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Vlasov and drift kinetic simulation methods based on the symplectic integrator

T.-H.Watanabe and H.Sugama
National Institute for Fusion Science / The Graduate University for Advanced Studies, Toki, Gifu, 509-5292, Japan
(Dated: January 28, 2004}

Vlasov and drift kinetic simulation methods based on the symplectic integrators are benchmarked
for test problems on the linear and nonlinear Landau dampings and the Kelvin-Helmholtz (K-H)
instability. The explicit symplectic integrator for the separable Hamiltonian straightforwardly leads
to generalization of the splitting scheme for the Vlasov-Poisson system. The Nth-order version
improves the total energy conservation decreasing the error as o At"™ where At denotes the time
step size. An Eulerian drift kinetic simulation scheme derived from the implicit symplectic integrator
for the non-separable Hamiltonian exactly satisfies the conservation of the energy and the enstrophy
in the K-H instability, and results in successful application to the plasma echo.
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1. INTRODUCTION

Numerical simulations of the Vlasov andjor drift
(gyro-) kinetie equations based on advanced computer
technologies have provided a considerable amount of in-
formation which is useful for comprehension of kinetic
plasma behaviors with strong nonlinearity, and have ap-
plied to a wide variety of problems in researches on fu-
sion, space, and astrophysical plasmas. In the Viasov
simulation, the kinetic equation for the one-body veloc-
ity distribution function is directly handled as a partial
differential equation in the multidimensional phase space,
while dynamics of a finite number of macro-particles are
calculated in the particle-in-cell simulations {1}. Since
Cheng and Knorr [2] proposed the second-order splitting
scheme as an efficient time-integration method for the
Vlasov-Possion system, numercus investigations on the
interpolation method after the time-splitting have been
reported [3-13] as well as their applications to various
types of nonlinear kinetic plasma phenomena.

The symplectic integrators with high-order accuracy
were discovered in early 1990’s {14, 15], and rapidly
spreads in fields of the Hamiltonian dynamics. Being
independent of the study on splitting methods for non-
autonomous Hamiltonian equations [16], our previous
work deals with application of the fourth-order symplec-
tic integrator to the Vlasov-Possion system as generaliza-
tion of the second-order splitting scheme [17]. A similar
idea is also discussed for the Viasov-Maxwell equations
|110]. To the author's knowledge, however, no systematic
benchmark test of the higher-order splitting scheme for
the Vlasov equation has not been published yet.

The collisionless drift (gyro-) kinetic equation can be
represented in the same compact formula as the Viasov
equation, :

af

where f and H are the one-body velocity distribution
function and the Hamiltonian of a particle, respectively.
The Poisson brackets are denoted by {, }. The standard
splitting scheme, however, can not be straightforwardly

applied to the drift kinetic equation, since the drift par-
ticle Hamiltonian is non-separable for a conjugate pair of
the perpendicular coordinates in contrast te the Vlasov-
Poisson case where H can be separated inte two inte-
grable parts such as the kinetic and potential energies.
Thus, a modified type of the time-splitting method has
been tested [18, 19], and applied to the ion tempera-
ture gradient {ITG) instability [20]. More recently, the
semi-Lagrangian scheme [21] is employed for drift kinetic
simulations [22, 23]. A nondissipative time-integration
method [24] based on the implicit symplectic integrator
[25] s also adopted to the drift kinetic simulation of the
ITG instability [17, 26, 27|, where the time-reversibility
anid the entropy balance are thoroughly investigated.

In this paper, we consider the Vlasov and drift kinetic
sirulation schemes which are based on the explicit and
implicit symplectic time-integrators, respectively. Con-
servation properties of invariants in simulations of the
Vlasov-Poisson system are investigated in attention to
the phase-space resolution. Results of the Vlasov sim-
ulations with different orders of the time-integrators are
compared to each other in order to examine their proper-
ties of the energy conservation that is not guaranteed in
the splitting scheme. Here, a nondissipative drift kinetic
simulation scheme [17] is also systematically derived from
a mapping of f generated by the implicit symplectic inte-
grator. Then, it is numerically verified that the L? norm
is exactly conserved (except for round-off errors) by use
of the nondissipative simulation method.

