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Abstract. Magnetic flux coordinates are constructed from an analytic solution (Ito
A and Nakajima N 2009 Plasma Phys. Control. Fusion 51 035007) for the reduced
magnetohydrodynamics (MHD) equilibrium equations for high-beta tokamaks in the
presence of poloidal and toroidal flows comparable to the poloidal sound velocity. The
analytic solution indicates non-circular magnetic flux surfaces and transition between
sub- and super-sonic poloidal flows. The magnetic flux coordinates for such non-
circular magnetic flux surfaces are obtained for stability analysis. The flux coordinates
are numerically obtained from the high order polynomial equations for the relation with
the geometrical coordinates. As applications, pressure profiles in the poloidal direction
on each flux surface, which become non-constant due to flow, and the flux average of
the pressure are obtained. The transitions of the pressure profiles and the flux average
of the pressure between sub- and super-sonic poloidal flows are discussed in relation
with the radial force balance. The flux coordinates are also obtained analytically by
expanding the coordinate relations with respect to the inverse aspect ratio.
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1. Introduction

Axisymmetric, static magnetohydrodynamics (MHD) equilibrium is described by the

Grad-Shafranov (GS) equation. Usual solutions compose nested magnetic flux surfaces,

and the pressure is constant on each magnetic flux surface. For high-beta tokamaks,

the magnetic flux surfaces are non-circular and the magnetic axis is shifted outwards

in the major radius of a torus due to the Shafranov shift. To study the stability of

such equilibrium, magnetic flux coordinates constructed from the solutions of the GS

equation are exploited [1, 2, 3]. An analytic representation of the flux coordinate system

was derived [4] from an analytic solution for the first order with respect to the inverse

aspect ratio of a torus of the GS equation for the high-beta tokamaks [5, 6]. Such a flux

coordinate system is favorable for analyzing the stability in the equilibria with large

pressure gradient.

For axisymmetric MHD equilibrium with flow, the governing equation is called the

generalized GS equation [7, 8]. The pressure p is no longer constant on each magnetic

flux surface ψ = const. in the presence of flow,

p 6= p(ψ), (1)

though equilibrium is still determined with free functions of the magnetic flux. The

pressure is non-constant on each magnetic flux surface even for purely toroidal flow.

The analytic solution for purely toroidal flow is shown in [9]. For poloidal flow, there

is another complication in addition to the non-constant pressure and poloidal current

on each magnetic flux surface. This is because poloidal direction is non-uniform while

toroidal direction is uniform for axisymmetric toroidal equilibrium. Since the partial

differential equation for the equilibrium with flow has hyperbolic regions and singularity

due to the interaction between the poloidal flow and the MHD waves [8], the equilibrium

property is complicated [2, 10, 11]. There are several studies of numerical analysis of

equilibrium with flow for elliptic regions [12, 13, 14, 15].

In order to describe such equilibrium with strong poloidal flow perturbatively, a

set of reduced MHD equilibrium equations for high beta tokamaks with toroidal and

poloidal flow comparable to the poloidal sound velocity was derived with asymptotic

expansions with respect to the inverse aspect ratio to higher orders [16]. In the reduced

MHD, the poloidal and toroidal flows are set to be the same order and compressibility

is small. By these orderings, the fast magnetosonic wave is excluded while the slow

magnetosonic wave characterized by the poloidal sound velocity is retained. The

derivation of equlibrium equations was extended to the two-fluid MHD with finite

Larmor radius effects [19, 17, 18]. An analytic solution for the reduced MHD equilibrium

was found [20, 21]. The first order solution is identical to that of the static equilibria

of [5]. The second order quantities show that the magnetic structure is modified and

the pressure isosurfaces depart from the magnetic flux surfaces due to the poloidal flow.

They also indicate transition between sub- and super-sonic poloidal flows. While this

transition had been analytically studied for low-beta plasmas [2, 10, 11] where magnetic
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flux surfaces are apploximated to be circular, the analytic solution of [20] indicates non-

circular magnetic flux surfaces due to high-beta. This solution was extended to include

pressure anisotropy associated with parallel heat flux [22].

The analytic equilibria with flow can be applied to the stability analysis and

nonlinear simulations based on the reduced MHD model. They also can be used for

benchmark with numerical code to calculate more complicated equilibrium. The analytic

studies on equilibrium flow have been still performed by other groups recently [23, 24].

