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Statistically steady states of the ion temperature gradient driven turbulence with weak collision-
ality are investigated by means of a kinetic simulation based on the gyrokinetic equations. Even if
the collision frequency is much lower than characteristic ones of the turbulence, it is indispensable
to realizing a steady state of perturbed distribution function df. In a low-collisionality limit, the
low-order velocity-space moments of & f as well as the ion heat transport flux agree with those in
the quasisteady state of the collisionless turbulence. A spectral analysis of & f in the velocity-space
clarifies the transfer and dissipation processes of the entropy variabie associated with fluctuations,
where the phase mixing, the E x B nonlinearity, and the finite collisionality are taken into ac-
count. A power-law scaling predicted by the theoretical analysis is also verified by the simulations
in a subrange of the power spectrum which is free from the entropy production and the collisional

dissipation,
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I. INTRODUCTION

Turbulent transport in high-temperature plasmas has
long been a key issue in the magnetic confinement fu-
sion research [1], since it is considered as a main cause
of the anomalous transport of particles and energy. Un-
derstanding the microscopic turbulence is important as
the first step to prediction and control of the anomalous
transport. Extensive simulation studies [2] on drift wave
turbulence, such as the ion temperature gradient (ITG)
mode, have revealed several important aspects of the tur-
bulent transport in magnetically-confined plasmas, for
example, the transport suppression by the self-generated
zonal flow [3]. Nevertheless, saturation mechanism of
the collisionless turbulence has been an open question.
Since the collisionless gyrokinetic equation has the time-
reversal symmetry, one needs to consider a coarse-grained
form of the one-body velocity distribution function f
with small-scale fluctuations in order to define an irre-
versible transport process in collisionless turbulence.

It has been pointed out that, when a steady trans-
port flux is observed in the collisionless turbulence, a
quasisteady state should be realized [4-6], where high-
order velocity-space moments of the perturbed distribu-
tion function 4 f continue to grow but the low-order ones
are constant in average. Here, 6 f = f — Fys is deviation
from the equilibrium given by the Maxwellian velocity
distribution Fjpy. Existence of the quasisteady state in
the collisionless ITG turbulence has been confirmed by
means of an Fulerian (so-called Vlasov) numerical simu-
lation of the gyrokinetic equation [7]. The phase mixing
generates fine-scale fluctuations of 4 f, and leads to con-
tinuous growth of the high-order moments as well as an
entropy variable associated with fluctuations (that is de-
fined by a square-integral of 4 ) of which the growth rate
balances with the transport flux multiplied by a normal-

ized ion temperature gradient (see section I11 A in more
detail).

If the collisionless assumption has a practical mean-
ing for considering the steady anomalous transport in an
actual plasma with weak but finite collisionality, the qua-
sisteady state should be an idealization of a real statisti-
cally steady state in a weak-collisionality limit. Namely,
for sufficiently low collision frequencies, statistical behav-
iors of the low-order moments such as the transport fiux
should agree with those in the collisionless turbulence.
Our concern here is, thus, to find the collisionality de-
pendence of the kinetic ITG turbulent transport, and to
examine the above conjecture on the relation between
the steady and quasisteady states. Introduction of the fi-
nite collisionality allows the system to approach the real
steady state. Even if the collision frequency is much lower
than characteristic ones of the ITG modes, it definitely
affects evolution of the system through dissipation of the
fine-scale fluctuations of 4 f in the velocity space.

In simulations of the ITG turbulence shown helow, we
employ a two-dimensional slab model without complica-
tion of interaction between the zonal flow and the tur-
bulence, as has been done in our previous work {7]. The
Euierian kinetic simulation with the simplified model set-
ting enables us not only to investigate fundamental pro-
cesses in plasma turbulence, such as the E x B advection,
the phase mixing and the collisional dissipation, but also
to give a useful reference for construction of kinetic-fluid
closure models [6, 8]. This is because collisionless fluid
simulations of the steady turbulence transport are based
on the conjecture on existence of the quasisteady state
of turbulence. A detailed comparison between the col-
lisionless kinetic and fluid simulations of the slab ITG
turbulence has recently heen carried out {8], where the
transport. coefficient given by the fluid simuiation with
the nondissipative closure model is in good agreement
with the kinetic results.



