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Non-dissipative kinetic simulation and analytical solution of three-mode equations of
ion temperature gradient instability

T.-H Watanabe, H.Sugama. and T.5ar0
Natronal Institute for Fusion Scrence. Toki. Gifu. 509-5292, Japan
{August 19. 1999, submitted to Physics of Plasmas)

A non-dissipative drift kinetic simulation scheme which
rigotouslh satisfies the time-reversibility. is applied to the
three-mode coupling problem of the ton temperature gradi-
ent (ITG) matabilita It 15 found from the stmulation that
the three-mode TG system repeats grewth and decay with a
period which shows a legarithmie divergence for infinitesimal
imitial perturbations  Accordingly, time average of the mode
amphtude vanishes, as the mtial amphtude approaches to
zero An exact solution 1 analyticallv given for a class of ini-
nal conditions An excellent agreement is confirmed between
the analvtical solution and numerical results. The results ob-
tained here provide a useful reference for basic benchmarking
of theories and simulations of the ITG modes.

I. INTRODUCTION

Understanding the anomalous heat transport mech-
anism in high-temperature plasmas has been a central
subject 1n the magnetic confinement fusion studies. The
ion temperaiure gradient {ITG) instability! is widely
recognized as the candidates which cause the anomalous
ion thermal transport in the core of tokamaks. Many
first-piinaiple simulations as well as theoretical predic-
tions have heen carried out on ITG turbulence traus-
port  Among themn. the gvroparticle® ™ and gviofiuid” ¢
simularions have largelv contmbuted to development of
transport modeling in the last decade. However. they
Liave a discrepaney in the ion thermal diffusivity by a
factor of two or more®!. Since the reason for the differ-
ence between the 1wo methods has not been completely
understood vet. simple nonlinear problems, of which re-
liable sclutions with sufficient accuracy are established.
are preferable for benchmark studies of the numerical
schemes.

Tke three-mode coupling of the ITG mode®. as weli as
the drift waves'>”H, which is represented by a reduced
set of the drifr kinetic equation in a two-dimensional
slab geometry. has been used to explam qualitatively
a nonlinear saturation mechanisin in the gyroparticle
simulation®. The three-mode svstem has also been ex-
amined in comparison of the gyroparticle and gyvrofiuid
simulations'’ and in a test of a nonlinear kinetic fluid
closure method!®. In the pioneering work by Lee ef ai.'?,
they derived a nonlinear dispersion relation of the three-
mode drift waves., However, so far, no exact solution
of the three-mode coupling equations has been obtained

analytically, except for a steady state solution with the
Maxwellian velocity distribution’*. The three-mode ITG
and drift wave systems have also been studied by means
of Eulerian dnft kinetic (Vlasov) simulations'? !, The
Vlasov simulation results. however. seem to suffer from
numerical dissipation. because a dissipative integrator
such as the predictor-corrector is emploved for the col-
lisionless drift kinetic equation  Therefore. it will be
meaningful to develop a non-dissipative Viasov simuia-
tion method. and to find numerical and analytical solu-
tions of the three-mode equations. Results of the present
study give a useful reference for benchmarking of various
simulations and theories which are employed to investi-
gate more complicated systems.

The remainder of the present paper is organized as fol-
lows. Section 11 gives the numerical simulation results
of the three-mode coupling of the ITG modes. where a
newly developed drift kinetic simulation method is also
briefly explained. In section III, we will analytically de-
rive an exact solution for a certain class of initial condi-
tions from the three-mode ITG equations. Comparisons
of the numnierical and theoretical results are presented in
Secs Il and III. Finallv. we summarize the results in sec-
tion TV

