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Abstract. It is for the first time demonstrated by means of the three-dimensional

electrostatic Particle-in-Cell (PIC) simulation that the impurity ion transport caused

by blob and hole propagations might not be negligible as compared with other types

of transport. The simulations have shown that the impurity ion density profile in the

blob / hole structure becomes a dipolar profile and the dipolar profile of the impurity

ion density propagates with the blob / the hole. Furthermore, the simulations in

which the initial impurity ion density has a radial gradient have revealed that the

estimated effective radial diffusion coefficient for impurity ions by a single blob / hole

is comparable to the Bohm diffusion coefficient.
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1. Introduction

The blob and the hole are the intermittent filamentary coherent structures along the

magnetic field line in peripheral plasmas of fusion magnetic confinement devices, and the

plasma densities in the blob and the hole are higher and lower than those of background

plasma, respectively. These structures are thought to be created from edge turbulences,

and they play an important role in the radial convective plasma transport in the scrape-

off layer (SOL) [1, 2]. The blob phenomena have been observed in the tokamak, helical,

and other devices [1, 3, 4, 5, 6, 7, 8, 9]. Although many authors have investigated the

blob dynamics on the basis of two-dimensional reduced fluid models [1, 9], kinetic effects

in the blob are reduced to adjustable parameters under some assumptions in such fluid



2

Figure 1. Schematic diagram of the simulation configuration. The slab box shown

on the left side represents the simulation system which describes the SOL of magnetic

confinement devices.

models. Thus, we have validated such assumptions with the first principles method,

that is, the Particle-in-Cell (PIC) simulation, and confirmed that three-dimensional

(3D) electrostatic PIC simulations provide an exact current closure for analysis of blob

transports [10, 11, 12].

On the other hand, it has been pointed out that the blob and hole propagations

can induce impurity ion transport [1, 13]. However, numerical studies regarding the

impurity ion transport with the blob and the hole have not been conducted because of the

difficulty in including minority ions, i.e., impurity ions, in fluid models. Therefore, in this

study, we have developed the 3D-PIC code and investigated dynamics between impurity

ions and the blob and hole structures. In Sec. 2, we briefly mention the simulation

method, configuration, and parameters. In Sec. 3, we show particle simulation results

and some properties of blob and hole propagations with impurity ions. Also, we estimate

the impurity ion transports by a blob or by a hole in certain cases. Finally, we summarize

our work in Sec. 4.

2. Simulation Methodology

In this study, we have investigated dynamics between impurity ions and the blob and

hole structures by means of a three-dimensional electrostatic (the electric field is solved

and the magnetic field is constant in time) PIC simulation code which calculates the

full plasma particle (electron, ion, and impurity ion) dynamics (including the Larmor

gyration motion) in three-dimensional space and three-dimensional velocity coordinates

for all particles in a blob / hole structure and background plasma with the equation

of motion. Also, the self-consistent electric field formed by the charge density that is

calculated from all particles is solved with Poisson’s equation in the code [14].
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In the PIC simulation, an external magnetic field B is set as B = B(z/z) and

∂B/∂x > 0 (the −x, y, and z directions correspond to the radial, poloidal, and toroidal

directions, respectively, as shown in Fig. 1). The external magnetic field strength B

increases in the positive x direction as B(x) = 2LxBLx/(3Lx − x), where Lx, Ly, and

Lz are the system size in the x, y, and z directions and BLx is the magnetic field

strength at x = Lx. At x = 0 (corresponding to the first wall) and both edges in the z

direction (corresponding to the divertor plates), the particle absorbing boundary where

the electric potential ϕ is fixed as ϕ = 0 is placed (i.e., shaded plates in Fig. 1). In the y

direction, a periodic boundary condition is applied. At x = Lx, the reflecting boundary

condition is adopted and the electric potential satisfies ∂ϕ/∂x = 0. A blob / a hole is

initially set as a cylindrical form elongated between both edges in the z direction. That

is, the electron and ion particles are initially distributed by

ne0(x, y) = n0 ± nb0 exp

(
−(x− xb0)

2

2δ2bx
− (y − yb0)