In the latter part of this paper, a velocity-space power
spectrum of § f represented by a quadratic form of the
Hermite-polynomial expansion coefficients is investigated
in analogy with the passive scalar convection in the ho-
mogeneous isotropic turbulence of a neutral fluid [10].
The spectral analysis elucidates the entropy transfer pro-
cess from macro to micro scales in the phase space
through the phase mixing and the E x B nonlinearity.
The entropy variable is damped by collisions in a micro
velocity scale. Similarly to the viscous-convective sub-
range in a power spectrum of the passive scalar, we iden-
tify a subrange in the power spectrum of §f which is
free from the entropy production and the collisional dis-
sipation. A scaling-law for the spectrum of the entropy
variable in this subrange will also be derived in this pa-
per.

This paper is organized as follows. Qur simulation
model] is described in Sec. II. Simulation results are pre-
sented in Sec. III, where the statistically steady state of
the weakly collisional turbulence is discussed in Sec. 111
A. The collision frequency dependence of the transport
flux and a convergence check to mode truncation in the
wave number space are given in Secs. III B and C, respec-
tively. The spectral analysis of the distribution function
is described in Sec. IV. The obtained results are summa-
rized in Sec. V.

II. SIMULATION MODEL

Our simulation niodel considered here is the same
as in the previous work on the collisionless I'TG tur-
bulence except for an ion-ion collision term. We con-
sider a periodic two-dimensional slab configuration with
translational symmetry in the z-direction, where the uni-
form magnetic field is set in the y-z plane such that
B = B(2+84) with @ « 1. Equations numerically solved
here are derived from a v, -integral of the gyrokinetic
equations [11] by neglecting the parallel nonlinear term
and by assuming 8 fi (o), v ) = fic(vy ) Far(v1 ), where Fiy
denotes the Maxwellian velocity distribution. We also
assume constant density and temperature gradients of
the background ions im the z-direction with much larger
scale-lengths [L,, = —d{lnn)/dr and Ly = —d(In 1}}/dx]
than the fluctuation wave lengths. Therefore, we arrive
at the following equations represented in the wave num-
ber space k = (k;, k,) as

atf:k + l@'l}"kyfk —+ Z (’Clyk: - k’:‘k;) kaffku =
k=k'+k”
—iky i |1+ (0F = 1 = K3)m/2 + Ouy| Fas (o) +Ci i)
(1)

and

[L = To(k?)] i = & 72 [ Felogldvy - fexe s (2)

where the electric potential ¢y is related to ¥y by
U = e %724, with k? = k2 + k. The background
electron temperature 7, = 7T; and the adiabatic elec-
tron response are also assumed, such that 7.y = ¢y for
ky #-0. Here, for comparison between the collisionless
and weakly collisional turbulence, we consider a limiting
case with no zonal flow component of &k, = 0 by fixing
fkyzo = ¢,—0 = 0, as has been done in our previous
simulation [7} with the aim of simulating a large trans-
port level observed in a toroidal geometry. In the slab
configuration, otherwise, the turbulence is too severely
suppressed by the zonal flow to cause a mean transport
[7]. The assumption of no zonal flow also enables us to
examine a finite-collisionality effect on turbulence with-
out complication of the collisional damping of the zonal
flow and its interplay with turbulence [12]. In addition,
we neglect k; = 0 modes of fi and ¢y, since they are
included in the background part with constant density
and temperature gradients in the z-direction [13].