This paper is organized as follows. After a brief intro-
duction to the higher-order splitting scheme, numerical
results for the linear and nonlinear Landau dampings are
described in section II. The numerical scheme for the
drift kinetic equation is explained in section I1{ as well
as the numerical results for the Kelvin-Helmholtz insta-
bility. Application to the plasma echo in a drift kinetic
system with a two-dimensional slab geometry is given in
section 111 C. Finally, we summarize the results in section
v, :



’ HIGHER—ORDER SPLITTING SCHEME
FOR THE VLASOV-POISSON SYSTEM

A. 'Basic algorithm

In order to numerically solve the Vlasov-Poisson equa-~
tions, Cheng and Knort have proposed the splitting
scheme which consists of three successive transformations
of the velocity distribution function f [2],

F(z,v) = f*(z — vAL/2,v)
1 (z,0) = f*(z,v — Atdp/0z) | (2)
Az v) = £ (z — vAL/2,0)

where the superscripts, n and n + 1, denote time steps.
The time-integration scheme in Eq.(2) for the Vlasov
equation 8f/8t = —{f, H} can be regarded as a map-
ping of f generated by the leap-frog integrator that is
widely used in particle-in-cell simulations [1]. Here, {,)}
means the Poisson brackets. In other words, f is ad-
vected in the z- (v-) space by Eq.(2) with the velocity v
{the acceleration d¢/8x) which is independent of = (v).
Since the leap-frog method. is equivalent to the second-
order version of the explicit symplectic integrator for the
geparable Hamiltonian system [15], it is straightforward
to extend the splitting scheme into higher-order ones [17].

The Nth-order symplectic integrator for the canoni-
cal equation of the generalized coordinates {g¢,p} with a
separable Hamiltonian H(q,p) T(p) + V(q) is given as
[14, 15]

(52000 40T

i=1,...
Pt = Dt — AUV g T

k), (3)

with (g0, po0) = (¢, p") and (gx,px) = (¢"+!,p"*1). For
the first-order scheme (N =1), k=1and ¢; = d, = 1.
The second-order (¥ = 2) method which is equivalent to
the leap-frog integrator consists of k = 2, ¢; = ¢ = 1/2,
dy =1, and d2 = 0. The fourth-order integrator (N = 4
and k = 4) has been derived by Forest and Ruth [14]
such that

1 1 —2Vs
C] = ¢4 = —2(2_21/3) N €y = C3 = —-—-2(2_ 21/3) .
. 1 21/3
di=da=m, d2=—2 dq = 0(4)

—91/3"?

Yoshida has systematically derived the higher-order
schemes for even numbers of N which are represented
by successive operations of the second-order integrator
S,. For example, the fourth-order integrator denoted by
S, is represented as [15]

S.;(At) = Sg(dlAt)Sz(dgﬂt)Sz(d1At) s (5)
where d; and d; are defined in Eq.(4). He also numeri-
cally obtained the coefficients for the sixth- (N = 6 and
k = 8) and the eighth-order (N = & and k = 16) schemes
{15]. '

The higher-order time-integration scheme for the
Vlasov equation is obtained by applying the explicit sym-
plectic integrator to the coordinate transformations in
the time-splitting scheme as follows [17};

(i=1,..

fioila P)
.fl(q P)
(6)

For an even numbert of V, Eq.(6) can also be given by suc-

fl 1{g — c,AtaT/Bp]f =Fi_ l,p)
Y (g, p+ dist 8V/8q|f =11, )

-cessive operations of the second-order splitting scheme,

Eq.(2), in accordance to the Nth-order symplectic inte-
grator by Yoshida. A similar formulation for the Viasov-
Maxwell system is also discussed by Mangeney et al
[10]. In the followings, results of the benchmark tests
for the generalized splitting scheme in Eq.(6) are shown
for N=1,2,4, and 6.

i

B. Benchmark tests for Landau damping

1. Simulation code

Here, we compare the splitting schemes with differ-
ent orders of integrators. Let us consider the normalized
Vlasov-Possion equations,

af 3f (9453}'

-<-9—+ §z Bz ov (7)
a 2 +oQ .

_3%221_ » fdv (8)

where f denotes the distribution function for electrons.
Stationary background ions are assumed. Physical vari-
ables in the above equations are normalized by using
the electron thermal speed, v,, the angular plasma fre-
quency, oy, and the electron temperature, T,. The
computational domain is defined in 0 €< z < L and
—Umax < U < Ungax With the periodic boundary condition
in the z-direction, and is discretized by numerical grid
points of (V;, 2N, + 1) with equal spacings. Since our
concern here is to check accuracy of the time-integration
schemes with different orders, it is preferable to sepa-
rate their numerical errors from those associated with fi-
nite phase-space resolution. Thus, it is necessary to keep
enough resolution in the phase space.