II. DRIFTKINETIC SIMULATIONS
A. Simulation scheme

A basic schieme of our drift kinetic simulanion is briefly
presented here. In the long wave-length limit (k. p, € 1)
we consider the electrostatic drift kinetic equation in a
slab geometry,

af q
E+1Tlf+vEX3-Vf+ 'J’—TFEH

of

where vgp.p = E x B/B?, and v is the parallel veloe-
ity. It is casily found that Eq.(1) is reversible in time.
Avoiding the numerical noise inherent in the particle
simulation. we employ an Eulerian scheme which keeps
the time-reversibility. A discrete spectral representation
in the phase space or discretization on numerical grids
makes Eq.{1) a set of ordinary differential equations. In
a vector form, it can be written as

dtuv



In order to keep the time-reversibility of Eq.(1). a nu-
merical time-integration scheme of Eq.(2) should also
be reversible in time. It is well known that the sym-
plectic scheme often used for integration of a Hamilto-
nian system, pireserving a symplectic 2-form exactly, is
non-dissipative, namely, time-reversible!®-17. One of the
simplest example is the leap-frog integrator which is a
standard scheme in particle simulations'® where parti-
cle motions are given by the Newton-Lorentz equation
{not by drift motion of the guiding center). To trace the
E x B drift particle motion with the time-reversibility,
however, one needs to use an implicit symplectic method.
This is because the Hamiltonian. H{z.y,z.v) = mv?/2+
ep(L,y, z), for the drift motion is non-separable for per-
pendicular coordinates x and y which are a conjugate
pair of the coordinates (where dz/fdt = —8¢/dy and
dy/dt = 3¢/0z), while it is separable for the another
conjugate pair, that is, the parallel coordinate z and the
parallel velocity v. One of the simplest implicit schemes
is the implicit midpoint rule.

Uttt - Ut = AtF (U™ +UM/2) (3)

where # means a time step. This scheme is appar-
ently reversible in time. When Eq.(3) is applied to
the Hamilton’s equation in canonical coordinates, U =
(q,p), it leads to a canonical transform from (g, p") to
(g, prti)ie,

We have employed Eq.(3) to integrate the drift kinetic
equation,

fn+1 _ fn

where f = (f"*! + f*)/2 and {,} means the Poisson
brackets. H depends on f through the electrostatic po-
tential ¢. Although Eq.(4) is not a symplectic transform
of f generated by a particle Hamiltonian. it preserves the
time-reversibility, namely, is non-dissipative. It is also
noteworthy that Eq.(4}. which can be solved by iteration.
is regarded as a discretized form of df/dt = —{f H}
with second-order accuracy in time (namely, 2 time-
centered finite difference). Construction of a fourth-
order scheme is straightforward by successive operations
of Eq.{3)*". Derivatives in the phase space shown in
Eq.{1) are calculated in each Fourier space.

= -At{f. A}, (4)

B. Simulation settings

The non-dissipative simulation scheme given above is
applied to the three-mode coupling system of the ITG
modes in a two-dimensional shearless slab geometry.
Here, we consider the same model as that used in compar-
ison of the gyroparticle and the gyrofluid simulations't
except for truncation of the distribution function and a
/2 phase difference in z (direction of density and tem-
perature gradients). The same model was also used by
Mattor and Parker for examining a nonlinear kinetic fluid

closure’®. A rectangular simulation box of L, x I, is set
in x-y plane with 2 uniform exiernal magnetic field per-
pendicular to z-axis. Neglecting the parallel noclinearity
and expanding density and temperature scale length, L,
and L, of an assumed Maxwellian background, the drift
kinetic equation for ions leads to

étf + e’UayJF - (3y¢>3zf - axd)ayf)
= —8,¢ [+ (v* — 1)1,/2 + Ov] Far(w) , (3)

where f denotes a perturbed distribution function nor-
malized by f = f'L,v:./p,ng. Prime means a dimen-
sional quantity. v, p,, and ng are the ion thermal ve-
locity, the ion gyro-radius, and the background plasma
density. © is defined as & = 8L, /p; where an inclination
of the magnetic field & « 1 is assumed. Other quanti-
ties are normalized as x = z'/p,, ¥y = ¥ /pi, v = ¥ fvy,,
t = t'v, /Ly, 3, = Ly/Ly, and ¢ = ed'L,/T,p, with
the elementary charge e and the background ion temper-
ature T, (= m,v}; m, means the ion mass). We have
taken T, = T, throughout this paper. We also assume
the adiabatic electron response and the quasi-neutrality.