Equations (1) and {2} are normalized as follows; z =
iy = Y/ v = Vv, b= tu/la, f o=
FLove/pino, and ¢ = ed'La/Tip;, where vy, p, {=
/82 ), $4i, no, €, and T} are the ion thermal velocity, the
ion thermal gyro-radius, the ion cyclotron frequency, the
background plasma density, the elementary charge, and
the background ion temperature (T} = m,—vfl-; m; means
the ion mass), respectively. Prime means a dimensional
quantity. O is defined as © = 8L, /p;. m and Tg(k?)
are given by 1; = L./Ly and Tg(k?) = exp{-k2)Io(k?),
respectively. Ig{z) is the 0-th modified Bessel function of
2.

The parallel advection term on the left hand side of
Eq.(1) contributes to generation of fine-scale fluctuations
of fi in the velocity space, that is, the phase mixing.
The instability drive is contained in the first term on the
right-hand side of Eq.{1). The second term on the right-
hand side denotes the ion-ion collision term for which we
employ the Lenard-Bernstein model collision operator,

Cilfi) = v8y, (B, + vy filv)) (3)

with the collision frequency ¥ normalized by vy;/L,,. The
collision operator in Eq.{3) makes fi approach Fys pre-
serving the mass. Although the momentum and the en-
ergy are not conserved, it doesn’t cause a significant in-
fluence on the results in the present study.
Velocity-space derivatives in the collision term are
calculated in the velocity wave number space [ into
which fk(U") is Fourier-transformed from the v)-space
discretized by a uniform grid in a range of —vpa. < v £
Umax With ¥may = 10vy. Then, they are transformed back
to the y)-space. fi is fixed to zero at v = tvmax, since
the fluctuation amplitude at the velocity-space bound-
ary is negligibly small. For the collisionless case, we set
Bmax = 0¥y, We have employed sufficient resolution of
the velocity space in accordance to the magnitude of v
finer grid spacing for v is necessary for a smaller value
of . Numerical time integration is carried out by the



fourth-order Runge-Kutta-Gill method with careful con-
vergence checks to the time step At so as to keep enough
accuracy, while a nondissipative time-integration scheme
is employed for the collisioniess simulation [14, 15]. The
minimum and maximum values of the wave number are
set to kmin = 0.1 and k., = 3.2, respectively, for both of
the k;- and k,-directions with the 3/2-rule for de-aliasing
in the spectral method. Results of a convergence check
to Kmax are given in Sec. I1I C.

III. SIMULATION RESULTS
A. Steady state of weakly collisional turbulence

In the system described above, we note a balance
equation of entropy variable defined by a functional,

88 = 37 [ dvy|fi|*/2Fn, that is,
d
955+ W) =n + D, "

which is derived from Eq.(1) by multiplying f}: JFnr
(where asterisk denotes complex conjugate) and taking
the velocity-space integral and summation over k. Here,
Qi, W, and D are defined as the perpendicular ion heat
flux @; = ¥, fdvll(—iky67k2/2¢k)vﬁf_k/2, the poten-
tial energy W =%, [1 + (T./T (1 - To)]iék|*/2, and the
collisional dissipation 2 = Ekfdv“f,kCi(fk)/FM =
~vy fdv|||8v” fi + U"_f.k‘z/F}\.f < 0, respectively. It is
also remarked that 45 is rewritten as 65 = Sy — Sy,
within the second order for §f = f — Fay, where Sy =
— fd*vFyinFyy and S = —{fd%vfInf) represent
macroscopic and microscopic entropy per unit volume,
respectively. (---) means ensemble average. Here, 85
corresponds to the opposite sign of the excess entropy
defined by Glansdorff and Prigogine [16].

In the collisionless system with » = 0, as we have
shown in Ref.[7] for the no zonal flow case, the quasis-
teady state characterized by monotonical increase of 48
is realized in turbulence while keeping W and }; constant
in average, that is,

d(68)]di ~ 0, Q; (5)

where “—~ indicates time averaging on a certain period
longer than a characteristic time of the turbulence. On
the other hand, even if # is much smaller than inverse of
the characteristic time of instabilities, introduction of the
collision term may lead to statistically steady turbulence,
where not only low-order moments but also the distribu-
tion function itself are statistically steady. Therefore,
in the case with fnite collisionality, it is expected that

d{8S)/dt 7 0 and
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FIG. 1: Time-evolution of 68 for collisionless {v = 0) and
weakly collisional (v = 1.25 x 10°*) cases.