It is noted that, since the flow in [23] is incompressible and the poloidal flow in [24]

is slower than the poloidal sound velocity, their solutions do not include the transition

between sub- and super-sonic poloidal flows.

Stability of equilibrium with flow is also complicated even in simple equilibrium

configurations [2, 25] because of non-Hermitian properties of linear perturbations [26].

However, it is expected that the modifications of the magnetic flux structures and

pressure for the transition between sub- and super-sonic poloidal flows affect the

stability. To extend the stability theory for more general equilibrium, flux coordinates

for high beta toroidal equilibrium with toroidal and poloidal flow will be required since

magnetic flux surfaces are non-circular. The corresponding reduced MHD equations for

the stability analysis is derived by extending those of [27] for high-beta tokamaks with

finite aspect ratio to include density inhomogenity as preliminarily shown in [28].

In this study, we present magnetic flux coordinates for high-beta tokamaks in

the presence of toroidal and poloidal flows comparable to the poloidal sound velocity,

constructed from the analytic solution for the reduced set of MHD equilibrium equations

[20, 21]. We find the flux coordinates from the relation between geometrical and

magnetic flux coordinates by extending the flux coordinates for the static equilibria

[4]. The solution for the flux coordinates is obtained by solving numerically the high

order polynomial equations. By using the flux coordinates, the poloidal distributions of

quantities such as the pressure and the terms of the force balance equations on magnetic

flux surfaces can be described. The flux coordinates can also be used to calculate the flux

average of the pressure. We also obtain the flux coordinates analytically by expanding

the relations between geometrical and magnetic flux coordinates with respect to the

inverse aspect ratio.

The paper is organized as follows. In section 2, we introduce reduced MHD

equations for high beta tokamak equilibrium with flow comparable to the poloidal sound

velocity and their analytic solution. In section 3, we obtain flux coordinates from the

analytic solution. In section 4, we present poloidal profiles of pressure on magnetic flux

surfaces and their dependences on the poloidal Mach number are compared with the

poloidal profiles of the terms in the radial force balance. In section 5, we present flux

average of pressure, and its dependence on the poloidal Mach number is also discussed.

In section 6, an analytic expression for flux coordinates is derived approximately. A

summary is given in section 7.
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2. Analytic high-beta tokamak equilibria with flow

In this section, we briefly introduce the reduced MHD equations for equilibrium with

flow in [16] and an analytic solution of the equations in [20, 21]. The equations for ideal

MHD equilibria are

∇ · (nv) = 0, (2)

minv · ∇v = j×B−∇p, (3)

E + v ×B = 0, (4)

∇× E = 0, (5)

µ0j = ∇×B, (6)

∇ ·B = 0, (7)

v · ∇p + γp∇ · v = 0, (8)

where mi is the ion mass, n is the density, v is the ion flow velocity, E and B are the

electric and magnetic fields, j is the current density, p is the pressure, and γ = 5/3. Here

we consider the corresponding toroidal axisymmetric equilibria, where, in cylindrical

coordinates (R, ϕ, Z), the magnetic field B and the current density j can be written as

B = ∇ψ(R, Z)×∇ϕ + I(R,Z)∇ϕ, (9)

µ0j = ∇I ×∇ϕ−∆∗ψ∇ϕ, (10)

where ψ is the poloidal magnetic flux and ∆∗ ≡ R2∇ · [R−2∇].

A standard derivation of the generalized GS equation [8, 31] is obtained with the

stream function Ψ and the electrostatic potential Φ defined as

nv = ∇Ψ(R, Z)×∇ϕ + nRvϕ(R, Z)∇ϕ, (11)

E = −∇Φ. (12)

It is shown that

Ψ = Ψ (ψ) , (13)

Φ = Φ (ψ) , (14)

vϕ =
I

nR
Ψ′ (ψ) + RΦ′ (ψ) , (15)

pn−γ = S (ψ) . (16)

However, we follow the procedure of reduced MHD [27] to include low compressibility to

obtain the asymptotic expansions of the GS equation as follows. Although the equivalent

expansion from the generalized GS equation is not straightforward, the relationship

between them will be discussed later in this section.
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Equations (2) - (8) are reduced with asymptotic expansions with respect to the

inverse aspect ratio ε ≡ a/R0 ¿ 1 where a and R0 are the characteristic scale length

of the minor and major radii of a torus, respectively. The following high-beta tokamak

orderings for compressible reduced MHD are applied,

Bp ∼ εB0, p ∼ ε
(
B2

0/µ0

)
, |∇| ∼ 1/a. (17)

