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Abstract

‘We have developed an advanced electrostaiic macro-scale implicit particle simu-
lation code (AMACS-ES), which enables us to simulate low-frequency plasma wave
phenomena with lazge spatial scale length. Especially, the Poisson’s equation with
the implicit susceptibility term is accurately solved in our algorithm. Linear proper-
ties of the simulation code based on this algorithm, such as the linear stability and
the dispersion relation, are examined. We have also applied our simulation code
to the excitation and nonlinear saturation of the ion temperature gradient (ITG)
drift instability in a system with a shearless slab geometsy. The linear properties of
the excited ITG mode are compared with the theoretical prediction to find a good
agreement.
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1 Introduction

In the last three decades, the particle simulation method has been employed for study-
ing nonlinear plasma waves with kinetic effects such as the Landau and cyclotron damp-
ings. While various nonlinear plasma phencmena have been clarified by the conventional
particle simulation with explicit time integration, the applicability is limited to high-
frequency plasma waves with short wavelengths. This is because the simulation time step
At should be less than w, and the grid spacing has to be comparable to the Debye length
[1,2]. Thus, it is difficult to study kinetic waves with MHD space and time scales by means
of the conventional particle simulation method. In fusion and space plasmas, however,
one notices the importance of kinetic effects on MHD and transport scale phenomena,
such as the excitation of MHD waves by high energy (alpha) particles, anomalous heat
transport caused by drift waves, triggering of collisionless reconnection and so on. For
the purpose of obtaining a feasible tool that can be useful for the study of the nonlin-
ear plasma dynamics with large space and time scales, many efforts have been made to
overcome the technical restriction pertinent to the conventional particle simulation. The
direct implicit particle simulation technique has been developed and improved by contin-
uous efforts over the last decade [1-4]. In the direct method, a time-filtered equation of
motion for each particle, which is numerically stable against the high-frequency plasma
oscillation, is solved along with the Poisson’s equation which is modified with the implicit
susceptibility term.

The algorithm of the macro-scale particle simulation code [3] is essentially a direct
implicit method. The featuring point of this algorithm is to use a time-decentering scheme
for integrating the equation of motion and the Maxwell’'s equations instead of the time-
filtering technique in the direct method. Figenmodes of the electromagnetic waves in the
macro-scale algorithm were in good agreement with the theoretical dispersion relations of
the Alfvén wave and the whistler mode wave [5]. Electrostatic modes propagating along
with the magnetic field, however, exhibit a broad-band nature, thus, no significant peak
is recognizable in the power spectrum of the ion acoustic branch (see Fig.6 in Ref.[5]).
Therefore, we need to find feasibility of an electrostatic macro-scale particle simulation
algorithm with low-noise level and high-accuracy.

In this paper, we will give an electrostatic version of the revised macro-scale particle



simulation algorithm (AMACS-ES), and will check the validity of our method both ana-
Iytically and numerically. The implicit Poisson’s equation is needed to solve even in the
electromagnetic particle simulation in order to satisfy the charge continuity law. Thus,
the electrostatic characteristics obtained in this study can be applied to the electromag-
netic case, as well. The numerical algorithm will be described in section 2. In section
3, we will make stability analysis of our simulation scheme using the procedure given by
Langdon [6], and will check the numerical accuracy of the electrostatic field calculation.
Simulation results will be shown in section 4, where the ion temperature gradient (ITG)
drift instability will be examined by its two-dimensional version including the effect of

the polarization drift [7]. Summary and discussion will be given in section 5.