In the applications given below, the coordinate trans-
formations in calculation of the mapping of f are carried
out by means of the Fourier mode interpolation [4, 5]
in order to accurately evaluate errors in conservation
of the invariants. The transformation of z — ve; At is
calculated in the Fourier space by multiplying a phase
shifting factor of exp(—ikve;At). Similarly, the trans-
formation of v — d;At8¢/0z is given by multiplying
exp(—ifd;Atd¢/8z) in the velocity wave number (£)
space. Because of the finite resolution, the simulation
scheme works well only when scale lengths of interest in

k).



the phase space are much greater than the grid spacings
(k €« nfAz and £ < w/Av). Therefore, it is necessary
to stop the simulation run before the finest scale length
of f in the phase space becomes comparable to the grid
size because of the phase mixing.

In order to enable numerical calculation of the entrepy
§ = — [ fIn fdzdv, we simply set the minimum value of
J to that given in the initial condition in case infinitesi-
mal negative values of f appear on a tail of distribution
at large absolute values of the velocity due to round-
off errors. Since the value is quite small [~ O{10722)],
effects of the above treatment for avoiding negative f
values on the main results discussed below are on the
order of round-off errors, if the distribution function is
well represented by a finite number of grid points with
enough resclution. When the resolution becomes insuf-
ficient during the simulation run, however, the entropy
unphysically changes in a short time, which can be used
as an indicator of soundness of the numerical simulation
as shown in Fig.3.

The periodic treatment of f in association with the
Fourier interpolation in the v-space is justified by setting
sufficiently large w,.,, even though it is different from
the rigorous boundary condition that f — 0 for v —
+oo. Here, we set vy, = 10u; where the Maxwellian
distribution function [Fas = exp(—v?/2v?)/v27v,] has a
quite small amplitude of ~ O(107%2),

2. Linear Landeu damping

A benchmark test for the linear Landau damping has
been considered in literatures [11, 13], where the initial
condition is given by

V2

with @ = 0.01 and k = 0.5. The system length [ =
47. For discretization of the simulation domain, we have
employed 32 x 513 grid points (N, = 32 and N, = 256).
The recurrence time for. the & = 0.5 mode is estimated
as 7, = 2w /kAv = 321.7 (for Av = Ny /vmax) which is
much longer than the simulation time of ¢ = 50 shown in
Fig.1. Since the nonlinear mode coupling is very weak for
a = 0.01, it is enough to take N; = 32. From the linear
theory, real and imaginary parts of the eigenfrequency for
k = 0.5 are evaluated as w, = 1.4156 and v = —0.1533,
respectively,

Time evolutions of the electric field amplitude of the
fundamental mode with & = 0.5 are shown in Fig.1. The
entropy § is well conserved throughout the simulation
runs (normalized errors are less than 5 x 10711}, which
are discussed in the next section in more detail in asso-
ciation with conservation properties of the total energy
and other invariants. The results from the first-, second-,
fourth-, and sixth-order methods for At = 1/8 are plot-
ted in the top panel where no distinct difference is found
for different orders. The obtained values of w, = 1.416

flz,v,t=0) = % exp(—v?/2}(1 + acoskz)  (9)
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FIG. 1. Time evolutions of electric field amplitude with
k = 0.5 during the linear Landau damping obtained by first-
, second-, fourth-, and sixth-order time-integration methods
with At = 1/8 (top} and 1/2 (middle and bottom). Vertical
and horizontal axes in the middle panel are magnified on the
bottem for clarity. .

and ¥ = —0.153 agree well with'the linear calculation. As
plotted in the middle and bottom panels of Fig.1, how-
ever, small differences are found in the damping rates for
At = 1/2, which are also summarized in Table 1. The
error found in the damping rate is about 3% in the first-
order method, The better agreement - with the theoretical
estimate is found for the higher-order schemes.



Order v

1 —0.148
2 —0.149
4 —0.154
6. —0.153

TABLE [ Linear Landau damping rates resulted from the
simulations with different orders of integrators for At =1/2.