In order to examine effects of the finite collisional-
ity, we have performed several simulations for different
v's. Throughout the simulation runs shown below, we
set 1; = 10 and B = 2.5, For these parameters, in the
collisionless case, the angular frequency w, and the linear
growth rate w; of the most unstable mode with &k, = 0.1
and ky, = 0.3 are w, = —0.957 and w; = 7.73 x 1072,
respectively, of which changes due to finite values of
are negligible in the present parameter range. 45 given
by the weakly collisional simulation of the ITG turbu-
lence for v = 1.25 x 10~* is plotted as a function of time
in Fig.1, where the collisionless simulation result is also
shown as a reference. Time-evolutions of 45 for differ-
ent values of v [which is changed from (1/512) x 1073
to 8 x 10™?] are similar to that for v = 1.25 x 10~?
in Fig.l. In the quasisteady state of the collisionless
turbulence, one finds the monotonical increase of 45,
while the potential energy W and the heat flux @; are
saturated [7]. In the finite collisionality case, however,
the growth of 45 ceases in the turbulence as well as W
and ¢;. It means that not only the low-order but also
the high-order moments of §f are statistically steady in
the weakly collisional case, since 65 is also represented
by the sum of squares of the velocity space moments,
45 =3, 65y, [see Eq.(8) for definition of 5, [6]. Time-
histories of each term in Eq.(4), d(48)/dt, dW/dt, n;Q,
and D for v = 1.25 x 1074, are plotted in Fig.2, where
data are running-averaged for a time period of T+ = 50.
One can see that the collisional dissipation D balances
with the mean transport, that is, #,Q; =~ —D, while
d(88)/dt = dW/dt = 0. This also means that the weakly
collisional turbulence is in the real statistically steady
state. The high accuracy in calculation of the entropy
balance is achieved by the sufficient velocity-space reso-
lution of the Eulerian kinetic simulation.
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FIG. 2. Time-history of each term in Eq.(4), d(d5)/dt,
dW/dt, 19:Q;, and D for v = 1.25 x 107*, where data are
running-averaged for a time period of 7 = 50.

B. Collision frequency dependence of transport

Collision frequency dependence of the ion heat trans-
port coefficient, y; = @i/, is summarized in Fig.3
where the time-average is taken from ¢ = 1000 to 3000.
According to the value of v, the time step At is changed
from 1/80 to 1/320 so that the numerical error in Eq.(4)
should be much smaller than ,&; and D. The error bars
are estimated from the standard deviation of running-
averaged y; for a time period r = 10. In a range of
1.25 x 107% < v < § x 1073, y; has a logarithmic depen-
dence on . The r-dependence of x; becomes quite weak
for lower collision frequencies (¥ < 1.25 x 10™1), where x;
approaches a level of the collisionless one shown by a hor-
izontal dashed line in Fig.3, that is, x; = 0.36p7vy;/ L.
From the results shown in Figs.1 to 3, it is summarized
that, if ¥ is small enough, then, the collision term does
not influence the low-order moments of & f as well as the
transport coefficient x;, while it is indispensable to realiz-
ing the statistically steady turbulence through damping
of the high-order ones generated by the phase mixing.
These facts agree with a concept that the quasisteady
state is regarded as an idealization of the real steady
state in the weak-collisionality Yimit [6].