2 Simulation Algorithm

2.1 Electrostatic Algorithm in 1-D System

For the time being let us consider an unmagnetized electrostatic plasma in one-
dimensional system. In AMACS-ES, the equation of motion for each particle ¢ with a

shape function S(z) is given by [5]

n+1 n T ngtg —nta n+o
T = AW+ WZAIS(XJ — )BT (1}
tog
At
= vy+qm > ArS(X, — s ) Erte (2)
L

where 2z and ¢ are a particle position and velocity at the n-th time step; ¢, and m,
denote the charge and mass of the particle; X, means the position of a grid point and
the suffix j indicates the grid number. The time-decentering parameter « is in the range
of 0.5 < o < 1. When & = 0.5, Eqs.(1) and (2) are time-centered. As is given in the
above equations, the electric field ™, which is given by the linear interpolation of
Erte = o E"* 4+ (1 — o) E™, acts on the particle at z = 277, Here, 27 is provided by
T = 27 + et

As is described in Eqs.(1) and (2), particles are accelerated by E® and E™*1, while
E"*! is unknown at the n-th time step. In the implicit particle algorithm, thus, the

Poisson’s equation is not solved directly, because the particle position 2!, hence, the

n+1
1

charge density p;(z7™") has not been obtained at the n-th time step. Therefore, the
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Peisson’s equation at the (n + 1)-th time step is approximated by the Taylor expansion

at “13-]‘1
Vit = p et/ (3)
~ pj(ETH)/EO + ép, (i?ﬂ)/eﬂ {4)
with
F = 27+ At + ( qut "”’“)EJ . (5)
Here,
n+l Z gl :L+1) ’ (6)
and
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After solving Eq.{4), one can calculate the particle position and velocity at the (n +
1)-th time step. Conventionally, the implicit term in Eq.(7), which consists of spatial
convolution, is further simplified [1,3,5], that is,

n intz . n
5p,(E7) =~V - Ea X, -5 (=-Ver). (8)

Note that the second summation on [ in Eq.(7) is replaced by —quj“ . This simplification
reduces Eq.(4) to a tri- or penta-diagonal matrix equation of ¢7+*, if 5(z) is the nearesi-
grid-point or linear-interpolation function. In such a case, we can easily solve Eq.(4) by
means of an adequate matrix equation solver.

The present study, however, has disclosed that the approximation in Eq.(8) results
in a serious numerical error in association with the inconsistent filtering. Thus, Eq.(7)
should be employed without any approximation and Eq.(4) should be solved iteratively.

Numerical accuracy of our method will be examined in section 3.

2.2 Electrostatic Algorithm in 2-D System

In a two-dimensional case with an external magnetic field B, particle velocity perpen-

dicular to the magnetic field is given by the ExB drift both for the electrons and ions.



Only parallel velocity vl’l’fl is calculated from the equation of motion as follows:

Xt = xF 4 At
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where X2t = x? + aAtv},. The Poisson’s equation is modified by introducing the polar-

ization term [7]:

1
-v? ”H -V,:- -7 Z mS(X,e — n+])V_L AR ng(x?+1)/50 . (11)

The above equation is also expanded at x**', where

R = xP 4+ Atvg
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Then, we obtain the implicit Poisson’s equation in the two-dimensional system:

-V gb““ - V.- —Zm,S(XJk - nﬂ)VL@S}?l
= pl(XTF )/60 +6pal(EI) feo — SPR(XTTY) (13)
with
bpp(Xr) = -V - Z .6%.5(X, — %211 (14)
Vg

SPp(X™) = -V~
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The displacement vector 6x, for each particle is given by

=Y AzAyS(Xp, — K )a {At

im
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Solving Eqs.(9) and (10) with (13), we obtain the particle positions and velocities at the
{n + 1)-th time step.



3 Linear Properties of Simulation Scheme

3.1 Linear Analysis of Numerical Stability

In this section, we will investigate the numerical stability of our simulation scheme.
According to the linear analysis given by Langdon [6], we will derive a dispersion relation
in the model plasma for the one-dimensional case. Here, electron motions with respect
to the background immobile ions are considered, because we are interested in stability
against the plasma oscillation. Suppose a particle with an unperturbed trajectory of

zioht = @iy + (n + 1) Aty is accelerated by a sinusoidal electric field Fet*X—r(ntlar,

The perturbed particle position z?;)l is expressed by the time integration of acceleration

in the past, such as

gAt?
m

n+l1
L)