8. Nonlinear Landau Damping

A benchmaeark test for the nonlinear Landau damping
has also been considered in literatures {2, 6, 8, 9, 12, 13],
where the initial condition is given by Eq.(9) with a =
0.5. Since more particles are trapped by waves with
larger amplitudes, finer-scale structures of f are gener-
ated by the phase mixing not only in the v-space but also
in the z-space. In other words, the distribution function
is strongly stretched by the Hamiltonian flow in the phase
space. In order to keep sufficient resolution during the
simulation till ¢ =40, thus, we employed grid points of
N; = 4096 and N, = 65536 for the results shown in
Figs.2, 4, and 5.

Following the exponential damping of the initial per-
turbation, the nonlinear particle trapping as well as the
strong mode coupling is observed in the simulation. A
more detailed picture of the benchmark problem is found,
for example, in Ref[13]. Here, we focus on conserva-
tion properties of the invariants in simulations with the
splitting schemes of different orders. The entropy S, the
L' and L? norms (L' = f fdzdv and L? = [ f*dxdv)
are preserved well throughcut the simulation run up to
t =40 with At = 1/8 as shown in Fig.2. The errors found
in the invariants are negligibly small, as typically seen in
the stepwise increase of the L' norm corresponding to
the round-off error level of the double precision numbers.
The fourth- and the sixth-order schemes lead to about
three and seven times larger errors than that found in
the second-order case, respectively. The factors corre-
spond with the number of the successive operations of
the second-order integrator constructing the higher-order
schemes. Magnitude of the errors is also proportional to
the inverse of the time step size At~F (nat shown), but is
insensitive to the number of grid peints as shown in Fig.3,
if sufficient phase-space resolution holds. In a simulation
without setting the minimum value of f, the L? norm in-
creases with the nearly same rate as that in the case with
setting the minimum f (as shown by the dot-dashed line
on the bottom of Fig.2 for the fourth-order case), while
the L! norm is exactly conserved. It is, therefore, con-
cluded that the errors in the entropy and the L? norm
shown in Fig.2 are mainly due to accumulation of the
round-off errors in numerical time-integrations. We have
also confirmed similar behaviors of L3, L4, and L* norms
(not shown). Conservation of the L' norm is slightly
broken on the order of 1013 by setting the minimum
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FIG. 2: Time evolutions of errors found in the entropy (top)
and the L' (middle) and L? (bottom) norms during the non-
linear Landau damping obtained by simulations with the first-
, second-, fourth-, and the sixth-order time-integration meth-
ods for At = 1/8. The dot-dashed curve on-the bottom is
also given by the fourth-order scheme but in a case w1t.hout
setting the minimum value of f. .

amplitude of f that is introduced in order to enable the
entropy calculation,

The invariants given by the phase—space integral of the
Viasov equation muitiplied by f™ (m = —1,0,1,:..) are
well preserved if a sufficient number of grid points are
employed. Inthe early stage of the simulations, the errors
found in the entropy for cases with different resolution
show similar evolutions to those given in Fig.2 (see the
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FIG. 3: Time evolutions of errors found in the entropy re-
sulted from simulations with different phase-space resolution
{top). Number of grid points in the z-space {N;) plotted for
the eruption time of the entropy 7. (bottom).

top panel of Fig.3, where we have employed the first-
order scheme with At = 1/8 while keeping the ratio of
N, to N, constant). After the finest scale length of f
reaches the grid size, however, the error rapidly blows up.
The eruption time 7, of the entropy is summarized in the
bottom of Fig.3, where one can see that the finer grid size
leading to larger 7, makes the longer simulation possible.
However, N, exponentially increases as 7., which means
that the smallest scale length of f shortens exponentially
in time because of the stretching of f in the phase space.
It also occurs simultaneously with the nonlinear particle
trapping. :
Conservation of the total energy definitely depends on
the accuracy of the time-integration scheme. Time evolu-
tions of total energy fluctuations for At = 1/8 are plotted
in Fig4. One can confirm that the energy conservation
is certainly improved by applying the higher-order split-
ting scheme. In addition, there is no secular incréase nor
decrease of the energy after ¢ = 5.
Dependence of the error in the energy conservation,
which is defined by |E(t) ~ E(0)|max/E(0), on the time
step size is summarized in Fig.5, where the solid, dashed,
dotted and dot-dashed lines represent powers of At such
asoc AP with =1, 2, 4, and 8, .respect.iyely: The time
step size At is changed as 1/2, 1/4, 1/8, 1/16, and 1/32.
The total energy conservation is improved in proportional
to At" where N denotes the order of the time-integration
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FIG. 4: Time evolutions of errors found in the total energy
conservation during the nonlinear Landau damping obtained
by simulations with the first-, second-, fourth-, and the sixth-
order time-integration methods for At = 1/8,
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FIG. 5: Summary of the total energy conservation in simula-
tions of the nonlinear Landau damping. Solid, dashed, dotted
and dot-dashed lines represent o« At® where g =1, 2, 4, and
6, respectively.

scheme.