The energy of flows in the order of the poloidal sound speed v ∼ Csp ≡
(Bp/B0)(γp/nmi)

1/2 is the third order of the magnetic energy,

minv2 ∼ ε2p ∼ ε3
(
B2

0/µ0

)
. (18)

The toroidal and poloidal flows vϕ and vp, respectively, are the same order,

vϕ ∼ vp ∼ Csp. (19)

The compressibility is assumed to be weak: ∇ · v ∼εv/a. Thus, the flow velocity v can

be written as

v ≡ (1 + x/R0)∇U × (B/B) + v‖ (B/B) . (20)

It is shown in Appendix of [27] that (20) obtains correct compressibility up to the order

required. The function U is expanded as

U (R,Z) = U1 (R, Z) + U2 (R, Z) + . . . ,

where U2 ∼ εU1, while we need only the leading order quantity of the parallel flow

velocity v‖. The other variables are also expanded in orders of ε as

ψ (R,Z) = ψ1 (R, Z) + ψ2 (R,Z) + ψ3 (R, Z) + . . . ,

I (R, Z) = B0R0 + I1 (R, Z) + I2 (R,Z) + I3 (R,Z) + . . . ,

p (R,Z) = p1 (R,Z) + p2 (R,Z) + p3 (R,Z) + . . . ,

n (R,Z) = n0 (R, Z) + n1 (R, Z) + . . . ,

where ψi ∼ εiaR0B0, pi ∼ εiB2
0/µ0 (i = 1, 2 . . .), and B0 and R0 are constant.

Substituting these expansions into equations (2) - (8) and applying the above orderings,

the reduced equilibrium equations are obtained order by order in the (R,Z) coordinates.

When the equations (2) - (8) are expanded in powers of ε, the coefficient of each power

in the equation is separately equal to zero [29]. Although there may be many ways

in asymptotic expansions, as mentioned in [29], we take the expansions that the GS

equation for ψ1 coincides with that of [5, 6]. The leading order of the momentum

balance equation (3) is

∇
[
p1 (R,Z) +

B0

µ0R0

I1 (R, Z)

]
= 0 (21)

which is the order of ε (B2
0/µ0) /a and yields

p1 (R,Z) +
B0

µ0R0

I1 (R,Z) = const. (22)
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It is shown that the following quantities are the functions of ψ1, p1 (ψ1), I1 (ψ1), n0 (ψ1)

and U1 (ψ1), from the relation, for example,

(∇ψ1 ×∇ϕ) · ∇p1 (R, Z) = 0. (23)

The GS equations for the first order and the second order magnetic flux ψ1 and ψ2,

respectively, are given by the projection of the momentum balance equation (3) in the

direction of ∇ψ = ∇ψ1 +∇ψ2 + . . . as
(

∂2

∂R2
+

∂2

∂Z2

)
ψ1 = −µ0R

2
0

(
2x

R0

p′1 + g′∗

)
−

(
I2
1

2

)′
, (24)

(
∂2

∂R2
+

∂2

∂Z2

)
ψ2 +

[
µ0R

2
0

(
2x

R0

p′′1 + g′′∗

)
+

(
I2
1

2

)′′]
ψ2 − 1

R

∂ψ1

∂R

= M2
Ap

(
∂2

∂R2
+

∂2

∂Z2

)
ψ1 +

|∇ψ1|2
2

(
M2

Ap

)′ − µ0R
2
0

[(
x

R0

)2

p′1 + E ′
∗

]

+ µ0R
2
0

[
2x

R0

(
M2

App2∗ − β1p3∗
β1 −M2

Ap

)′

−
(

x

R0

)2
(

2M2
Apγp1

β1 −M2
Ap

)′]
, (25)

where x = R−R0 ∼ a,

1

R

∂ψ1

∂R
∼ ψ

aR0

∼ ε

(
∂2

∂R2
+

∂2

∂Z2

)
ψ1, (26)