Thus,
/ fd‘b‘ =@. (6)

We employ the periodic boundary conditions in both
z and y directions. Then, f and ¢ can be written as

Fzy0.) = frunlv, ebrethn) (7

wr.n

&z, y.t) = Z ¢m,n(t)el(‘nz+kuy) ; (8)

L

where &k, = 2xm/L; and k, = 2mn/L, for m =
0.£1,£2, _andn =0,+1,£2, ... For studying the three-
mode coupling. we only keep {m.n) = (x1.£I) and
(£2,0) modes with the following symmetry conditions of
fho=Ffara=fl_1=Ff_1and frg= fI,, Starting
with an initial condition of

flz,y,v,t =0) = eFpr(v) cos(kx) cos(ky) (9)

for L, = L, = 2x/k. we numerically follow a time evolu-
tion of f.

The physical parameters used here are k = k, = k, =
0.1 and #, = 10. We have carried out several runs for
different O scanning from 0.25 to 3. Amplitude of the
initial perturbation, ¢. is also changed from 107° to 1.
The box size of the simulation is L; = L, = 207 with
32 x 32 grid points. Spatial derivatives in Eq.(3) are
calculated in the Fourier space. The velocity space of
=5 < v < 5 is discretized by 129 grid points. A time
step is taken to be At = 0.25.

We have made convergence checks for the time step,
the resolution in the velocity space, the maximum veloc-
ity, and the accuracy of integration scheme, all of which
give the same results as shown below.
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FIG. 1. Linear ifrequency {w.) and growth rate {7) for dif-
ferent © obtained from simulations (marks) and linear anal-
ysis (lines) with £ =0.1 and 5, = 10.

C. Linear results

In Fig.1, the linear frequency w, and growth rate -y re-
sulted from simulations for different O are shown by cir-
cular and triangular marks in comparison with the linear
analvsis. Simulation results shown here and in section
11 D are obtained bv the second-order implicit scheme in
Eq.(4). Solving the linear dispersion relation given in the
next section (see Eq.(17}) numerically. we have calculated
the theoretical values which agree with the simmulation re-
sults. By the Nvquist criterion. we have also confirmed
that oulv one eigenmode is unstable for a given value of
Q. .

In Fig.2 plotted are profiles of fi for © = 1 and
= 107" in the velocity space during the linear growth
phase at ¢ = 100. Here, a phase of f1, is shifted in
y so that ¢, is real. Amplitude of fl,l (and also fao
in Fig.4) is normalized by ¢, 1. Circular and triangular
marks in Fig.2 show the simulation data on each grid
poin:. Solid and dashed lines represent real and imag-
inary parts of a linear eigenfunction of the (1.1) mode,
fi-{v) and fr.{v), for the eigenfrequency wy + 2. which
are defined in Egs.(i3) and (17) in section IIL. In the lin-
ear growth phase. f11 is well fitzed by the eigenfunction.

while f54 is negligible.
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FIG. 2. Profiles of the distribution functions in the veloc-
ity space obtained from simulations (marks) for & = 1 and
£ = 107" with ¥ = 0.1 and 5, = 10 at ¢ = [00. Solid and
dashed lines indicate the linear eigenfunction.

D. Nonlinear results

A time evolution of mode amplitudes for © = 1 and
¢ = 107° is shown in Fig.3, where the Oth-moment of
F 1 and 2nd-moment of f; ¢ are represented by solid and
dashed lines. respectively. After the initial linear growth
phase. the amplitude of the (1,1) mode is peaked at ¢ =
196 due to appearance of the nonlinear (2.0) mode.

”f{ 1(1’)(]\'T —
102 ijl’z_{‘l(}(\’)dv i ““““

T

Mode Amplitude

10°%

FIG. 3. Amplitude evolutions of Oth-moment of (1,1) mode
(solid) and 2nd-moment of {2, 0) mode (dashed) for @ = 1 and
£=10"% with k = 0.1 and 5, = 10.



‘T F o Re(f ) at =290 N
& Im(f] [) at =290
-1.5 1 1 ] ] 1
4 2 0 2 4

v
FIG {. The same as FIG.2 hut for ¢+ = 196 (upper) and
t = 290 (lower).