III. NONDISSIPATIVE TIME—INTEGRATiON
METHOD FOR THE DRIFT KINETIC SYSTEM

A. Basic algorithm

The symplectic integrator is also useful for construc-
tion of a nondissipative simulation scheme for the colli-
sionless drift kinetic equation which possesses the same
compact form of 8f/8t = —{f, H} as the Vlasov equa-
tien. Even in a slab configuration with the uniform mag-
netic field, however, the splitting algorithm based on the
explicit symplectic integrator, Eq.(6}, can not be applied
to the drift kinetic system, because the Hamiltonian of an
E x B drift particle, H = ’Uﬁ/2+¢(:ﬂl, z)) (normalized),
is non-separable for a conjugate pair of the perpendicular



coordinates, £ = (z11,%12). Here, x| and v are the
parallel coordinate and velocity, respectively.

An implicit symplectic integrator. is applicable to a
general type of Hamiltonian. One of the simplest meth-

ods is given by
). o

gt - q" + At BH/Bplﬁ’ﬁ
pt! " _aH/&qu,ﬁ
where 7 = (¢g" +¢"+t1)/2 and § = (p™ + p"+1)/2. The
time-integration scheme in Eq.(10) with the second-order
accuracy is called the implicit midpoint rule. For canon-
ical coordinates {q,p), Eq.(10} gives a canonical trans-
formation, and then, is an implicit symplectic integrator
[25]. . Extension of Eq.(10) .to the 4th-order method is
straightforward in terms of the same successive opera-
tions as Eq.(5).
Using a compact form of the coordinates, z = {q,p),
one can rewrite Eq.(10) to

n+1 1/
2" = 2P L At {2, H(2)} with 2= f% . {11)
For the collisionless kinetic equation, 8f/8t = —{f, H},
a mapping of f generated by Eq.(11) can be represented
as

Uz) = Pz - At{z, HEZ) (12)

If one considers an intermediate time-step, t"71/2, the
mapping in Eq.(12) is similar to the transformation used
in the semi-Lagrangian method (21, 22]. 'T'here is, how-
ever, a difference between the two transformations. In
Eq,(12), H(z) implicitly depends on f**1 through ¢"*!,
while the operator (the Hamiltonian flow in this case) em-
ployed for calculation of the characteristics in the semi-
Lagrangian scheme is obtained from f at the interme-
diat.i: time step that has been known before evaluating
fn-f- .

Since direct calculation of the mapping in Eq.(12) is
somewhat difficult because of the implicit dependence of
H(z) on f**!, we would employ a simplified algorithm
for the drift kinetic system. A symmetric transformation
from f* to f+! can also be generated by Eq.(11),

Pz + (At/2) {2, HZ)} = [ [z — (At/2) {z,H(E()l}%).

We consider the Taylor expansion of f**! and f" for a
small time step At, such that

1z + (At2) {2, HZ}Y
m fPH ) (A { L H(E)) , (14)
and

Iz = (At/2) {7 H(5)}] ‘
~ fM2) - (82 {f~LHB)} - (15)

Substitution of Eqs.(14) and (15) into Eq.(13) yields

fn+l + fn

n+1
f - 2

fm—Ae{f,H} with f= . (16)
The time-integration scheme in Eq.(16) corresponds to
the implicit midpeint rule applied to f {not to ), and
has the second-order accuracy because of the symmetry
for f**! and f*. The time-reversibility of the collision-
less kinetic equation is also preserved by using Eq.(16).
The fourth-order version of this scheme can be easily con-
structed by successive operations of Eq.(16) in the same
way as Eq.{5) [17, 24].

It is important to note that, when the implicit mid-
point rule is applied to an advection equation for a vector
field IV in an incompressible flow V', that is,

%.t[{:_v:vv with V.V =0, (17

conservation of |I/[? is guaranteed, such that

o - P =—aw - (O V) . (1)
Since the Hamiltonian flow is incompressible in the phase
space, Eq.(16) leads to .
L 1P = -7 8 )
In & system with the periodic boundary condition for the
real space, or, if the surface integrals can be omitted, the
L? norm (f f*d*zdv|) is conserved during the numerical
time-integration (where f — 0 for v — *oo is assumed).
In this sense, the time-integration method in Eq.(16) is

nondissipative, which is a great advantage in simulations
of the collisionless IT'G turbulent transport [17, 26, 27].