C. Convergence check to mode truncation

We have also carried out simulation runs with differ-
ent values of the maximum wave number k., in mode
truncation such as kpmax = 1.6, 3.2, 4.8, 6.4, and 12.8, for
v = 1.25 x 107%. The results are summarized in Fig.4
in terms of the ion heat transport coefficient x;. The
numerical simulation is carried out up to t = 3000, and
the time-averaging period is the same as those in Fig.3.
However, the simulation with kpax = 12.8 could only be
run up to £ = 1200, because it requires a large amount of
computational cost. The time averaging is, thus, taken
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FIG. 3: Anomalous ion heat transport coefficient (x;) for dif-
ferent collision frequency v averaged from ¢ = 1000 to 3000.
A horizontal dashed line represents y; for v = 0.
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FIG. 4: lon heat transport coefficient x; for different trunca-
tion wave numbers ko, with p = 1.25 x 107 4

from ¢ = 1000 to 1200, although it doesn’t affect the re-
sults. One can see good convergence of x; for kmax > 3.2,
while x; for kax = 1.6 is about. 30% larger than the oth-
ers. One of the reasons is that, in case of kya. = 1.6,
the potential amplitude at & = kpax is not sufficiently
damped by the finite Larmor radins (FLR) effect that is
represented as exp(—&%/2) in the definitions of ¢k ard
¥y Convergence of the simulation results to k., is alse
discussed in the next section.

IV. SPECTRAL ANALYSIS OF THE
DISTRIBUTION FUNCTION IN THE VELOCITY
SPACE

A. Theoretical framework

The parallel advection term in Eq.{l) generates fine-
scale fluctuations of the perturbed distribution function



Jf in the velocity space (phase mixing). The small-scale
components of § f are effectively damped by the ecollision
term with the second derivative in v). Here, we investi-
gate a power spectrum of the velocity distribution func-
tion df. For the spectral analysis of 4, it is meaningful
to pay attention to the transfer of the entropy variable
&5 from macro to micro velocity scales. Using the basic
equations, Egs.(1} and (2}, we obtain

d 1
7 |05k by ;w {1 = Tolbw)}| =
Jn1r2 = Jnpry2 + 0 2mQi - 20ndS5,,  (T)
where
. L
'5571. = Z ‘SSth = Z En!lfk|ﬂ|2> {8)
k k
Jn—l/Z = Z ekyn!lm(fk.n—]f;.n)v (9)
k
Tnwry2 =Y OkynlIm{fien it ns), (10)
k

and 4,,, = ln = m),0(n # m). Here fk‘n (n =
0,1,2,---}) are defined as coefficients in the Hermite-
polynomial expansion of fi,

fielog) =3 fren Ha(vy) Faz (v)). (11)

n=0

In the steady state, the left-hand side of Eq.(7) vanishes.
We see that J,, /9 {Jny1/2) Tepresents the entropy trans-
fer from the (n—1)th (nth) to the nth [(n+1)th] Hermite-
polynomial portion. The third and fourth terms on the
right-hand side of Eq.(7} represents the entropy produc-
tion due to the downward turbulent heat flux in the tem-
perature gradient and the collisional dissipation, respec-
tively. It is important to note that, in the range n > 3,
the entropy production rigorously disappears, which is
the reason why the Hermite-polynomial expansion is em-
ployed here. A clear cutoff of the entropy production like
this never occurs if we use the Fourier expansion in terms
of exp(ily)) (—o0 <1 < n0) as basis functions.
Note that

Hy(e)e '/ = — f dletme= /N, (12)
Moo

vor

where the function e~ /21" of | has the maximum abso-

lute value at I = ++/n and is expanded around it as
e U/ e ign/2(1 (1 5 /)Y (13)

Thus, the main contribution to the nth component of the
Hermite expansion is from the Fourier components with

ll//n¥1| < 1//n so that we may use the relation n =~ {2
for i >3 1. The inverse of Eq.{12) is given by

PRE "
el — ¢ t/ZZHn(a:)?. (14)
n=0 '

The phase mixing process described in Eq.{1} causes
the factor exp[il{¢)v] in the distribution function, where
l(t) satisfies dl()/dt = —Bk,. Then, the sign of I(t) is
opposite to that of k, for large t so that we write [(f) ~
—(ky/|kyl)y/n(t) with the order n(t) of the Hermite-
polynomial expansion as a function of ¢,

