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Abstract. The mechanism of the partial collapse observed in the experiment with the

background magnetic field changing in the Large Helical Device (LHD) is numerically

investigated with a nonlinear magnetohydrodynamics (MHD) simulation. Since the

different time scales of the perturbations and the background field changing have to be

treated simultaneously for the analysis of this plasma, a multi-scale simulation scheme

is developed. The effect of the perturbation dynamics on the equilibrium pressure and

rotational transform is taken into account in this scheme. The result indicates that the

collapse is caused by the destabilization of an infernal-like mode due to the magnetic

hill enhanced by the change of the background field. The mechanism of the reduction

of the central beta observed after the partial collapse in the experiment is also analyzed

in relation with the effect of the background field changing.

PACS numbers: 52.65.Kj,52.55.Hc
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1. Introduction

In the design study of DEMO reactors, it is crucial to avoid collapse phenomena caused

by the magnetohydrodynamics (MHD) instabilities. For this purpose, we have to

identify the stability window against the instabilities in the freedom of the magnetic

configuration space. In heliotron configurations, such as the Large Helical Device

(LHD) [1], pressure driven modes are the most dangerous MHD instabilities. However,

systematic estimation methods for the collapse boundary against the modes in the

configuration space have not been established yet. The horizontal position of the

vacuum magnetic axis in the major radius direction, Rvax, is one of the dominant

control parameters concerned with the stability. In the LHD experiments, the highest

average beta value of 5.1% is obtained in the configuration with Rvax = 3.6m [1]. When

the magnetic axis is shifted inwardly, the magnetic hill in the vacuum configuration is

enhanced, and therefore, the stability against the pressure driven mode is expected to

be degraded. Hence, it is necessary to identify the collapse boundary in the inward shift

of the magnetic axis to obtain the knowledge for the design of the heliotron type of

DEMO.

In the LHD, an experiment called a magnetic axis swing operation was carried out

to investigate the collapse boundary [2]. In the operation, the background poloidal field

was changed during a discharge so that the corresponding vacuum magnetic axis position

was shifted inwardly in a constant rate from Rvax = 3.6m to Rvax = 3.5m. During the

discharge, a partial collapse in the core electron temperature was observed. On the other

hand, no collapse was observed in the case where the corresponding vacuum magnetic

axis was fixed as Rvax = 3.6m without the background field changing. Thus, in the

present study, we analyze the mechanism of the partial collapse with a nonlinear MHD

simulation.

In the analysis of the plasma behavior in the magnetic axis swing operation, we

have to incorporate the effects of the background field changing in the simulation. The

equilibrium quantities change depending on the background field changing, which affect

the perturbation dynamics. Also, the nonlinear evolution of the perturbation affects the

equilibrium. Therefore, the time evolution of both equilibrium and perturbed quantities

should be treated simultaneously. However, the time scales of these quantities are quite

different. In the magnetic axis swing discharge, the background field is changed so that

Rvax varies by 0.1m in 2sec. On the other hand, the typical time scale of the perturbation

dynamics is the Alfvén time, which is in the order of 10−6sec. Therefore, we have to

solve a multi-scale problem.

We have developed a simulation scheme to treat such problems including two

dynamical processes with quite different time scales. Originally, we developed a scheme

to analyze the LHD plasma in the beta ramp-up phase [3]. The scheme is composed

of the calculations of nonlinear dynamics and three-dimensional static equilibria. In

the time evolution, the equilibrium is updated every certain length of the dynamics

calculation. The NORM code [4] based on the reduced MHD equations [5, 6] is used for
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the analysis of the perturbation dynamics corresponding to the short time scale, and the

VMEC code [7] is used for the equilibrium update corresponding to the long time scale.

The deformation of the pressure profile due to the resistive pressure driven instability

dynamics is incorporated in the equilibrium update. By utilizing this scheme, we showed

that there exists a path toward a high beta region without a significant collapse even in

the linearly unstable configuration. In this calculation, the effect of the plasma heating

for the beta ramp-up was included, while the background field was kept constant.