B. Benchmark test for Kelvin-Helmholtz instability

1. Test problem and simulation code

As a benchmark test of simulation méthods for the
drift kinetic system, the Kelvin-Helmholtz (K-H} insta-
bility described by the two-dimensional Euler equation
has been considered in literatures [18, 22]. The drift ki-
netic equation in a two-dimensional slab geometry with
the translational symmetry in the direction of the homo-
geneous magnetic field has the same form as the vorticity
equation,

6p Ndp OYap
— - — 20
+(9:ct9y 8y Ox Q' ( )
where p and i denote the vorticity and the stream func-
tion, respectively, and are related by the Poisson equa-
tion, ' :

Vig=p. (21)



Here, we obey the notation used in Ref[18]. In
the benchmark test, the equilibrium flow given by
2o(y) = siny is unstable to a perturbation of p; (&, y) =
esin(y/2) cos(kyz) if ky < ks = V3/2 [28]. We have per-
formed a test simulation with the same initial condition
as that employed in Ref[22], that is,

oz, y,t =0) = po(y) + pr(z,y) (22)

for ¢ = 0.015 and &; = 2x/10.

The simulation domain of 0 < z < 10 and 0 <y<2m
is discretized by a uniform mesh of 512 x 513. The pe-
riodic boundary condition is employed in the z-direction
while p = ¥ = 0 at y = 0 and 2r. Adding an extra re-
gion of =27 < y < 0 with the anti-symmetry condition,
p(y) = —p(~y), enables us to use the pseudo-spectral
method in calculation of the advection term where the
2/3-rule is adopted for de-aliasing [29]. The numeri-
cal time-integration of Eq.(20) is carried out by using
the nondissipative integrator in Eq.(16) with the second-
order accuracy where f = p and H = —. We set the
time-step size At = 5 x 1072 so as to find convergence
of the iteration loop in solving Eq:(16). The itefation is
stopped if |p7 — p? Y| max/p? < 1078 where j and
mean the iteration step and the root-meéan-square aver-
age, respectively.

2. Numerical results

Time evelution of the vorticity perturbation with &, =
k; is shown in Fig.6 in terms of {|p(k, = k1,¥)|?)y, where
{---), denotes the spatial average in the y-direction.
The solid curve in the linear growth phase is fitted by
o exp(0.226t). Thus, the linear growth rate of the K-
H instability obtained by the simnulation is 0.113, which
is in reasonable agreement with the theoretical esti-
mate in the first-order approximation, that is, Im(w) =
V3ky(ky — k1)/2 = 0.120 for k, = v/3/2 [28]. Although
the evolution of {|p(k; = ki, y)[?}, obtained by a sim-
ulation without de-aliasing is nearly identical to that in
the de-aliased case (see Fig.6), remarkable differences are
found in conservation of the energy E = f | V4|2 dzdy and
the enstrophy Q = [ p%dzdy as shown in Fig.7. Since ¢
is related to p by Eq.(21), conservation of the energy is
also guaranteed by employing the nondissipative time-
integration scheme as shown by Eq.(16). In the simula-
tion with the 2/3-rule for de-aliasing, thus, relative errors
in the energy and enstrophy conservation are less than
1075 throughout the simulation run up to ¢t = 50, which
is the benefit in use of the nondissipative integrator. In
the case without the de-aliasing technique, however, the
energy and enstrophy conservation rapidly degrades af-
ter t ~ 27 due to the aliasing error. It means that the
smallest scale lengths of p and % become comparable to,
and then, shorter than twice of the grid size (the Nyquist
wave length) because of t.he strong nonlmearlt.y of the ad-
vection term. :

1w e
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q’?g 10!
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1075 ey expl(0.2260
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FIG. 6 Time evolutions of the vorticity perturbation am-
plitude, (jo(k. = k1,4}|?),, in simulations of the Kelvin-
Helmholtz instability, where (--.), denotes the spatial av-
erage in the y-direction. Simulation results in cases with and
without the 2/3-rule for de-aliasing are simultaneously plot-
ted, although they are completely matching to each other.
Curves in the linear growth phase are fitted by o exp(0.226¢).