Then. the (1,1) mode exponentially decays with the
same rate as the linear growth phase, and reaches to its
minimum at { = 393. The minimum amplitude is nearly
egual to the initial perturbation levei. After that. the
growth and decay are repeated with a regular oscillation
period of T = 394. ~ :

Fig.4 shows profiles of f; ; and £ in the velocity space
in the nonlinear phase. When the (1, 1) mode amplitude
is peaked at t = 196, Im(_fu) disappears {upper panel).
On the other hand, one can see a finite amplitude of
Im(f20), of which profile is scaled as v2fz.(v). During
the decay phase, f) 1 is fitted by the complex conjugate of
fr.(v). Neglecting small fluctuations of order &, therefore,
the linear and nonlinear evolutions of JFI,l and _f-z’o are
described in terms of fr,. and fr,. Being based on the
simulation results, the three-mode ITG problem is fully

explained by the analvtical theory derived in the next
section.

Peak amplitude of ¢, |
[¥'S]

2 -
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FIG. 5. Peak amplitudes of &1, for different © {marks}
with a theoretical prediction of ~/+/2k% (solid) where
£=10"% with k=01 and 7, = 10,

The peak amplitude of ¢, ; provides a good benchmark
for the simulation scheme, since the same test has been
done by the gyroparticle and gyrofiuid codes!! as well
as theoretical predictions®'!. A systematic scan for ©
from 0.25 to 3 has been made with £ = 107°. The peak
levels are summarized in Fig.5 with a curve of [¢) 1lpeats =
~/V2k? given by the theoretical prediction below. The
simulation and the theorv give the same peak level and
scaling. The scaling of |01 1|peac = 7/ V2k? agrees with
previous theoretical works® ! except for a factor of /2.

As found in Fig.3. after the peaking. the mode am-
plitude decreases to the initial perturbation level. Thus.
it is considered that the oscillation period T depends on
€. A similar nonlinear oscillation, but with different pe-
riod and amplitude. was observed in a benchmark test of
the nonlinear kinetic fluid closure!® as well as the drift
wave simulations'® ', In order to examine dependence
of the oscillation period on the initial perturbation am-
plitude, we have performed six runs for © = 1, changing
¢ as 1072, 107, ... 1. The observed periods T in the
simulations are plotted in Fig.6 versus the minimum am-
plitude !¢ 1]min, which shows a logarithmic dependence
of T on ¢1,1{umm. The analytical solution shown in the
next section predicts the same period. The @) 1]wm de-
pendence of T s easily explained by noting that a smaller
initial perturbation stays longer time at the linear grow-
ing and decaying phases. Thus, a time average of |¢y 1]
approaches to zero as £ — 0.
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prediction given by Eq (36) (solid)

III. ANALYTICAL SOLUTIONS
A. Three-mode equations and linear solution

We derive exact nonlinear solutions of the three-mode
problem of the ITG modes Herealter. f; 1. Im(f> ) and
oy 1 are. respectivelv. denoted by f. k and o for simplic-
itv. From Eqs.{3) and (6) the three-mode ITG svstem 14
deseribed by}

(G + 1O fle t) + 2ik (ke ) = —dho(HG(v) .

(1)
Deh(v.t) = 42 Im[o" () f(v.1)] . (11)
oft) = /dl‘ flov.t). (12)

where f and o are complex-valued while b is reai-valued.
7{v) is defined as

Gr) = [1-}—%(1}"—1)-{—8?:] Fi{w) . (13)
We easiiv find
A [!f(r.t)]z + %hz(v,t) + %?h(u,t)} =0. (14)

The linearized version of the three-mode equations has
a linear solution of the form [f(v,t).R{v.t).0(f)] =

Heteyhatey o eapl—iwt) Here the linear cigenfiune-
tions dare given by

fuley= fo o) + of )
kG(r)
~ (wr — £OV) + 27
EG{v){(wr — kOv) — i7]

Y PR TC YRR (15)

he{e)=0. - and 6y =1 (normalization) . (16)

and the complex eigenfrequency w = w, + 1y 15 deter-
mined by the dispersion relation

chiey = fde FGle) .
/dr file) = -/db(w.’ Cheriy 1, {(17)

where v > (1 is assumed.