> {(s - %) AzE [ae_“’m +(1- ae)}

s=1
6—zw(n+l—s)At Z eikX] S(XJ _ xzuo-})-l-—s-{-a)} ’ (17)
J
where s is a positive integer. The first term in the square bracket at s = 1 corresponds
to the implicit acceleration by E;“’i. Since the particle feels the electric field on its un-
perturbed irajectory in the linear regime, the argument of the shape function becomes
X - 9:?0")'1“”"‘. Taking an average for all particles and operating the Fourier transforma-

tion, we obtain the dipole density P(k,n + 1), which is separated into two parts:
Pk, n+1) = —i[Q(k) + R(k)] p{k)e—(nt1Irt (18)
where

Qk) = w2Atkg(k)S(k)

" {Z (3 - %) (™8t 4 (1 — )] ereitemBlemaadstf2
=2
1 2
+ 5(1 _ a) ot ~[k{(1—a)Af] v3/2} (19)
1
R(E) = @ACrp(R)S() gae b2, (20)

In the above equations, we have assumed the Maxwellian velocity distribution function,

folv) = (1/v270,y exp(—22/2v?). Moreover, xg(k) means the finite difference gradient
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operator for calculating the electric field. It is worthwhile to note that the implicit term
R(k) represents a plasma response to the electric field F***, and that a divergence of
—P(k,n+1) gives the charge density p”*'/e;. Substituting the divergence of Eq.{18) into
the Fourier transformation of Eq.(4), we arrive at the dispersion relation of the imphcit

particle simulation plasma,

I{zl(k) Zs(kp) kpQ (k) + Kop(k)R{E,)] =0, (21)

P

1+

where k5,(k) is the divergence operator for the implicit term in Eq.(7) and K?(k) means
the Laplacian in the finite difference form. The index p shows the alias mode which arises
in the calculation of the charge density defined on the spatial grids. Then, &, is given by
k, = k — p(2n/Az). If the alias modes can be ignored, and if &5,(k) = k, we can simplify
the dispersion relation of Eq.(21) as follows,

2At2 )
14+ E—krp(k)5°(k
% Z (S _ %) [ae—wAt + (1 _ Oé)] ezswAte—[k(s—a)At‘]:;vfﬁ —-0. (22)

In remainder of this section, we numerically solve Eqs.{21) and (22) in a frequency domain
of the plasma oscillation, and examine the numerical stability of our simulation method.

Firstly, let us consider a case without the aliasing effect (p = 0), calculating real and
imaginary parts of w (i.e., w, and w,) in Eq.(22) by the Newton method. In our actual

simulation code, we have used the following operators:

Kk) = & [%} (23)
ke(k) = k f‘fig—’:”") (24)
rsplk) = k. (25)

We take the divergence of £q.(7) in the wavenumber space so that Eq.(25) is satisfied.
Hence, Eq.(22) is valid when the alias modes are dismissed. The shape function which we

have employed is the linear-interpolation function,

sin(kAr/Z)} (26)

S )t[ kAz /2
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Numerical solutions of Eq.{22) with parameters of Az = 12.57)p and @ = 0.5 are shown
in Fig.1(a), where contours of w, and w; are plotted in At — k plane. w, decreases as At
and % increases, respectively, because of the implicit time-difference and the finite grid
effect. The minimum frequency in the Af — k plane is w, = 0.147w,. More importantly,
w, has a small negative value for w,At > 1. Our implicit scheme is, thus, numerically
stable, when the alias modes are ignored.