Spatial profiles of p at t = 0, 10, 20, 30, 35, and 50 for
the case with de-aliasing are shown in Fig.8 in terms of
contour maps. As the K-H instability grows, two vortex
islands initially given as the perturbation are stretched
in the sheared flow. Accordingly, the vortex sheets are
rolling up in the early nonlinear stage of the instabil-
ity (t ~ 20 to 35). Then, a ‘noise’ with the short wave
length becomes dominant in profiles of p due to lack of
the spatial resolution, as expected from the time evolu-
tions of £ and {1 in the case without de-aliasing. It is a
natural consequence in numerically solving Eq.(20) with
finite resolution, because the finest scale length of p in the
inviscid fluid could be continuously smaller as the time
advances. [t is a remedy for this problem to increase
the grid number and to stop the simulation before the
noise appearance. If we have finer resclution, the noise
appears in later time. Fven though introduction of the
numerical and/or physical dissipation makes the profile
of p smooth while degrading the enstrophy conservation,
it does not accord with the present purpose of bench-
marking the nondissipative time-integration scheme.

C. Plasma echo in the drift kinetic system

In order to verify the capability of the nondissipative
scheme in Eq.(16) for the phase mixing process, let us
congsider a plasma echo [30] in a drift kinetic system.
The simulation model is the same as that used for the
slab ITG turbulent transport [17, 26, 27], and is briefly
explained helow.

The drift kinetic equation for the perturbed ion distri-
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FIG. 7: Time evolutions of errors found in conservation of
the total energy (top) and the enstrophy (bettom) during
the Kelvin-Helmholtz instability obtained by simulations with
and without the de-aliasing technique. In the former case,
errors are less than 10712

bution function fx with a wave number k is given as
Bifn +iOukyfu+ S (kLKL — KLK) Ui fir
Fe=R' k!

= —iky Uy, [1 -+ g‘ {‘UH -1 kz} + e’t)"] FM('!)") (23)
in a two-dimensional slab geometry with the uniform
magnetic field in the y-z plane. Here, the periodic bound-
ary condition is employed both for the z- and y- direc-

tions, The gyro-averaged potentlal g, 15 related to ¢y
by

Wy = e—k’/2¢h . (24)
We set © = 0L, /p; = 1 where # = B, /B, < 1 and p;

iz the thermal ion gyroradius. The set of equations is
closed by the quasi-neutrality condition,

[1 - To(k?)] 64 = €7 ""/fk vy)dvy = fien s (25)

wnth the adiabatic elecl;ron response

. Ok forkyaéo - :
= , 26
flek ._{0 for k, =0 . o (29

FIG. 8: Contour plots of the vorticity p in the Kelvin-
Helmheltz instability at ¢ = 0, 10, 20, 30, 35, and 50 obtained
by the simulation with de-aliasing. Solid and dashed contour
lines represent positive and negative values of p with the in-
terval of 0.1. The z- and y-axes are in the horizontal and
vertical directions, respectively.

where k% = k2 + k and Tp(k?) = exp(—k%)Io(k?).
Ip(z) denotes the zeroth order modified Bessel func-
tion of z. Equations (23)-(25) are obtained by inte-
grating the gyrokinetic equation [31] for vy, assuming
fk('vﬁ v)) = fk(v")FM(v_L) The above set of equation
is normalized as follows; = = 2'/p;, ¥y = ¥'/pi, v = V' /vy,
t = tw/Ln, 5 = Ln/Lp, and ¢ = e¢’L, [Tip; with the
elementary charge e and the background ion tempera-
ture T; (= m;vZ; m; means the ion mass). We have also
taken T; = T,. The parameter 7); is defined by the ratio
between scale lengths of background ion density and tem-
perature gradients, L, and L, although we put m; = 0
in simulations of the plasma echo.

.The initial perturbed distribution function is set.to
zero. We also assume the symmetry of fx, .k, = f_k, &,
Electrostatic potential of ®coskyzcosky is externally
added at ¢ = 0 with a duration time 7p. The second pulse
is given at £ = 7 with the wave form of & cos kyx cos kay
for the same period. It is expected that an echo appears
through the E x B nonlinearity, while the parallel non-
linear term is neglected in Eq.(23) due to the gyrokinetic
ordering. The appearance time of the echo is estimated
88 t = tocho = Tha/(k2 — K1} [30] with the wave num-
ber of k3 » = ki + ky and kg y = kg — k) [note that_the
ion diamagnetic drift is in the (—y)-direction]. Here, we
set T = 30L, /v, kupi = 04, kap; = 05, & = 0.1 and

Tp = 0.2L,fv,. Thus, techo = 150Ln/v;, k3o = 0.9,
and kj wPi = 0.1.