We utilize the basic idea of the original multi-scale scheme in the analysis of the

plasma with the magnetic axis swing. And we modify the scheme so that the effect of

the background field changing is included and the beta value is kept constant. Recently,

we analyzed the magnetic axis swing plasma by utilizing the modified multi-scale scheme

and obtained a preliminary result showing a pressure collapse [8]. It was found that the

growth of an infernal-like mode is accelerated by the change of the background field and

the nonlinear evolution leads to the partial collapse. However, the result showed that

the mode is destabilized also in the case without the background field changing, while

the plasma is stable in the experiment in this case.

Thus, in the present analysis, in order to obtain a result that correlates well with

the experiment, we improve the simulation procedure. First, we use a better initial

condition of the pressure and the rotational transform. For the initial pressure, we use

a profile similar to the experimentally observed profile. For the rotational transform,

we use a nonlinearly saturated profile obtained in a preparatory calculation. Next, we

improve the multi-scale scheme so as to incorporate the changes of not only the pressure

but also the rotational transform due to the dynamics in the equilibrium update, while

the equilibrium rotational transform was automatically determined under the no net

current constraint in the recent analysis [8]. These improvements allow us to reproduce

the plasma behavior closer to the experimental result, and to analyze the details of the

collapse phenomena.

This paper is organized as follows. In Section 2, the multi-scale scheme is explained.

Particularly, we focus on the improved points beyond the procedure explained in Ref.[8].

The details of the procedure are given. In Section 3, the simulation results are compared

with the experimental results. The mechanism of the appearance and the repetition of

the partial collapse is discussed. Concluding remarks are given in Section 4.

2. Multi-Scale Scheme Incorporating Background Field Changing

The main frame of the present multi-scale scheme is similar to that explained in Ref.[8].

The time evolution of the plasma is simulated in a sequence of time intervals with a fixed

length. In each interval, a predictor-corrector method is employed. In the i-th interval

of ti ≤ t ≤ ti+1, three dimensional equilibria are calculated at t = ti and t = ti+1 by

means of the VMEC code [7] with the corresponding background vacuum magnetic field.

The toroidally averaged equilibrium quantities needed for the dynamics calculation are

obtained from the VMEC equilibria and interpolated into the value at every time step of
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the nonlinear dynamics calculation. Then, the time evolution of the nonlinear dynamics

is calculated with the interpolated quantities by means of the NORM code. This code

solves the reduced MHD equations [5, 6], which are composed of the Ohm’s law, the

vorticity equation and the pressure equation for poloidal flux Ψ, stream function Φ and

pressure P . The flux coordinates (ρ, θ, ζ) are employed, where ρ denotes the square root

of the normalized toroidal magnetic flux, and θ and ζ are the poloidal and the toroidal

angles, respectively. The detail of this code is explained in Ref.[4, 8]. In this multi-

scale scheme, it is essential to incorporate the change of the pressure and the rotational

transform due to the dynamics as well as the change of the background field in the

equilibrium calculation. In the present study, the scheme is improved mainly in the

incorporation procedure of the rotational transform change from that used in Ref.[8].

Here we focus on the improvement in this section.

The first improved point is that the fixed rotational transform constraint is

employed in each VMEC equilibrium calculation. In the VMEC code, we can use either

fixed or free boundary condition. Furthermore, we can also use either constraint of no

net toroidal current or fixed rotational transform. In the analysis of the plasma with the

background field changing, the free boundary calculation is essential. Besides, in order

to incorporate the change in the rotational transform due to the dynamics calculation,

the fixed rotational transform constraint is desirable. However, it is difficult to obtain

a good convergence for fine radial grids in the free boundary equilibrium calculation, in

particular, under the fixed rotational transform constraint. Thus, in order to obtain a

solution in fine grids with sufficient convergence, we run the code two times in succession.

In the first run, we calculate the free boundary equilibrium with coarse grids under

the no net toroidal current constraint. Here, we assume that the net toroidal current

corresponding to the change of the rotational transform is too small to affect the position

and the shape of the plasma boundary. In this run, the change of the background field

is incorporated. In the second run, we calculate a fixed boundary equilibrium with

fine grids under the fixed rotational transform constraint utilizing the boundary data

obtained in the first run.