Secondly, we solve Eq.(21) under the same numerical parameters and operators as in
the case of Fig.1{a). Here, the aliasing effect {p # 0) is fully taken into account. The
numerical result is given in Fig.1{b). One can see that the decrement of w, against & is
larger than that of the case shown in Fig.1(a). Undesirably, there are unstable solutions
(positive w,) due to the aliasing effect in a wide range of the wavenumber space. The
nurmerical instability caused by the alias modes can be stabilized, if we use a much smaller
grid spacing such as Az ~ Ap. In order to realize a particle simulation with an MHD
spatial scale, however, it is necessary to take a large grid spacing (Az > Ap). Although
the employment of a higher order {much smoother) shape function is a candidate to
suppress the numerical instability, it makes the simulation code much more complicated.
Thus, we will introduce a stabilizing effect of the time-decentered scheme, increasing the
decentering parameter o.

We have plotted solutions of Eq.(21) with @ = 0.55 in Fig.1(c). While w, is quite
similar to the case in Fig.1(b), w, in Af—£ space is largely modified by the time-decentering
effect. The unstable solutton, w; > 0, is confined in a large wavenumber region, kAz >
0.3%. No unstable solution is found in a smeall wavenumber region, kAz < 0.3, even in
the case of w,At » 1. If we further introduce an adequate numerical filter which can
damp the large wavenumber mode of £Az > 0.37, we can realize a stable simulation code
against the large time step (w,At 3> 1) and the large grid spacing (Az > Ap). Therefore,
we will use a numerical filter defined by the following equation [1],

W(k) = exp |- (k/k)"™] . (27)

Here, the cutoff wavenumber of k. = 27 /8 Az is sufficient for our purpose. The integer Ny,
which is set to be 4 or 8 in the later simulations, controls the sharpness of the numerical
filter. In addition, the numerical filter should be employed both for p(27*') and §p(277)

consistently, as was discussed in Ref[3]. Otherwise, usage of the numerical filter will
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degrade accuracy of the electrostatic field calculation.

3.2 Exact Treatment of the Implicit Term

In obtaining the future electrostatic potential ¢"*! in an implicit particle simulation,
the implicit Poisson’s equation such as Eq.(4) is employed. After having solved the implicit
equation, particles are pushed by the electric field E**! (= —V¢™*!). Hence, it is not
guaranteed that the future charge density p(z?*') and ¢™*! satisfy the Poisson’s equation,
that is, Eq.(3). Before going into a real simulation, therefore, we must examine how the
numerical error due to the implicit term ép arises, and how Jarge it is.

Suppose that the finite grid effects be neglected for simplicity, then the implicit term
6p(z) given by Eq.(7) can be expressed as follows:

§pesaci(z) =~V - C / da'n(2")S(c — ') f de"E(2")8(z — 2" | (28)

where n.(z) is the density of the particle center. The constant C is defined as C =
aq’At? [2m. For the sake of comparison with the exact case of Eq.(7), we shall examine

the conventional simplified form of the implicit term in Eq.(8), which is rewritten as
Spuim (3) = =V - CB(a) [ do'n(a')S(z — ) (20)

Fourier transformation of the above two equations gives

6pemact(K) = —irs,(k)C / %nc(km—k’)s(k)E(k’)S(k’) (30)
Spamp(k) = —iks,(K)C ] %nc(k—k’)s(k—k’)E(k’). (31)

Apparently, 6pesace(k) and pgmpm (k) exactly coincide, if & = 0 or S(z) is the delta
function. When E(k) is monochromatic (k = '), épepace and Spsimp are, respectively,

given by

Opezact(k) = —iks,(k)Cn(0)S*(k)Ex (32)
Spsmpr (k) = —irg,(£)Cnc(0)S(0)E; . (33)

For a finite value of &k and for the shape function S(k) defined by Eq.(26), thus, the

approximation used in Eq.(8) causes a difference between 6pezoer and 8pgimp. In large



wavenumber regime, especially. §pumm is independent of S(k), while p"*1(k) is propor-

tional to 5*(k). Hence, it is expected from Egs.(4) and (33) that the electrostatic potential

obtained under the approximation of Eq.(8) is under-estimated when & # 0.
Furthermore, in order to solve Eq.{4) directly, we shall move the implicit term to the

left hand side. Then, Eq.(4) is rewritten in a matrix form,
M’chﬁzﬂ = pj(izlﬂ) . (34)

