis like the orbit L.

Figure 5. Orbits of concave-kidney L and kidney M. Cnuly
concave-kidney particles have four turning points of og,
while o) changes twice on both types of orbit.

Figure 6. The regions and the boundaries for each type of
orbit in the (r;,&;) plane, where r; is the minor radius at
which orbits cross the mid-plane Z = 0, and £ = v /v at
that point Negative ry means the inside of the torus. The
regions (i) - (vi) correspond to {i) passing, (it} banana,
(1i1) outer-circulating, {iv) mner-circulating, {v) concave-
kidney, and (vi} kidney, respectively. Dotted lines given
by equation {19) in the circulating regions correspond io
circulating particles with r = 8 = 0. Dash-dotted lines
bl are given by equation (20). Solid line 42 enclosing the
region (ii} is given by equation (26). Dashed line b3 is
given by equation (27). Pairs of the same marks B, D, etc.
correspaond to the orbits in figures 2 - 5 (See also figures
7 and 8 for some orbits not shown here.)

Figure 7. A magpification of the region near the origin in
the (rs,€,5) plane in figure 6. Pairs of marks correspond to
the orbits in figures 2 — 5.

Figure 8. The regions of concave-kidney {v) and kidney
{vi) at rs > 0. The boundary G-X between these two
regions plotted by the dotted line is given by equation {25).
Other lines and marks are defined in the same way as in
figure 6.

Figure 9. Orbital integrations along inner- and outer-
circulating particle orbits. The circles and + represent
turning points and signs of oy, respectively. For a given
{£€, £, {r}}, there are two solutions for the particle position
7(8) which are distinguished by o9 = £1.

Figure 10. Orbital integration along a concave-kidney
particle orbit. The bars represents the turning pomnts of
oy, and other marks are used in the same meaning 2s in
figure 9

Figure 11. The regions and the boundaries for each
type of orbit in the {{r}, Ag) plane, where {r) is bounce-
averaged minor radius of particles, and Ao = uBg/f is
the normalized magnetic moment. Figures (a} and {b)
show the regions for orbits with oy = +1 and o = —1,
respectively. The kidney region (the shaded region) and
the concave-kidney region (enclosed by the boundary E-G-
X} are shown in figure (c). There is an overlap of orbit
regions between co-passing and banana orbiis in figure (a)
(the shaded region). As shown in Fig (c), the kidney region
overlaps with the co-passing, banana, and concave-kidney
regions. No particles can exist in the region above the
boundary 1.

Figure 12. Particle loci {for case of ions) in the ({r}, Ag)
plane  Orbit types are abbreviated as P+; co-passing,
P-: counter-passing, K; kidney, B; banana, CK; concave-
kidney, and IC; inner-circulating orbits. respectively. The
change in orbit types for particles away from the magnetic
axis is shown in figure (a}, while figure (b} shows the
change for particles passing near the axis, that is, for potato
particles. In the ({r}, Ag) plane, particle loci are essentiaily
continuous on the boundaries of orbit types.

Figure 13. The change in orbit topology. (a) A banana
orbit change into a kidney orbit or a counier-passing orbit
according to the position cn which the last collision occurs.
(b) Similarly, a concave-kidney changes into a kidney orbit
or an inner-circulating orbit.
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