2

2δ2by

)
, (1)

and

ni0(x, y) =
|qe|
qi

ne0(x, y)−
qimp

qi
nimp0(x, y), (2)

respectively. These initial electron and ion density equations include the blob / hole

structure and background plasma. Here, n0 is the initial density of the background

plasma, nb0 is the initial density amplitude of the blob / the hole, δbx and δby are

the blob / hole sizes in the x and y directions, and qe, qi, and qimp are the charges of

electron, ion, and impurity ion. Equations (1) and (2) mean that the blob / the hole

is initially located along the ambient magnetic field at around (x, y) = (xb0, yb0). The

initial impurity ion density nimp0 is given by

nimp0(x, y) = nimp1, (3)

(in the simulations shown in Sec. 3.1),

nimp0(x, y) = nimp1 exp

(
−(x− xb0)

2

2δ2bx
− (y − yb0)

2

2δ2by

)
, (4)

(in the simulations shown in Sec. 3.2), or

nimp0(x, y) =
nimp1

2

[
1− tanh

(
x− xs

∆s

)]
, (5)

(in the simulations shown in Sec. 3.3) where nimp1 is the initial density amplitude of the

impurity ion, xs is the radial position of the boundary of the impurity ion region, and

∆s is the width of the transition region. Equations (3)–(5) indicate that the impurity

ions are distributed uniformly in the system, the impurity ions are placed in the blob

/ hole structure, and the impurity ions mainly exist on the first wall side (x < xs),

respectively. The initial temperature in the blob is equal to that of the background

plasma and the initial velocity distribution is given by Maxwellian. The simulation

system has no particle and heat sources. Though the density distribution does not
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satisfy equilibrium with the magnetic field, this assumption is appropriate in the low

beta limit.

The simulation parameters are as follows. The number of spatial cells in the

simulation system is set as Nx ×Ny ×Nz = 64× 64× 256 (in the simulations shown in

Sec. 3.1) or 64 × 64 × 2048 (in the simulations shown in Sec. 3.2 and Sec. 3.3), where

Nx = Lx/∆g and ∆g is the grid spacing whose size is approximately equal to 0.5 ρs
in this study. Here, ρs is defined as ρs = cs/Ωi, cs is the ion acoustic speed given as

cs = (Te/mi)
1/2, Ωi is the ion cyclotron frequency at x = Lx, Te is the initial electron

temperature, and mi is the ion mass. The time step is Ωi ∆t = 1.21 × 10−3 (in the

blob propagation simulations) or 1.26×10−3 (in the hole propagation simulations). The

ion-to-electron and impurity-to-ion mass ratios are mi/me = 100 and mimp/mi = 4

or 12. The charges are set as −qe = qi = qimp. The initial ion-to-electron and

impurity-to-ion temperature ratios are Ti/Te = 0.01 and Timp/Ti = 1 (we assume low

ion and impurity ion temperatures (i.e., small Larmor radiuses) in order to investigate

fundamental dynamics). The external magnetic field strength is given as Ωi/ωpi = 0.5

where ωpi is the ion plasma frequency in the background plasma. The initial density

ratio of the blob to the background plasmas is nb0/n0 = 2.7 in the simulations of blob

propagation. On the other hand, the initial density ratio between the center of the hole

and the background is (n0−nb0)/n0 = 0.27 in the simulations of hole propagation. The

initial blob / hole size is δbx = δby ≈ 2ρs. The initial positions of the blob and the hole

are (xb0, yb0) = (3Lx/4, Ly/2) and (Lx/2, Ly/2), respectively. The initial ratio between

impurity ion and background electron densities is given as nimp1/n0 = 0.067 (in the

simulations of blob propagation) or 0.061 (in the simulations of hole propagation) since

it is ∼ 5 % in experiments for investigation of impurity transports (e.g., [15]). There

are 72 electron simulation particles and about 68 ion simulation particles per cell on

average. Also, there are about 70 impurity simulation particles per cell in the impurity

region. (In PIC simulation, the simulation particle is “Superparticle” which contains a

large number of real charged particles. The plasma parameters in PIC simulation do not