When the implicit Poisson’s equation is solved in the real space, it is difficult to operate
the numerical filter on the implicit term. This is because the filter should be transformed
into the real space in terms of a convolution operator which will, generally, lead to a
large number of non-zero elements of M,;. Thus, the numerical filter does not operate
on the implicit term moved into the left hand side, and hence, the treatment of the
implici¢ term is inconsistent with the filtering of the charge density o(37*'). In addition
to the simplification of the implicit term, the inconsistent filtering enhances the error
in the electrostatic field caleulation. The numerical accuracy of the electrostatic field is
estimated in the linear regime by

e K2 (k)¢ (k) _ 1

SRR S 1t (02)RnB( - SEWAE)

(35)

Here, the Fourier transformation of the finite difference operators are approximated by the
wavenumber k. Through the actual one-dimensional simulation in the next section, we

examine the value of § both for the cases with the exact (Eq.(7)) and simplified (Eq.(8))

implicit terms.

4 Simulation Results

4.1 Numerical Accuracy in Electrostatic Field Calculation

Giving an initial density perturbation of én o sin(kz) for both the electrons and
ions, we have performed several one-dimensional simulations for varying wavenumbers
over hundred time steps with the periodic boundary condition. Parameters used in the
simulations are as follows: o = 0.55, L, = 128Az, Az = 12.57Ap, At = IOMP_I, m, =

100m,, and 7, = 0.017,, where L, means the system length; m,, m,, 7; and T, denote the
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masses and the temperatures of the ions and electrons. We have employed 1,024 particles
per grid spacing both for the electrons and ions. Averaged value of § over a hundred
time steps is plotted as a function of the wavenumber in Fig.2, where the white and
black circles, respectively, represent the results for the cases with the exact and simplified
implicit terms. Dashed line indicates the analytical estimation given by Eq.(35). In the
case of the exact implicit term, the value of § are irrespective of k and nearly equal to 1.
The numerical error is less than 5%. Employing the exact expression of the implicit term
in Eq.(7), therefore, we can perform a simulation run with high numerical accuracy for
the potential calculation. In the simplified case, however, the value of § monotonously
decreases as k increases, as the analytical prediction, i.e., Eq.(35), gives. Large difference
between ¢o K2(k)¢" (k) and p"*!(k) arises for a much smaller wavenumber regime than
the cutoff wavenumber k, (= 27/8Axz), for example, the error reaches to 60% of p"+!(k)
at k = 6r/64Az.

4.2 Dispersion Relation of Electrostatic Waves

Employing the exact implicit term given in Eq.(7), we have performed the simulation
runs for the same parameters with those in the last subsection. In the present simulations,
8,192 particles per grid spacing aze used. We have obtained the dispersion relation of the
electrostatic waves after having run the simulation code over 8,192 time steps. Throughout
the simulation run, the total energy in the simulation system is conserved within an error
of 1%.

The power spectra of the electrostatic potential in the w-k plane are plotted in Fig.3.
The dashed curve represents the dispersion relation of the ion acoustic wave, that is,
w=kC, (C, = \/M) In low frequency regime (w ~ 107*-107%w,), one car find
the significant peaks which are coincident with the theoretical dispersion relation of the
ion acoustic mode. The plasma oscillation, of which the frequency (wpm =~ 0.27w,) is
modulated by the implicit time-difference, can also be detected in the power spectra. The
observed frequencies for the above two modes are in good agreement with the theoretical
values.

In the power spectra, we have found two artificial modes. One of them, which may be

generated by the numerical error in Eq.(4), is seen at the Nyquist frequency wy = r/At.
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The other mode in an intermediate frequency range of w ~ 107?-10""w, would be caused
by the mode coupling of w,y, and wy. This is because the frequency spectra with band
width of 0.06w, are centered arcund wy — wy, and the band width is similar to that
of the frequency-modulated plasma oscillation. Moreover, we have confirmed that the
power spectra of the artificial modes are independent of the ion to electron mass ratio.
The artificial modes, thus, will not affect the low-frequency wave dynamics where the

dynamics of ions plays the leading role.