The next point is the modification of the initial condition. In order to provide the

initial rotational transform, we utilize a preparatory simulation. In the present study,

we assume that the initial state is a stationary state at high beta. We consider that

such state results from nonlinear saturation of weak turbulence of the pressure driven

modes [3]. In order to obtain such a situation, we calculate the time evolution with

the vacuum axis position fixed. We employ the poloidal magnetic flux and the current

density obtained in the saturation phase for the initial condition of the present study,

which are denoted by Ψ† and J†
ζ , respectively. Then, the initial equilibrium rotational

transform´ι
ini
eq is obtained as

´ι
ini
eq =

1

ρ

d〈Ψ†〉
dρ

, (1)

which is used for the initial equilibrium calculation together with a specified pressure

profile P ini
eq . Here the angle bracket indicates the average over the angular variables and
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the subscript of ‘eq’ denotes an equilibrium quantity. We utilize J†
ζ for the initial net

toroidal equilibrium current density in the vorticity equation as

J ini
ζeq(m = 0) = 〈J†

ζ 〉, (2)

corresponding to´ι
ini
eq , where m and n are the poloidal and the toroidal mode numbers.

Final point is the specification of the rotational transform in each equilibrium

calculation, which is needed for the fixed rotational transform constraint. In the

predictor step, we specify the rotational transform at t = ti in the i-th interval, with

utilizing the dynamics result in the previous interval, as

´ι
pre
eq,i(ti) =´ι

ini
eq +

1

ρ

d〈Ψ̃〉cori−1(ti)

dρ
, (3)

and at t = ti+1

´ι
pre
eq,i(ti+1) =´ι

pre
eq,i(ti). (4)

under the assumption of the constant rotational transform in the predictor step. Here,

the superscripts of “pre” and “cor” indicate the quantity in the predictor and the

corrector steps, respectively, and the subscript of i means the quantity in the i-th

interval. The variable of Ψ̃ denotes the poloidal magnetic flux perturbation obtained by

the nonlinear dynamics calculation. In the corrector step, we use the same equilibrium

quantities as in the predictor step at t = ti, and therefore,

´ι
cor
eq,i(ti) =´ι

pre
eq,i(ti). (5)

We specify the rotational transform at t = ti+1, with utilizing the dynamics result in

the predictor step, as

´ι
cor
eq,i(ti+1) =´ι

ini
eq +

1

ρ

d〈Ψ̃〉prei (ti+1)

dρ
. (6)

Corresponding to the above specification of the rotational transform, the net equilibrium

toroidal current density given by eq.(2) is kept for the whole time evolution i.e.,

Jζeq(m = 0)(t) = J ini
ζeq(m = 0).

The equilibrium pressure is determined in the way similar to Ref.[8]. That is, we

use

P pre
eq,i(ti) = 〈P 〉cori−1(ti), P pre

eq,i(ti+1) = P pre
eq,i(ti) (7)

in the predictor step, and

P cor
eq,i(ti) = P pre

eq,i(ti), P cor
eq,i(ti+1) = 〈P 〉prei (ti+1) (8)

in the corrector step. Here 〈P 〉 denotes the average part of the pressure obtained in the

nonlinear dynamics calculation.

Concerning with the numerical parameters, the numbers of the radial grid in

the VMEC calculation are 61 and 121 for the free and fixed boundary calculations,

respectively. In the nonlinear dynamics calculation with the NORM code, the number

of the radial grid is 96. The toroidal and poloidal mode numbers are chosen as

0 ≤ n ≤ 7 and 2n − 20 ≤ m ≤ 2n + 20, respectively. In the dynamics calculation,
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we employ the dissipation parameters, S = 1.0 × 107, ν = 5.0, κ⊥ = 1.0 × 10−6 and