depend on the number of real charged particles contained in a Superparticle because the

charge-to-mass ratio is equal to that of the real particle [14]. In this study, the number

of real impurity ions contained in the simulation particle of impurity ion is reduced

than those of electron and ion in order to increase the number of simulation particles

of impurity ion and improve the statistical property for impurity ion.) Although the

electron and ion Larmor radiuses are smaller than the grid spacing in these parameters,

the Larmor motion and the drift motions caused by gyration are resolved because the

value of particle position has a real (continuous) number (not a discrete number). The

charge density on the discrete grid points is calculated from the continuous particle

position by the charge assignment and the force at the particles is calculated from the

fields on the grid points by the interpolation in PIC simulation [14].
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Figure 2. Impurity ion density distributions in poloidal cross-section at various times

at z = Lz/2 with the blob (a) / hole (b) propagation, where the initial impurity ion

density is spatially uniform and mimp/mi = 4. Here, the contour lines in each panel

represent the electron density distributions.

3. Simulation Results

In this section, we introduce simulation results. In Sec. 3.1, we show simulation results

of blob and hole propagations with uniformly distributed impurity ions. In Sec. 3.2,

the dynamics of impurity ions which are initially placed in a blob / hole structure are

shown. In Sec. 3.3, we present simulation results of impurity ion transport from the first

wall side in the grad-B direction by blob / hole propagation and estimate an effective

diffusion coefficient.

3.1. Blob / Hole Propagation with Uniformly Distributed Impurity Ions

Figure 2 shows results of simulations in which the initial impurity ion density is spatially

uniform as Eq. (3). As seen from Figs. 2 (a) and (b), it is shown that impurity ions in

the blob / the hole are dragged from the higher to the lower potential sides (the dipole

potential structure on the poloidal cross-section is created in a blob / a hole [11, 12]) by

the polarization drift and that the dipolar profile of impurity ion density is transported

with the blob / the hole by trapping impurity ions in the potential well of the blob / the

hole. Figure 3 indicates that the propagation speed of the blob / the hole with impurity

ions is nearly equal to that without impurity ions. On the other hand, the fact that
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Figure 3. Evolution of the x position of the electron center of mass of the blob (red

lines) / the hole (black lines) at z = Lz/2 with impurity ions (thick solid and broken

lines) / without impurity ions (thin lines).

the propagation speed becomes slightly slower as the impurity ion mass increases proves

that the dipolar profile of impurity ion density arises from the polarization drift.

In order to prove the mechanism mentioned above quantitatively, we consider the

theoretical estimation of impurity ion density with the continuity equation by the

method similar to the analysis shown in [16] in which impurity clusters in vortices

were observed in edge turbulence by the numerical simulation based on the two-

dimensional Hasegawa-Wakatani model with the impurity passive-fluid model. The

continuity equation is given as

D nimp

D t
+ nimp∇ · (vE + vg + vp) = 0, (6)

where D/Dt represents ∂/∂t + vimp · ∇ (the Lagrangian derivative), vimp is defined

as vimp = vE + vg + vp, and vE, vg, and vp are the E × B, the grad-B, and the

polarization drift velocities, respectively. Since the magnetic field is parallel to the z

axis, the compression by the grad-B drift is zero, the compression by the E ×B drift is

negligible, and the polarization drift velocity is given as

vp = − mimp

qimpB2

D (∇ϕ)

D t
, (7)

Eq. (6) becomes

D

D t
[ln (nimp)− ζΦ] ≈ 0. (8)

Thus, we obtain the theoretical estimation of impurity ion density as

nimp ≈ nimp0 exp(ζΦ), (9)

where Φ and ζ are defined as

Φ =
mi

qiB2

(
∇2ϕ− 2

B

∂B

∂x

∂ϕ

∂x

)
, (10)

and

ζ =
mimp/qimp

mi/qi
, (11)
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Figure 4. Impurity ion density (top panel) and Φ (bottom panel) distributions in

poloidal cross-section at Ωit = 43.6 at z = Lz/2 with the blob propagation. Here, the

contour lines in each panel represent the electron density distributions.

