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Abstract

Starting from the ideal magnetohydrodynamic and two-fluid equations, the linear
analysis of the feedback instability has been made in a coupled system of perfectly
and partially iomized plasmas. The obtained eigenfunction and frequency of the

unstable mode are qualitatively consistent with observations of auroral arcs.
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I Introduction

It has been believed that auroral arcs are excited by the magnetosphere-ionosphere
(M-1) interaction through the Alfvén wave carrying the field-aligned current. An analogy
of an electric circuit was helpful and, thus, frequently employed fo understand the local
M-I coupling associated with auroral arcs as well as the global onel™. Being based on
the idea that a plasma response in the magnetosphere is represented by the impedance of
a transmission line, Sato has proposed a theory of auroral arc formation®. In his theory,
the magnetosphere is treated as a passive media filled with a perfectly ionized plasma,
while the ionosphere is considered as an active boundary made of a partially ionized gas.

After the theory succeeded in explaining several important features of auroral arcs, a
two-dimensional computer simulation with the transmission line equation has been per-
formed to study global characteristics in appearance of auroral arcs®. The assumption of
the transmission line has been removed by usage of the magnetohydrodynamic (MHD)
equations in a three-dimensional simulation®. Using the three-dimensional model of the
M-I coupled system, a comprehensive simmulation study has been made in a few years ago,
where an effect of the parallel electric field has also been considered”. A local model of
auroral growth coupled with the ‘cavity” mode of the Alfvén wave has also been investi-
gated using the MHD equations. Nevertheless, no detailed linear analysis of the feedback
instability based on the MHD equations has been presented as of today.

In this paper, starting from the basic equations, we have obtained the linear dispersion
relation and eigenfunction in a coupled system of perfectly and partially ionized plasmas.
We will also derive the characteristic impedance of the perfectly ionized plasma in the
magnetosphere, while it was given by a physical insight into the Alfvén wave in the previ-

347 Our MHD approach starting from the basic equations has more generality

ous works
than the transmission line theory and will give a full understanding to a mechanism of

the feedback instability.



II Dispersion relation and eigenfunction

We set x and z coordinates in horizontal and vertical directions. Physical quantities
are assurmed to have a sinusoidal perturbation in r but an eigenfunction in z, such that,
flz,z,t) = f(z)exp(th x — wwt). The system is symmetric in y direction. A linearized

set of the ideal MHD equations is given as follows.
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where the zero-order magnetic field 1s parallel to z axis. Notations are conventional. Then,

we obtain the following wave equation of the shear Alfvén mode,
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Here, the Aflvén velocity Vj is B,o/+/ftops. Two types of boundary conditions may be

imposed on the magnetospheric equatorial plane at z = ¢, that is,
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Here. the symmetric plasma flow with respect to the equatorial plane is considered in the
type Il boundary condition, while it is antisymmetric in type 1. The eigenfunction E.(z)
is, respectively. given by E,(z) = Esin ky(z — £) or E (z) = Ecosky(z — £} for the above
boundary conditions. Hence, one will find the well-known dispersion relation of the shear
Alfvén waves

Wt = KVE (8)
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It should be noted that &y as well as w has an imaginary part when the Alfvén wave grows
or decays due to the M-I coupling. Thus, the wave amplitude changes exponentially along
field lines. Following the previous work*, here, we take the type II boundary condition.

Therefore,

E.(z) = Ecosky(z — £}, (9)
and
Jo(z) = _j;_;kHE sin k”(z —-{). (10)

Height-averaged equations of the ionospheric density perturbation n» and the current
continuity were given by Sato? from the two-fluid equations. Linearizing the equations

and assuming that the zero-order electric field F; is in z direction, we find
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Here, h means thickness of the ionosphere; a is a recombination rate of electrons and
ions; Ny denotes the background density of the ionospheric plasma. In Eq.(11), D is the
diffusion coefficient due to collisions with neutral particles®.