κ‖ = 4.0×10−3 for magnetic Reynolds number, viscosity, and perpendicular and parallel

heat conductivities, respectively, Here S is defined as S = τR/τA with the poloidal Alfvén

time τA = R0
√
µ0ρm/B0 and the resistive diffusion time τR = µ0a

2/η, where B0, R0,

a, ρm, µ0, and η are the magnetic field at the magnetic axis, the major radius, the

average minor radius, the mass density, the vacuum permeability, and the resistivity,

respectively, and the values of R0 = 3.6m, a/R0 = 0.1566 and τA = 2.2 × 10−6sec are

used. The coefficients of ν, κ⊥ and κ‖ are normalized by (a2ρm)/τA, a
2/τA and R2

0/τA,

respectively. The heat source term Q is also specified in the vorticity equation so that

the beta value should be constant for the given viscosity and heat conductivity in the

region before the collapse. The profile and the absolute value are determined by a trial-

and-error technique in the observation of the beta value over the initial several intervals.

Once the source term Q is specified, the term is fixed in the whole time evolution to

simulate the situation with the constant heating.

3. Simulation of Partial Collapse

In the magnetic axis swing experiment [2], the background field was changed so that

the corresponding vacuum magnetic axis was shifted from Rvax = 3.6m at t = 1.02s to

Rvax = 3.5m at t = 3.02s in the LHD configuration with γc = 1.20. The change rate

of the Rvax is 0.05m/sec. Here, γc is the pitch parameter of the helical coils [10]. In

the discharge, the neutral beams were applied continuously. The profiles of the electron

temperature and the electron density were observed as functions of the major radius,

R, on the mid plane of a horizontally elongated cross section by means of the Thomson

scattering system. By utilizing the data of the electron temperature and the density,

and assuming that the ion temperature is equal to the electron temperature, we can

evaluate the pressure profile and identify the peak position of the profile, Rpeak. This

peak position can be recognized to coincide with the magnetic axis position. We evaluate

the maximum beta value around the peak position as the central beta, β0.

Figure 1 shows the time evolution of β0 and Rpeak together with Rvax in the

experiment. A partial collapse is observed after t = 2.200s. Figure 2 shows the pressure

profiles at t = 2.200s and 2.266s normalized by the magnetic pressure. The central beta

is dropped from β0 = 5.6% at t = 2.200s to β0 = 4.6% at t = 2.266s. Furthermore, the

peak position is shifted inwardly from Rpeak = 3.71m at t = 2.200s to Rpeak = 3.61m

at t = 2.266s. On the other hand, Rvax changes much more slowly as shown in Fig.1.

Therefore, the observed inward axis shift during the collapse is much larger than the

shift due to the background field changing. Figure 1 also shows the time evolution of

the (m,n) = (2, 1) component of the magnetic fluctuation. The substantial fluctuation

appears accompanied by the occurrence of the partial collapse. After the partial collapse,

β0 gradually decreases in average in spite of the continuous heating as shown in Fig.1.

Some small sudden drops of β0 also appear in the phase. The (m,n) = (2, 1) magnetic

fluctuation is still detected continuously.
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By applying the multi-scale scheme, we analyze these behaviors of the plasma in the

magnetic axis swing experiment. In this analysis, we change the background magnetic

field linearly so that Rvax = 3.60m at t = 7500τA and Rvax = 3.50m at t = 307500τA.

The change rate of the Rvax is 0.15m/sec, which is three times larger than that in the

experiment. We employ this large change rate to reduce the computation time. As

an initial equilibrium pressure P ini
eq , the profile close to that experimentally observed

at t = 2.200s is employed, which is shown by the solid line in Fig.2. The initial

equilibrium rotational transform´ι
ini
eq is obtained by utilizing the preparatory simulation

with Rvax = 3.55m, as discussed in Section 2. The profiles of P ini
eq and´ι

ini
eq are plotted

as functions of ρ in Fig.3. In the time evolution, the length of one interval is 7500τA,

corresponding to 16.5msec. In each interval, we follow the the nonlinear dynamics for

500000 steps with the time step of 1.5 × 10−2τA. We assume a fixed heat source of

Q = Q0(1 − ρ2)50 to keep the beta value constant. For comparison, we also calculate

the time evolution of the case with Rvax fixed to 3.60m without the background field

changing under the same condition.