Figure 5. Impurity ion density (top panel) and Φ (bottom panel) distributions in

poloidal cross-section at Ωit = 45.4 at z = Lz/2 with the hole propagation. Here, the

contour lines in each panel represent the electron density distributions.
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given by Eq. (9) when ζ = 12, 4, and 1. The dots plotted in the panel show the values

of Φ and nimp on the grid points in the region shown in Fig. 4.
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Figure 7. Scatter plot of Φ and impurity ion density at Ωit = 45.4 with the hole

propagation. The blue open circles, the red square, and the green pluses represent the

results in the cases where mimp/mi = 12, 4, and 1, respectively. Also, the blue broken,

the red thick solid, and the green thin solid lines present the theoretical estimations

given by Eq. (9) when ζ = 12, 4, and 1. The dots plotted in the panel show the values

of Φ and nimp on the grid points in the region shown in Fig. 5.
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respectively. The variable Φ corresponds to the vorticity of the E × B drift velocity

in the two-dimensional analysis. Figures 4 and 5 indicate the correlation between the

distribution of impurity ion density and that of Φ as expected by Eq. (9). Furthermore,

the scatter plots of Φ and impurity ion density seen in Figs. 6 and 7 show that the

observed impurity ion density is in agreement with the theoretical estimation. This

fact means that the dipolar profile of impurity ion density occurs by the compressibility

introduced by the polarization drift. The similar correlation between the vorticity and

the impurity ion density was observed in the two-dimensional fluid simulation of plasma

turbulence [16]. Though the impurity ion has not made one cyclotron motion completely

in the case where mimp/mi = 12 in Figs. 6 and 7, it is thought that the averaged

impurity ion velocity has become comparable to the polarization drift velocity with the

acceleration by the electric field, that is, the drift approximation in the above discussion

may be available. On the other hand, if the charge (i.e., ionization degree) of an impurity

ion is changed by collisions during the propagation of a blob / a hole, the variation of

impurity ion charge could influence the impurity ion density distribution because the

modulation of impurity ion density depends on ζ, i.e., the charge-to-mass ratio as shown

in Eq. (9).

Although the blob / hole propagation is hardly influenced by the impurity ions,

the impurity ions in the blob / the hole move in the ∓∇B direction as shown in Fig. 8.

The impurity ion averaged radial speed in the blob / the hole is close to the blob / hole

propagation speed obtained as vb = −0.064 cs or vh = 0.045 cs from Fig. 3.

3.2. Dynamics of Impurity Ion in a Blob / Hole Structure

Figure 9 presents results of simulations in which impurity ions are initially placed in

a blob / hole structure as Eq. (4). Although the previous simulations seen in Sec. 3.1

do not demonstrate actual impurity ion transport clearly, Fig. 9 indicates that most of

the impurity ion particles which stay in the blob / hole structure at the initial stage

are transported with the blob / the hole after shaping the dipolar profile through the

polarization drift. Figures 10 and 11 show the time evolutions of the positions of the

impurity ion center of mass with the blob and hole propagations, respectively. In Figs. 10

and 11 it is found that the impurity ion center of mass moves with the blob and the

hole. Also, the evolution of the y position of the impurity ion center of mass in the

hole propagation case shown in Fig. 11 proves that many impurity ions are dragged to

the lower potential side by the polarization drift. However, the impurity ion center of

mass does not tend to go to the lower potential side in the blob propagation case seen

in Fig. 10. This fact is thought to arise from the thin spread of impurity ions around

the potential well as shown in the center and right panels of Fig. 9 (a).

3.3. Impurity Transport by Blob / Hole Propagation

Figures 12 and 13 show results of simulations in which the initial impurity ion density

has a radial gradient as Eq. (5). Here, the radial position of the boundary of the
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Figure 8. Distributions of the x components of impurity ion averaged velocity in the

blob (a) and hole (b) cases at z = Lz/2, where mimp/mi = 4. In each figure, the left

panel shows the 2D profile in the poloidal plane, while the right panel presents the 1D

profile along the red line at x = 21.3ρs (a) or 18.7ρs (b) in the 2D profile. Here, the

contour lines in the 2D profiles represent the impurity ion density.

impurity ion region and the width of the transition region are set as xs = 5Lx/8 and

∆s = 8∆g ≈ 4ρs. In the case of blob propagation shown in Fig. 12, the blob is initially

located in a region without impurity ions (x > xs) since xb0 = 3Lx/4 and xs = 5Lx/8.