From the above equations, one will obtain that
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Substituting Eqs.(9) and (10) at z = 0 into (14}, we obtain the dispersion relation of the
feedback instability.
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where the ionospheric resistance R is given by B = 1/ehNyM,. Comparing Eq.(15)
with Eq.(13) of Ref4, one will find the magnetospheric impedance Z, such that Z =



tpoVacot{kyf). It is noteworthy that Z has the same form with the transmission line
theory?, while k; is a complex variable here. A quantitative investigation of the linear

growth rate is presented in the next section.

IIT Numerical analysis

Four dimensionless parameters characterizing the dispersion relation of Eq.(15) are
defined as follows: Z = poVa/R, E = MyE.o/Va, & = aNol/V4, and D = D/V4L. Here,
w and k are normalized by & = wf/V, and & = k¢, respectively. Thus, Eq.(15) is reduced
to e
kiE
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We have solved Eq.(16) numerically for a set of realistic parameters such as Z = 2.0,
E=1x10""and & = 1.0, but, D = 0. Fig.1 (a) and (b) show real and imaginary parts
of & for lower seven harmonics. When Im(@) > 0, the instability grows. As discussed in
Ref.4, the ionospheric density » increases where the upward field-aligned current (positive
J-) exists, when the magnetospheric response is inductive. Then, the high conductive
region, i.e., high potential region, induces large j,. This is why the feedback instability
grows. The regions with positive n and j, are considered as auroral arcs, while negative
n and j, would be regarded as ‘black auroras™.

As shown in Fig.1, for larger ky, the tonospheric perturbation couples with higher
harmonics of the shear Alfvén mode which have more growth rates. One can see that
Re() approaches to mx {m = 1,2,...) as k| increases. This is because the eigenfunction
to large k) could be approximated by the standing wave solution if [ m(w}) < 1. More
importantly, the unstable solutions are found in a large ki region such as ko> 2% 1037,
while ?c” ~ ma. Under a realistic parameter of £ ~ 6 x 10*km, the most unstable wave
length of m = 1 mode is about 30km, which is consistent with the typical scale length of
auroral arcs in the north-south direction, that is, a few tens of kilometers.

In the above results, the higher harmonic modes will generate finer structures with

larger growth rates. The perpendicular diffusion effect, however, would stabilize them in



reality. To examine the diffusion effect in the M-I coupled system we have also calculated
& with a small D. The obtained growth rates for B = 10~ are shown in Fig.2. The other
parameters are the same as Fig.1l. As expected, large k, modes are stabilized by the
diffusion effect. The most unstable mode is found at k L~ 4% 10%°% with m = 2 under the
present parameter. Therefore, the unphysical solution with an infinitely large growth rate
in the limit of £, — oo can be avoided by introduction of the small D. A quantitative

estimation of D in the actual ionospheric plasma is necessary for more detailed studies.

IV Concluding remarks

The linear dispersion relation and eigenfunction of the MHD modes are derived from
the basic MHD equations in the M-1 coupled system with a slab geometry. Numerical
solutions of the dispersion relation show a good agreement with the auroral arc observa-
tions. Specifically, the characteristic length of auroral arcs in the north-south direction
would be explained by the feedback instability that was originally proposed by Sato*.
The instability analysis presented here, derived from a full MHD description of the mag-
netospheric plasma, makes further generalization and extension easier. Actually, we are
extending our theory to include the compression and/or two-fluid effects, which will be
presented elsewhere.

Nonlinear saturation mechanism of the feedback instability is also an important subject
remained for future studies. Nonlinearity in the recombination term {—an®) and the
ionospheric current (e M,nE,) would play a key role in the two-dimensional slab geometry
considered here, while the £ x B nonlinearity may cause a vortex flow in the three-
dimensional case. It is expected that numerical simulations will be helpful to understand
a wide variety of nonlinear physics in the coupled system of perfectly and partially ionized

plasmas.
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Figure captions
FIG.1 Dispersion relation of the Alfvén waves coupled with the ionospheric density
change with D = 0 for lower seven harmonics: (a) real part of & and (b) imaginary part

of & versus k.

FIG.2 Same as Fig.1 but only for Im(&) with D = 1075,
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