For n > 3 in the steady state, we find from Eq.(7) that

da.J
-2vndS, = n+1/2 — Jn-1/2 ~ E?,E’ (15)
where 7t is treated like a continuous variable and the finite

difference is approximated by the derivative. The ratio
of J, to 45, is written as

I _ (n"‘1/2)!Zkekylm(fk,n—l/zfﬁ,nﬂ/z)
05n %n‘. Ek |.i‘$k,n|2
okl fienl® _
=~ 20/nEx Y Y — 90 /nlky)n, (16
S el? (Hslhn, 18]

where {n + /2)l/n! = T{n + 3/2)/T(n + 1)
v for large m and the averaging operator (}n
{Ek ifk',3|2-)/(zk | f.n|?) are u§ed. In Eq.{16), we put
femot /25 s 2 = =ilky/Iky )l fion]? by assuming the n-
dependence of the phase of fk,n to be described mainly
by Eq.{14) with I ~ —(ky/|ky|}v/n.

Now, let us examine the role of E x B convection
term. In analogy with the study by Batchelor on the
spectrum of the passive scalar for wave lengths smaller
than the Kolmogorov scale in the large Prandtl number
case [10}, we postulate that, for large n, fi.n varies so
rapidly that E x B flow acting on fkn is regarded as
a steady one which is statistically independent of fk_n.
Then, the strain of the steady flow is considered to cause
the exponential growth of the wave number of the con-
vected variable. Thus, writing k,(t) o € and using
Vi = —(ky/ kgl = © [ dtlk,], we have Olky| = yy/n
which is substituted into Eq.(16) to yield

o1

Jn /88, = 2vn. (17

Substituting Eqgs.{17} into (15) and integrating it with
respect to n, we obtain

vn

o
68, = — -— 1, 18
s exp (-2 (18)

where o coincides with the entropy production rate as
shown by the constraint derived from Eq.(7),

o= 21// ndSydn o QUZnJSn =10 {19)
0 T



Thus, in the range where neither entropy production nor
collisional dissipation oceurs (1 € n € v/v), we expect
the power-law of 45,, & 1/n with J, = ¢ = const. which
is analogous to the passive scalar spectrum and its power
transfer in the viscous-convective subrange.

In the above analytical treatment, {|k,|}n x /7 in-
creases infinitely with n. However, in the numerical sim-
ulation performed in the present study, there exists the
upper limit of |k|. Even if the potential amplitude is suf-
ficiently damped at the maximum wave number in the
simulation, still fi , for large |k| and large n is continu-
ously produced by the combination of the E x B convec-
tion and the phase mixing process. Therefore, saturation
of {Jkyl}n with increasing n is anticipated due to the up-
per limit of |k|. In this case, taking &({|k,|}r = s as
independent of n, we obtain from Eqs.(15) and (16),

Jn/JSn = Q’YM'\/H, (20)

and

o 2 Vﬂ3/2)
085, = ———exp| —= , 21
" 2ymvn P ( 3 v (21)

where ¢ is the same as given by Eq.(19).

B. Application to the simulation results

Let us compare the theoretical analysis given above
with the simulation results. For different collision fre-
quencies ¥, we have plotted 65, and J, 17,/ in Figs.b
and 6, respectively. The maximum wave number is
kmax = 3.2. One can see that, 85, at n = 1, 2, and 3 has
almost the same values for different v, and is followed
by a power-law profile but with v-dependent exponents
[6S, o« n~* where a(¥) > 0]. Then, 45, exponentially
decays in the dissipation range, where the collision term
is dominant, of which a typical value of n is scaled as
nd o v~ 2% in consistent with Eq.(21). Thus, kmaye af-
fects the spectra for high n’s.