Then, the blob penetrates to the impurity ion region (x < xs). Figure 12 indicates that

the blob sweeps impurity ions with the blob propagation and that the impurity ions

which surround the blob move in the grad-B direction by the E ×B drift.

On the other hand, in the case of hole propagation shown in Fig. 13, the hole is

initially placed in the impurity region (x < xs) since xb0 = Lx/2 and xs = 5Lx/8. Then,

the hole moves from the impurity region gradually. Figure 13 demonstrates that the

hole carries impurity ions in the grad-B direction.

Although the blob, the hole, and the impurity ion transport by the blob and hole

propagations are convective, we have considered the effective radial diffusion coefficients

for impurity ions by the blob and hole propagations in order to compare that transport

with conventional diffusive transports. The effective radial diffusion coefficient Dimp⊥
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Figure 9. Impurity ion density distributions in poloidal cross-section at various times

at z = Lz/2 with the blob (a) / hole (b) propagation, where impurity ions are initially

located in the blob / the hole and mimp/mi = 4. Here, the contour lines in each panel

represent the electron density distributions.
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Figure 10. Evolutions of the x (red lines) and y (black lines) positions of the impurity

ion center of mass at z = Lz/2 with the blob propagation. The solid and broken lines

represent the spatial variations of the impurity ion center of mass and the electron (in

the blob) center of mass, respectively.

is calculated from the impurity ion radial flux Γimp⊥ on y-z plane at x = xs in the

simulation system by

Dimp⊥ =
Γimp⊥

∇⊥nimp

≈ 2 ∆s Γimp⊥

nimp1

. (12)

The effective radial diffusion coefficients in the simulations seen in Figs. 12 and 13 are
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Figure 12. Impurity ion density distributions in poloidal cross-section at various

times at z = Lz/2 with the blob propagation, where the initial impurity ion density

has a radial gradient, xs = 19.4 ρs, and mimp/mi = 4. Here, the contour lines in each

panel represent the electron density distributions.

obtained as Dimp⊥/DB = 2.66 and 1.26, respectively, where DB is the Bohm diffusion

coefficient defined as DB = Te/(16|qe|BLx). Here, Γimp⊥ is provided with the averaged

flux between Ωi t = 1.2 and 116.2 (the blob case) / Ωi t = 1.3 and 117.3 (the hole case).

Although the coefficient by the blob is larger than that by the hole, it is obvious that

the hole transports impurity ions further from the impurity region than does the blob.

4. Summary and Discussion

This study first shows the following facts regarding dynamics between impurity ions and

the blob / hole structure by means of the 3D-PIC simulation: (1) the dipolar profile of
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Figure 13. Impurity ion density distributions in poloidal cross-section at various

times at z = Lz/2 with the hole propagation, where the initial impurity ion density

has a radial gradient, xs = 20.2 ρs, and mimp/mi = 4. Here, the contour lines in each

panel represent the electron density distributions.

impurity ion density in the blob / the hole is formed, (2) such a density profile propagates

with the blob / the hole, and (3) the effective radial diffusion coefficient for impurity

ions by a single blob / hole is comparable to the Bohm diffusion coefficient. Although,

of course, the effective diffusion coefficient should be multiplied by the production rate

of blobs / holes per time and area to calculate an actual coefficient, such a type of

transport might not be negligible as compared with other types of transport because

it was observed that the ratio between the radial particle flux by the blob and the

total radial particle flux is ∼ 0.5 in the tokamak experiment [3]. Furthermore, the

impurity ion transport by the blob / the hole might be able to explain the difference

of impurity transport property between tokamak and helical devices since the blob /

hole propagation direction in helical devices is opposite to that in the tokamak devices

(low-field side).
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