B. Nonlinear solution

Now. let us consider a certain class of exact solutions
of the nonlinear three-mode I'TG equations, which are
written in terms of the real and imaginary parts of the
ewenfunction fr{v) and the real eigenfrequency w, as

Flv,t) = {a(®) fr(v) + 0(2) fr.(v)] exp(—iwrt),
hlv.t) = et} fr. (1)
o(t) = alt)exp{—1w, f) . {18)

where a{t). b{). and c(t) are real-valued functions of the
time ¢. The linear solution given bv Eqs.{15)-(17) corre-
sponds to the case. in which a(t) = b{t) o exp(~t) and
cft) = 0 Substituting these into Egs.(10)-(12) and using
Eq.(13). we obtain the ordinary differential equations for

[al#).B{1). ()].

da/dt = ~b .
db/dt = va — 2k%ac |
de/dt = 4k%ab. (19)

These equations have two types of stationary solutions,
which are written as

(@.b.c) = {as, 0.7 /2%,
(20}

{a,b.c) = {0.0.¢c;) and

respectively. where a; and ¢, are arbitrary constants.
The former solution in Eq.(20) is c-axis, and the latter
one is parallel to g-axis. From Eq.(19), we easily find

d 2k,
i = 21
dl (c ’ya) 0, 1)

and



d (9 1, v Y _

Also, combining these two equations, we have

d 2 2, Lo 7
— b+ =-c*— <cj=90, 2
= (a +b* + 5¢ ~ @¢ {23)
which corresponds to Eq.(14). Thus, as shown in Fig.7,
the orbit of the solution in the (a,b,c)-phase space is
given by the intersection between the two surfaces, which
are written as

2k .
c——da®=Cy (24)
"}J’
and
s 1 ¥
2 :_ Y _po 95
b 56 = gse Cs {25)

where C; and Cs are constants. The orbit is also on the
spheroid surface,

. ; 1.
a2+b2+§chgic=c2—27?cl. (26)
We also note that the stationary solutions (a,0,v/2k%)
with varying e, form the central axis of the elliptic col-
umn given by Eq.(25), which is also shown in Fig.8.
A simple estimate of the peak amplitude of |¢|peax =
v/v/2k* shown in Fig.5 is given as follows. Substitute
C1 = (3 = ( to Egs.(24) and (25) for infinitesimal ini-
tial perturbation. Since dafdt = 0 at the peak of the
mode amplitude, & = 0 (see Eq.(19)}). Then, one finds
a = v/v2k% b = 0, and ¢ = V2a = v/k* which also
gives the scaling of Im(f24) = V2f., shown in Fig.4.
//z_ii\-—";i-

mme

il
il

75®
Z'BO 2555 3

FIG. 7. An orbit of the exact solution for ® =1, £ = 0.1
and 7; = 10 in the (a, b, ¢)-phase space shown by the intersec-
tion of parabolic and elliptic column surfaces which is also on
a spheroid.

FIG. 8. A separatrix surface of r = 0 for the same pa-
rameters as FIG.7 with stationary solutions of {0,0,25) and
{as, 0, 1/2k®), where two solid curves represent typical solu-
tions for » > 0 and r < 0.

Using Eqs.(24)—(26), the solution of Eq.(19) for the
initial condition (a, b, ¢)t=p = (ag, by, o) can be obtained
by

2 2 i L2
b =b0+m(6‘00)*§(c _Cé) s (27}
2k . ;
C=CU+_7 (a® —a), (28)

and

alt) = { ﬁdn{dnl(ao/g) —(va/B)vd for >0
Benjen™Hao/B) — (Va/8)vt] for T <O,

(29)

where the Jacobi elliptic functions are defined by dnu =
(1-#%sn’u)*?, enu = (1—sn®u)/2 and fJ[(1-2%)(1-
£22?))|7Y2dz = u. Here, the parameters &, 3, and &2 are

given by

%—T+ %({};—72?) for >0
= . (3M
%—2?—{— g—;(g—;—Qr) for r <0,
1/4
& for r>0
8= (31)

and



respectively. where

2k? 45k,
P=1—TCG+:§—06, (33)
241

. 2K . 241 .
T=a;— Taécg + ?-aé — b3 . (33)

C. Orbit in (a,b,c)-phase space

The solutions given above are periodic functions of the
time ¢. For r > 0, a(t) takes any value in the range
B(rfa)t/? < |a| € B, and its sign is a constant deter-
mined by the initial value ag. On the other hard, for
r < (), the value range of a(t) is given by—3 < a < 3 and
the sign of a changes with time. Thus, the shape of the
closed orbit in the (a, b, ¢}-phase space is like a butterfly
for v < 0. The period T of the solution [a{t), b{(t),c(t)] is
written as

93
K(g) for r>0
T={ %5 . _ (36)
ﬁ (K,) for r<0 s

where R («} is the complete elliptic integral of the first
kind. The period for r > 0 given bv Eq.(36) agrees with
the simulation results in Fig.6.