Profiles of 45, obtained by simulations depend on v
as well as k. and seem to be described by mixture
of Egs.(18) and (21). Certainly, for sufficiently small v
(< 1.25 x 107*), we have confirmed 0.5 < e < 1. If the
collisional dissipation on the left-hand side of Eq.(15) is
neglected, one finds that J,_ ;5 ~ const. In correspon-
dence, for v < 1.25 x 10™*, there exists a flat profile
of J,,_1/2 where neither the entropy production nor the
collisional dissipation is seen. For larger v, the subrange
with constant J,,_;/2 ends at relatively small n, which
means that the entropy production region on the low n
side and the dissipation range are not separated well.
Thus, Lower-order moments and transport are influenced
by v. Therefore, it results in the spectrum of 45, with
e > 1 for the relatively large values of v (v > 1.25x107%},
It is also noteworthy that the logarithmic dependence of
x: on v is observed in Fig.4 for the same parameter range
of v as that discussed here.
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FIG. 5: Spectrum of §5, versus order of the Hermite-
polynomial expansion n for different collision frequencies v.
The maximum wave number is kmax = 3.2. Upper and lower
dotted straight lines represent o< 1/y/n and o« 1/m, respec-
tively.

v=2x107 V=1073/32 e
v=1072 ------- v=10%128 ——-~
v=107Y8 - v=1073/512 ------

12 v T T L L L ot
1

0.8
0.6
0.4
0.2
0
-0.2

Ju-10/C

Order of Hermitian »n

FIG. 6: Plots of J, 1,2 defined in Eq.(8) normalized by ¢ for
different collision frequencies v with kmax = 3.2

The entropy variable 65k ,, before taking summation
over k in Eq.(7) is transfered in the (k,n)-space by the
phase mixing as well as the E x B advection. The latter
effect can be found in profiles of 65k, , = Zk, 35k,n,
of which cross-sectional plots are shown in Fig.7 for the
case with » = 1.25 x 10™% and kpax = 12.8. A steeply-
peaked profile of 45y, » at around &y =0 in n < 100 (as
shown by the upper three lines in Fig.7) disappears with
increasing n. This is caused by the growth of {|k,]) due
to the strain of the E x B flow. Then, the whole profile
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FIG. 7: Cross-sectional plots of 6.5y, . versus ky at n = 4, 16,
64, 256, and 1024 for v = 1.25 x 10~ and kmax = 12.8.

gradually broadens, until the saturation of {|k,!} occurs
due to the finite kpax.

The growth and saturation of the spectrum-averaged
wave number {|ky|} defined in Eq.(16) is more clearly rec-
ognized in Fig.8. For kmax = 12.8, {|k,|} grows nearly in
proportional to /n from n = 3 to ~ 100, which agrees
with the estimate of 8|k,| = y/n used for derivation of
Eq.(17). As n increases, then, the growth of the wave
number slows down due to the upper limit kyax. A sim-
ilar evolution of {{k,|} is also found for smaller knyay, al-
though the siowdown of the wave number growth is ob-
served at lower n. Even if k. is small, thus, the values
of 45, at n = 1, 2, and 3 are unchanged, except for the
case of kmax = 1.6 where {|k,|) increases slower than /n.
The above result is consistent to the convergence check
of the transport coefficient x; to knax given in Sec.III
C. Therefore, we can conclude that the obtained x; as
well as the entropy transfer precess on the macro veloc-
ity scale but in a small |k| region is insensitive to the
maximum wave number of k. > 3.2,

It is meaningful to estimate v and ~var from the sim-
ulation result. Let us suppose (|k,|) ~ 0.2y/n according
to Fig.8, and substitute it into ©{|k,|) ~ vvn. Thus,
we find v ~ 0.5 for ©® = 2.5. In the dissipation range
of n = 10%, however, {|k,[) ~ 6 for kjpax = 12.8 as
shown in Fig.8, and thus, vas = ©{|k,|) ~ 15. The spec-
trum 4.5, abtained by the simulation with k. = 12.8 is,
then, compared with those given by the theoretical anal-
ysis with ¢ = 36 in Fig.9, where the solid, dashed, and
dotted lines indicate the simulation result, Eq.(18) with
v = 0.5, and Eq.(21) with va; = 15, respectively. One
can see that the simulation result is nearly proportional
to that of Eq.(18) in a range of 3 < n < 103, In this
range n < 10%, the constant factor o/2v in Eq.(18) gives
smaller values of 45, than that obtained by the simula-
tion. The reason of this is understood as follows. We
should recall that the constant factor is derived from the
constraint 2v f ndS,drn = o where o is evaluated from