4.3 Simulation of the ITG Drift Instability

We have performed two-dimensional simulations of the I'T'G drift instability in a system
with a shearless slab geometry for several different time steps. The simulation system is
set in the z-y plane. External magnetic field in the y-z plane is imposed on the system
with an inclination angle of § = tan™"(ky/k), where # = 0.01 in the present simulations.
The electrostatic potential is fixed to zero at z = 0 and L., while the periodic boundary
condition is employed in the y direction. The ion temperature profile in the z direction

is given by

N exp(—#rz)
Ti(e) = Toorr La— exp(—rrL)’ (36)

where x7 = 1.6 x 107°)5" and Ty = 7,.. Other parameters are set as follows; the system
length L, = L, = 164, the grid spacing A = Az = Ay, the ion to electron mass ratio
m;/m, = 1836, and number of particles per unit cell NA = 1024. The magnetic field
intensity is determined so that Q. = w,, where ), is the electron cyclotron frequency.
In the two-dimensional case with the inclined magnetic field and the polarization term,
the critical time step At. for the explicit time integration is governed by the electrostatic
shear Alfvén frequency [7] wy = (k)/kL)(me/m,)?Q,; ie., Af, = wi' = 4285w for
the present parameters. Thus, we will show that our implicit scheme is numerically
stable for the time step At larger than Af., while the explicit scheme is unstable in the
case of At > Af.. We have carried out five simulation rumns, changing the time siep
(At = 2.5 x 1033 x 1{]4wp‘ 1). In the following simulations, only the ITG mode with
wavelength of L, can be excited, because shorter wavelength modes (k > k. = 27/8A)
are artifictally damped by the numerical filter for stabilization of the scheme.

Time evolution of the electric field energy is shown in Fig4. Here, A = 62.57Ap
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and At = 1 x 10*%w;". The field energy exponentially increases with the growth rate of
4.0% 1077w, as the ITG drift instability is generated. Using the maximum entropy method,
we have calculated the real frequency to obtain w, = 6 x 107 "w,. The frequency and
growth rate obtained from the simulation are fairly in good agreement with the theoretical

estimate given by the well-known dispersion relation under the fluid approximation [8]

w = (% + z‘/?g) (kﬁ2 5w§‘ri) N : (37)

For the present parameters, w = 3.5 x 1077 4 6.0 x 10™"w,. The instability saturates at
t=22x 107w; 1, The saturation level of the field energy is about 10~ "nT,. In Table I,

the growth rates of the instability are summarized for the cases of At = 0.25, 0.5, 1.0,
2.0, and 3.0 x 10*w?. As is seen in Table I, the growth rate fluctuates in the large At
regime owing to the numerical error. Nonetheless, all saturation levels of the field energy
for the five cases are nearly equal to 10~"nT,. Therefore, our implicit scheme is said to

be stable even if A > At,, and is applicable to a real low frequency phenomenon such as
the ITG drift instability.

5 Summary and Discussion

In the present study, we have developed an advanced electrostatic version of the macro-
scale implicit particle simulation code (AMACS-ES), and have examined its characteristics

analytically and numerically. The results are surmarized as follows.

1. We have derived the linear dispersion relation of our new implicit particle simulation
algorithm, and have verified its stability by solving the dispersion relation numerically.
The linear analysis has shown that the unstable solutions due to the aliasing effect exist
in the wide wavenumber regime for the time-centered difference scheme. In order to
suppress the numerical instability, we have introduced the stabilizing effect of the time-
decentered scheme, and have employed the numerical filter leading to the damping of
large wavenumber modes.

2. The numerical method for solving the implicit Poisson’s equation has been greatly
improved in this study. The exact implicit term is employed instead of the simplified form.