Figure 4 shows the time evolution of the kinetic energy of the n = 1 component,

Ek, which is defined as

Ek =
1

2

∫ ∑
m

|∇Φm1 ×∇ζ|2dV, (9)

where dV denotes the volume integral in the plasma region and the subscripts of Φ mean

the mode numbers. In the case with the background field changing, the n = 1 mode is

destabilized around t = 41500τA, and then, this mode dominantly grows. The growth

rate increases in the time evolution and the mode is saturated about t = 187500τA.

Figure 4 also shows the time evolution of the central beta β0 = 2µ0P0/B
2
0 , where P0 is

the pressure at the magnetic axis. In the saturation of Ek, β0 drops abruptly, which

corresponds to the partial collapse observed in the experiment. On the other hand, in

the case without the background field changing, the plasma is marginally stable in the

whole time range. Thus, the situation that the plasmas are stable and unstable in the

cases without and with the change of the background field, respectively, is reproduced

in this simulation, which corresponds to the experimental result.

In order to understand the characteristics of the mode triggering the partial collapse,

we plot the profile of the n = 1 component of the stream function at t = 157500τA in

Fig.5. The (m,n) = (2, 1) component is dominant and peaked as is usually seen in the

profile of the interchange mode. However, the peak position of the component is deviated

from the position of the´ι = 1/2 surface. Furthermore, the sideband components have the

same sign and have amplitude comparable to the dominant component. These properties

indicate that the mode is like an infernal mode [11, 12] rather than an interchange mode.

Therefore, the partial collapse is caused by the saturation of the infernal-like mode, of

which the dominant component is the (m,n) = (2, 1) component. The reason why

this mode is dominantly excited rather than interchange modes is that the rotational

transform is close to 1/2, the magnetic shear is weak and the pressure gradient is steep

in the vicinity of the magnetic axis, as shown in Fig.3. The mode numbers of the
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dominant component agree with those of the magnetic fluctuation that was observed

in the experiment accompanied with the partial collapse. Since the infernal mode is a

pressure driven mode, the destabilization is affected by the magnetic hill. Figure 6 shows

the change of V ′′ in the time evolution, which is the second derivative of the plasma

volume with respect to the toroidal magnetic flux. The magnetic hill is enhanced at

t = 322500τA compared with that in the initial equilibrium. This is attributed to the

inward shift of the magnetic axis brought by the background field changing. Thus, the

infernal-like mode is destabilized and the growth is accelerated by the enhancement of

the magnetic hill during the time evolution.

In Fig.4, the time evolution of the poloidal component of the perturbed magnetic

field at the plasma edge, Bθ2,1 = ∇ζ×∇Ψ̃21 ·∇θ, is also plotted in the linear scale for the

comparison with the experimental result shown in Fig.1. The perturbed field exceeds

the value of 10% of its maximum value at Rvax = 3.54m. This Rvax can be recognized

as the value at the mode appearance, which agrees well with the experimental result.

The repetition of the partial collapse is also obtained in the simulation. As shown

in Fig.4, the kinetic energy of the n = 1 component decreases after the first saturation

and reaches a minimum value at t = 1875000τA. The kinetic energy increases again

and reaches the second saturation. This repetition of the increase of the kinetic energy

causes the repetition of the pressure collapse. The central beta decreases during the

first collapse and reaches a minimum value at t = 202500τA. Then, the central beta

recovers and reaches a maximum value at t = 255000τA. Figure 7 shows the 〈P 〉 profiles
at the time when the central beta reaches the minimum and the maximum values in the

repetition. The maximum β0 after the first collapse is lower than that just before the

first collapse, which is also seen in Fig.4.