The minimum and maXimum wave numbers are, re-
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FIG. 9: Drift wave echo found in.time evolution of the
(ka,z kay) = (k1 -+ ko, ko kl) mode.of which potential ampli-
tude peaks at £t = 150L,, /vg in agreement with the theoretical
estimate,

spectively, 0.1p; ' and 1.0p;'. For de-aliasing in calcu-
lation of the E x B term, the wave number space is ex-
tended to 1.5p; ", accordmg to the so-called 3/2-rule |29].
The velocity space of —5u; < v = 5v; Is represented by
2049 grid points. Since the recurrence time-is given by
tr = 2m/kAv) = 20487 /5 =~ 1286 L, /v;, we have enough
resolution for the velocity-space during the simulation
run up to { = 300L,, /v;. The time step size is set to be
At =10, an/v, ’

Time evolution of the potential with the wave number
of (kz,ky) = (k1 + k2,k2 — k1) is shown in Fig.8. The
appearance time of the echo feh, and its wave number
(k3,z,k3 ) agree with the theoretical estimate. The ob-
tained result demonstrates that the phase mixing process
with the time-reversibility is successfully reproduced by
the simulation with the nondissipative time-integration
scheme. .

"IV. SUMMARY

This paper has presented a series of benchmark
results of the higher-order splitting scheme for the
Vlasov-Poisson equations and the nondissipative time-
integration methed for the collisionless drift kinetic sys-
tem.

In order to generalize the standard splitting scheme
by Cheng and Knorr {2], the explicit symplectic inte-
grators for the separable Hamiltonian system are ap-
plied to the mapping of the one-body velocity distribu-
tion function. In a test problem for the linear Landau
damping, the damping rate obtained by the numerical
simulations weakly depends on the order of the time-
integrator. Even though an error found in the damping
rate is only 3% in the first-order method with a large
time step size of Atw, 1 =1/2, it is certainly decreased

- by using the higher-order methods, where w, denotes the

angular plasma frequency. In simulations of the nonlin-
ear Landau damping, the invariants (at least, from L!
to L° norms) as well as the entropy — [ fIn fdzdv are
conserved with errors less than 10! if sufficient resolu-
tion holds during the simulation run. By applying the
Nth-order splitting scheme, the energy conservatlon is
improved in proportional to AtV

In order to avoid the rapid increase of the entropy and
other invariants due to insufficient resolution, a consider-
able number of grid points are required in the simulations
of the nonlinear Landau damping where the Fourier mode
interpolation is employed for calculation of the mapping
of f. If one would introduce nurnerical dissipation to
suppress the grid-scale fluctuations while preserving the
improved energy conservation, a high-order (i.e., Nth-
order) interpolation method may be useful, and remains
to be investigated. Even if the energy conservation is well
satisfied by means of the high-order interpolation scheme,
however, introduction of the numerical dissipation will
degrade the conservation of the entropy as well as the L2
norm and higher because of their sensitive dependence
on fine-scale structures of the distribution function.

A nondissipative drift kinetic simulation method based
on the implicit symplectic integrator is also benchmarked
for the Kelvin-Helmholtz (K-H) instability. Conservation
of the L? norm is an advantage of the nondissipative time-
integration scheme. Thus, the energy E = [ |Vy|?dzdy
and the enstrophy = f p’dzdy are exactly conserved
{except for round-off errors) by employing the nondis-
sipative time-integrator with the de-aliasing technique.

- Errors found in conservation of E and {1 are as small

as the round-off error level of double precision numbers,
~ O(107!%). Fine-scale structures of the vorticity are,
however, continuously generated because of the nonlin-
ear advection term, which makes the long-time simula-
tion of the K-H instability in an inviscid fluid quite dif-
ficult. The test simulation for the plasma echo in the
drift kinetic system with a slab geometry demeonstrates
successful reproduction of the phase mixing process with
the time-reversibility. In the present study, the Eule-
rian approach is employed instead of directly calculating
the mapping in Eq.(12} or (13) generated by the implicit
symplectic integrator. Since a simulation scheme deal-
ing with the direct calculation of Eq.(12) or (13) may be
helpful to realize better conservation of other invariants,
further investigations are valuable.
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