The accuracy of the electrostatic field calculation, thus, becomes much improved. The
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improvement is verified by the actual simulations. We have also revealed the dangerous
degradation of the numerical accuracy for the simplified implicit term and the inconsistent
filtering.

3. The dispersion relations of electrostatic waves have been examined by means of
the one-dimensional simulation. The power spectra in the w-k space have shown good
coincidence with the theoretical dispersion relation. Especially, the ion acoustic branch
is clearly identified in the w-£ diagram.

4. Based on the scheme developed in one-dimensional case, we have extended our code
to the two-dimensional geometry with the external magnetic field. In the two-dimensional
model, the effect of the polarization drift is taken into account. Giving the ion temperature
gradient perpendicular to the magnetic field, we have carried out simulations of the ITG
drift instability. The obtained frequency and growth rate of the most unstable ITG mode
are in reasonably good agreement with theoretically predicted ones. The growth rate of
the instability, however, is found to fluctuate in a certain range when the time step Af is

changed as shown in Table I.

For stabilization of the alias modes, the high-frequency waves, such as the plasma
oscillation in the one-dimensional case and the electrostatic shear Alfvén wave in the
two-dimensional case, are artificially attenuated in our scheme. Strictly speaking, the
total energy in the implicit particle simulation plasma is not conserved, since the artificial
damping of plasma waves causes numerical cooling of particles. For example, the total
energy in the simulation of At = 1.0 x 10%w," in section 4.3 fluctuates within a level of
0.01% of the initial value. The energy conservation rate observed in the simulation is not
sufficient for our purpose, when we intend to simulate a weakly-saturated instability such
as the I'TG drift instability. This is because the loss of the kinetic energy (~ 3.0 x 107*nT,
at the end of the simulation) is not completely compensated by the increase of the field
energy (~ 1.3 x 107"nT,) and the ion sloshing energy [7] (~ 2.4 x 107*nT.,). In this
case, 20% of the decrement of the kinetic energy is lost because of the numerical cooling,
which may result in the fluctuation of the growth rate seen in Table [. In order to reduce
the excessive cooling, it is important to suppress the numerical noise associated with the
high-frequency waves. The §f method [9] is one potential candidate which can decrease

the rumerical noise resulting from the finite number of particles. Since the §f methed
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is designed for an explicit time integration, however, we need to develop an implicit éf

method.
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Growth rates of the ITG drift instability for different time steps.

Time Step (w;') | Growth Rate (w,)
2.5 x 10° 4.9 x 10~
5.0 x 103 4.9x 1077
1.0 x 10* 4.0x 1077
2.0 x 10% 2.8 x 1077
3.0 x 10* 3.9x 1077
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Figure Captions

FIG. 1.  Numerical solutions of the dispersion relation obtained from the linear
analysis of the simulation scheme for the cases of (a) o = 0.5 without the alias modes, (b)
a = 0.5 and (¢} a = 0.55 with the alias modes. Solid and dashed contour lines indicate
positive and negative values, respectively. For the real part of the solutions (left), the
contour interval of w, /w, is 0.1 in all cases of (a)-(c}. For the imaginary part (right), the
contour levels in case (a) are logarithmically defined as —107%°, —107° ... | and —~107%

in cases (b) and (c), the contour interval of w,/w, is equal to 4 x 1072

FIG. 2. Plots of the electrostatic fields obtained from the actual simulation runs with
the exact (white circles) and simplified (black circles) implicit terms. Dashed line shows
the theoretical estimation given by Eq.(35) where both the simplification of the implicit

term and the inconsistent filtering are employed.

FIG. 3. Power spectra of the electrostatic potential obtained from the one-dimensional
simulation. Dashed curve represents the theoretical dispersion relation of the ion aconstic

mode.

FIG. 4. Time evolution of the electric field energy for the two-dimensional simulation
of the ITG drift instability. In this case, the simulation time step is set to be 1 x
10%w;. The growth rate of the instability obtained by the simulation is consistent with

the theoretical value based on the fluid approximation.
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