FIG. 8: Spectrum-averaged wave number {|k,|} defined in
Eq.{16) for kmax = 1.6, 3.2, 6.4, and 12.8 with » = 1.25x 1074,
Upper and lower dotted lines represent {|k,|} = 0.3/n and
0.24/n, respectively.
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FIG. 9: Plot of 88, for » = 1.25 x 107? and kmax = 12.8
(solid). Theoretical spectra given by Eq.(18) with v = 0.5
and Eq.(21) with yar = 15 are also shown by dashed and
dotted lines, respectively, where ¢ = 36.

the simulation result. Then, in the range n < 102, the
spectrum 4.5, in Eq.{18} needs to be smaller than that in
the simulation in order to satisfy the constraint because,
for n 2 10%, the latler spectrum is smaller than the for-
mer due to the effect of finite kna.. However, in the
dissipation range of n > 10?, the spectrum found in the
simulation is well fitted by Eq.(21). The above results
show that the transfer process of the entropy variable
observed by the Eulerian kinetic simulations of the slab
ITG turbulence can be well described by combining the
analytical expressions in Eqs.(18) and (21) in Sec. IV A,
It is expected that, if we can employ an sufficiently high
value of kax, the simulation will reproduce the spectrum
45, in Eq.(18) for the whole range n > 3.



V. CONCLUDING REMARKS

We have carried out Eulerian kinetic simulations of
the siab ITG turbulence with weak collisionality, where
we have employed the gyrokinetic equation {integrated
for v1) with the Lenard-Bernstein model collision op-
erator and the quasi-neutrality condition. Introduction
of finite collisionality enables us to find the real statis-
tically steady state of turbulence, where not only the
turbulence energy and the transport flux but also the
entropy variable 85 = [ 8 f2/2Fy;dv are constant in aver-
age. Then, the ion heat transport flux @; multiplied by ;
is balanced with the collisional dissipation. It is contrast
to the quasisteady state of the collisionless turbulence,
where d(4S)/dt balances with 7;¢}; but with constant en-
ergy [7]. A parameter survey for the collision frequency
v shows the logarithmic dependence of x; on relatively
large values of ». For sufficiently low collision frequency,
however, the transport coefficient y; approaches a value
in the collisionless case, which means that the low-order
velocity-space moments of the distribution function in
the quasisteady state of the collisionless turbulence agree
with those in the real steady state of weakly collisional
one. It is also confirmed that y; has a good convergence
to the maximum wave number kpayx > 3.2 employed in
the simulations.

We have also made the spectral analysis of the dis-
tribution function in the velocity space by means of
the Hermite-polynomial expansion with the Maxwellian
weight function. The entropy variable §5, defined by

a power spectrum of the distribution function has al-
most the same values at n = 1, 2, and 3 even for dif-
ferent values of v, where n denotes the order of the
Hermite-polynomial expansion. This is consistent with
the v-dependence of y; for the low collisionality case de-
scribed above as well as the conjecture by Krommes and
Hu such as ‘flux determines dissipation’ [4]. The entropy
variable produced on the low n side is transfered in the
(k,n)-space by the phase mixing and the E x B non-
linearity. Then, it is dissipated by the collision term on
a high n side. Our theoretical analysis of the spectrum
well describes how 45,, (n >» 3) depends on n, v, and
kmax- In analogy with the passive scalar convection for
wave length smaller than the Kolmogorov scale in the
large Prandtl number case, the scaling-law, 65, o 1/n,
is found in the subrange of the n-space where neither
entropy production nor collisional dissipation occurs.
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