We aind that, as {ag, by.¢g) — (0.0,0). r — 0 and

~~log(1/|r]) for 1 — +0 -
T~ { 27_llog(ll/!r|) for r— 0. (37)
Thus, the period T shows the logarithmic divergence for
r — 0. The solutior {a{t), b(¢),c(t)] stays most of the pe-
riod in the neighbothood of the stationary point (0,0, 0).
For the case of r = 0, the solution is no longer periodic
(or T = 20) and its orbit emerges from (approaches to)
the stationary point (0,0,0) for t — —oo (+o0). The set
of (aqg, by, co) satisfying r = af — %a%co + z_ri:aé —=0
forms a separatrix surface, which separates the phase
space into the two regions (r > 0 and r < 0; see Fig.8)
which are filled with the two different types of orbits
given by Eqs.(27)—(29).
Tinally, Fig.9 shows the two kinds of orbits for r > 0
with (ag,bp,co) = (0.25,0,0) (upper) and r < 0 with
(@p, bo, o) = (0,0.25,0) (lower) by solid lines.

FIG 9 Typical two orbits of solutions for r > 0 {upper)
and r < 0 (lower) followed by the Viasov simulation results
for the initial cond:tions given by Eq.(38) for the same pa-
rameters as FIG.7. The solid lines represent the analytical
solutions. Circular marks show the simulation results at ev-
ervy 2L, /v,

We also plot circular marks representing the Vlasov
simulation results at every 2L, /v, which are, respec-
tively, started with initial conditions of

flv,t =0) = a0 fr-{v) (upper)



and  flv.t = 0) = byfr.(v) {lower) . (38)

As shown in Fig.9, a perfect agreement is found between
the analytical solutions and the Vlasov simulation re-
sults. It is clearly confirmed that our numerical scheme
strictly preserves the time-reversibility, the periodicity,
and the initial value dependence of the exact solution.
Here, we have assumed the initial conditions in Eq.(38)
which satisfy Eq.(18), while a different type of the initial
condition has been employed for the simulations in the
last section. Nevertheless, the simulation results in the
last section are well described by the analytical solution.
It is because. if the initial perturbation is sufficiently
siall. only one linearly unsiable eigenmode in the form
of Eq.(18) becomes dominant at early time stage. Thus,
the amplitude oscillation found in Fig.3, where a > 0.
is explained by the periodic motion along the orbit for
r > 0 in the {a. b, c)-phase space.

IV. SUMMARY

We have developed a non-dissipative Eulerian kinetic
simulation method which rigorously preserves the time-
reversibility inherent in the collisionless dnift kinetic
equation. The simulation method is applied to the three-
mode ITG problem. An analytical solution of the three-
mode ITG equations is also derived here, and successfully
describes the nonlinear evolution of the three-mode sys-
tem. We have found an excellent agreement between the
simulation results and the analytical solution.

The main results obtained here are summarized as
follows: Amplitudes of (£1, 1) and (£2,0) modes re-
peat the nonlinear oscillation. and evolves in time along
a closed orbit which encircles the stationary solution
{as.0.7/2k%) in the phase space. This fact reflects the
time-reversibility of Eq.[3). Thus. the three-mode svstem
never reaches to a steady state. unless the initial condi-
tion coincides with the stationary solutions in Eq.{20).
Since the solution stays most of the period in the neigh-
borhood of the stationary point (,0,0) with the ex-
ponential time dependence, the oscillation period has a
logarithmic dependence on the initial mode amplitude.
Thus, the time average of the mode amplitude vanishes,
as the infinitesimal initial perturbation approaches to
ZETO.

The success of the present simulation, of which validity
is confirmed by the theoretical analvsis, is achieved by a
proper choice of the numerical scheme with no dissipa-
tion. If the scheme is dissipative, it affects estimates of
the oscillation period and the averaged amplitude. Ap-
plication of the present numerical method to a multi-
mode coupling system and the gyrokinetic equations is
remained for future works.
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