Figures 8 and 9 show the time evolution of the bird’s eye view of the pressure, the

stream function, and the flow pattern at the ζ = 0 cross section. We can understand the

detail of the repetition of the collapse by means of the figures, including the decrease of

the beta. Before the first collapse, the pressure has a conic profile in the flux coordinates

as shown in Fig.8(a). Since the m = 2 component is dominant in the infernal-like mode

as shown in Fig.5, four vortices grow as shown in Fig.9(d). The vortices spread to the

vicinity of the magnetic axis as shown in Fig.9(a), and the convection due to the vortices

carries the core pressure to the outside. As a result, the central beta is decreased by the

convection and the profile is deformed into the elliptic shape simultaneously as shown in

Fig.8(b). Since the decrease of the central beta reduces the driving force of the infernal-

like mode, the convection is suppressed after the collapse, as shown in Figs.9(b) and

9(e), and the kinetic energy is decreased as shown in Fig.4. On the other hand, since the

continuous heating is incorporated in this analysis, the central beta is increased again as

shown in Fig.8(c). Simultaneously, the m = 2 deformation becomes small because of the

mode suppression. When the beta value reaches the marginal value, the mode is excited

again as shown in Figs.9(c) and 9(f). In the second saturation of the mode, the collapse

occurs again as shown in Fig.9(d). In the time evolution, the central beta reaches the

minimum with a certain time delay after the kinetic energy reaches the maximum in
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the collapses as shown in Fig.4. This delay is attributed to the fact that substantial

convection remains after the kinetic energy reaches the maximum and the convection

continues to reduce the central beta for a while.

Since the magnetic hill is enhanced continuously due to the background field

changing, the threshold beta of the mode excitation is decreased in the time evolution.

Therefore, in the simulation, the second collapse occurs at the lower beta value than

the first collapse as shown in Figs.4 and 7. This result allows us to understand the

mechanism of the gradual decrease of β0 after the partial collapse in the experiment.

The continuous (m,n) = (2, 1) magnetic fluctuation shown in Fig.1 indicates that the

mode is excited successively even after the partial collapse, which can cause other small

collapses. The small sudden drops of β0 are also considered to indicate the successive

occurrence of the small collapses. Therefore, the successive collapses under the decrease

of the threshold beta gradually degrades the central beta in average.

Figure 7 also shows that the position of the magnetic axis is shifted inwardly after

the first collapse at t = 202500τA. This inward axis shift corresponds to the decrease of

Rpeak observed in the experiment shown in Figs.1 and 2. As shown in Fig.7, the axis is

shifted outwardly after the recovery of the beta value at t = 255000τA, and then, shifted

inwardly again after the second collapse at t = 322500τA. Therefore, this axis shift is

not directly caused by the background field changing. On the contrary, the direction of

the shift depends on whether the central beta decreases or increases. Hence, the axis

shift is due to the change of the Shafranov shift of the plasma, which is caused by the

partial collapses through the change of the central beta. Thus, the mechanism of the

inward shift observed after the collapse shown in Fig.1 is attributed to the reduction of

the Shafranov shift.

4. Concluding Remarks

The LHD plasma with the background magnetic field changing, which corresponds to the

magnetic axis swing experiment, is numerically analyzed with the multi-scale simulation

scheme. In this scheme, the time evolutions of the equilibrium and the perturbation in

different time scales are simultaneously treated. The changes of the pressure and the

rotational transform due to the perturbation dynamics are reflected in the equilibrium

evolution. Furthermore, in the present study, we employ the pressure profile close to

the profile observed in the experiment just before the partial collapse and the rotational

transform obtained in the nonlinearly saturated state of a preparatory simulation for the

initial condition. By applying the scheme, we obtain the time evolutions with a partial

collapse of the plasma pressure in the case with the background field changing and

with no excitation of instabilities in the case without the background field changing, as

observed in the experiment. The simulation results allow us to understand the observed

feature of the partial collapse in the following way.

First, the partial collapse is caused by the infernal-like mode. This is due to the fact

that the magnetic shear is weak and the pressure gradient is steep in the vicinity of the
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magnetic axis in the configuration treated in the present analysis. The enhancement

of the magnetic hill due to the background field changing destabilizes the mode and

accelerates the growth. The convection in the nonlinear saturation causes the sudden

drop of the core pressure. Second, the observation of the (m,n) = (2, 1) magnetic

fluctuation is due to the fact that the the dominant component of the mode has the

same mode numbers. Since the rotational transform is close to 1/2 in the vicinity of

the magnetic axis, the (m,n) = (2, 1) infernal-like mode is dominantly destabilized. It

would be interesting to compare the mode structure with the experimental data. In

LHD, the systems of Soft X-ray and ECE are equipped. However, the measurement

was not successfully carried out in this experiment. Third, the abrupt inward shift of

the magnetic axis observed just after the partial collapse is found to be the reduction

of the Shafranov shift. The decrease of the central beta by the partial collapse reduces

the shift. Therefore, the time scale of the shift is much faster than the change rate

of the background field changing. Fourth, the repetition of the partial collapse can be

caused by the continuous heating. The subsequent collapse occurs at a lower beta value

than the former collapse, because the threshold beta of the mode excitation is reduced

by the magnetic hill enhancement due to the background field changing. As a result,

the central beta value decreases in average after the first partial collapse in spite of the

continuous heating. Similar repetition of the partial collapse is numerically obtained in

the analysis of the Heliotron E plasma without the background field changing [13].

Thus, the present analysis explains the experimental results qualitatively. However,

there remain quantitative differences. Firstly, there is a difference in the amount of the

central beta reduction, ∆β0, in the partial collapse. In the experiment, ∆β0 is about

1% as shown in Fig.2, while ∆β0 = 0.67% in the simulation as shown in Fig.7. One

candidate to obtain such large ∆β0 as in the experiment would be the implementation

of the diamagnetic flow in the simulation. In the sawtooth simulation in a tokamak, the

diamagnetic effect flow brings a large drop of the temperature in the repetition of the

crash [14]. Similar effect is expected in the pressure driven modes.

Next, in order to compare the events after the first collapse more precisely, the

number of the repetition should be identified by the simulation. In the present

simulation, only two collapses are obtained in the whole time range, while there is

the possibility that more small collapses occur in the experiment. The number of the

repetition in the simulation depends on the change rate of the background field. The

change rate in the simulation is three times larger than in the experiment. For the

identification of the repetition number, it is necessary to employ the same change rate

as that in the experiment and to follow the time evolution with three times more time

steps. The computation time is dominantly consumed in the dynamics calculation. In

the typical calculation, it took 5 hours for one interval of the NORM calculation by

using 8 nodes each of which has 32 CPU’s. We need to improve the NORM code so as

to accelerate the calculation. These improvements are considered in future works.
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Figure 1. Time evolution of β0 (red circle), Rpeak (blue square) and Rvax (green

solid line) in the magnetic axis swing experiment in LHD (#87400) are plotted in the

upper graph. Time evolution of the (m,n) = (2, 1) magnetic fluctuation normalized

by the operational toroidal field at Rvax, BT , is also plotted in the bottom graph. The

neutral beams were applied continuously.
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Figure 2. Profiles of the pressure normalized by the magnetic pressure observed at

t = 2.200s (red dots) and t = 2.266s (blue dots) in the magnetic axis swing experiment

in LHD (#87400) and the initial pressure in the present numerical simulation P ini
eq

(solid line) as the functions of the major radius R(m) in the horizontally elongated

cross section.
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Figure 3. Initial profiles of pressure P ini
eq (solid lines) and rotational transform´ι

ini
eq

(dashed lines) in the flux coordinates.
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Figure 4. Time evolution of kinetic energy (Ek, solid lines) of the n = 1 component

of the perturbation and central beta (β0, dashed lines) in the upper graph and poloidal

component of the perturbed magnetic field at the plasma edge (Bθ2,1) in the bottom

graph in the cases with (red) and without (blue) the background field changing.
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field changing.
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Figure 6. Variation of the profiles of V ′′ (solid lines) and rotational transform (dashed

lines) in the background field changing.
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Figure 7. Profiles of 〈P 〉 at t = 165000τA, t = 202500τA, t = 255000τA and

t = 322500τA in the background field changing.
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Figure 8. Bird’s eye view of total pressure in the ζ = 0 plane at (a) t = 105000τA,

(b) t = 202500τA, (c) t = 255000τA and (d) t = 322500τA in the background field

changing.
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Figure 9. Stream function (upper row) and flow pattern and pressure contours

(bottom row) in the ζ = 0 plane at (a), (d) t = 187500τA, (b), (e) t = 247500τA
and (c), (f) t = 292500τA in the background field changing.