MAp (ψ1) ≡ [µ0min0 (ψ1)]
1/2 R0U

′
1 (ψ1) (27)

is the leading order of the poloidal Alfvén Mach number, the ratio between the poloidal

flow velocity and the poloidal Alfvén velocity, β1(ψ1) ≡ γp1/(B
2
0/µ0), and the prime

denotes the derivative with respect to ψ1. The other free functions of ψ1 that are g∗, E∗,
p2∗, and p3∗, are introduced by eliminating p2, I2, p3 and I3 with the following equations

for asymptotic variables

p2 − p′1ψ2 + γp1

(
v‖

B0R0U ′
1

+
2x

R0

)
≡ p2∗ (ψ1) , (28)

B0R0min0U
′
1v‖ + p2 − p′1ψ2 ≡ p3∗ (ψ1) , (29)

p2 +
B0

µ0R0

I2 ≡ g∗ (ψ1) , (30)

p3 +
B0I3

µ0R0

+
I1

µ0R2
0

(I2 − I ′1ψ2) +
M2

Ap |∇ψ1|2
2µ0R2

0

+

(
x

R0

)2 2M2
Apγp1

β1 −M2
Ap

− g′∗ψ2

≡ E∗ (ψ1) . (31)

It is noted that the first two terms of LHS of (28) appear from the asymptotic expansion

of the convective derivative term of the pressure equation (8),

(∇U1 ×∇ϕ) · ∇p2 (R, Z) + (∇U2 ×∇ϕ) · ∇p1(ψ1), (32)
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and the expansion of the toroidal projection of (4),

(∇ψ1 ×∇ϕ) · ∇U2 (R,Z) + (∇ψ2 ×∇ϕ) · ∇U1(ψ1) = 0. (33)

The first order GS equation (24) coincides with that for static equilibria [5, 6] for the

present order of flow while the second order equation (25) includes the effect of flow,

which reduces to that of static equiribria [30] in the absence of flow. There is another

assumption for the asymptotic expansions that
∣∣β1 −M2

Ap

∣∣ ∼ β1.

Other asymptotic variables are obtained from the solution of ψ1 and ψ2 as follows.

The second order pressure p2 is obtained as

p2 = p′1ψ2 +
(2x/R0)M

2
Apγp1

β1 −M2
Ap

− M2
App2∗ − β1p3∗
β1 −M2

Ap

. (34)

I2 is obtained from (22), (30) and (34) as

I2 = I ′1ψ2 +
µ0R0

B0

[
g∗ −

(2x/R0)M
2
Apγp1

β1 −M2
Ap

+
M2

App2∗ − β1p3∗
β1 −M2

Ap

]
. (35)

The terms with (2x/R0) in (34) and (35) show that p and I become non-constant on

each magnetic flux surface due to poloidal flow. The parallel flow is obtained as

v‖ = −(2x/R0)γp1 − (p2∗ − p3∗)
(β1 −M2

Ap)(B
2
0/µ0)

MApvA, (36)

where vA ≡ B0/
√

µ0n0mi. Equation (36) shows that the parallel flow is associated with

the poloidal flow. This comes from the ordering of reduced MHD that the toroidal and

poloidal flows are comparable and the compressibility is small. The effect of the parallel

flow v‖ contributes to the second order GS equation (25) implicitly by the coupling with

the second order pressure p2 as in (28) and (29). In the leading order, relations between

Ψ, Φ, and U are

Φ′
1 (ψ1) = −B0U

′
1, (37)

Ψ′
1 (ψ1) = n0R0U

′
1, (38)

which cancels the lowest order of the toroidal velocity vϕ in (15), which is the order of

the sound velocity, as

vϕ0 =
B0

n0

Ψ′
1 + R0Φ

′
1 = 0. (39)

The leading order of the toroidal velocity is, thus, vϕ1 = v‖. Since two free functions

Ψ and Φ in the standard derivation of the generalized GS equation is degenerated into

U as in (37) and (38), the free function for the parallel or toroidal flow independent of

the poloidal flow does not exist. Thus, this equilibrium model is mainly for studying

the effect of the poloidal flow though the parallel flow also exists. It is noted that if one

assumes p2∗ ∝M−1
Ap , toroidal flows independent of the poloidal flow can be produced,

but such flows contribute to neither the magnetic structure nor non-constant part of
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the pressure on magnetic flux surfaces of interest in this study. The second order of U

is obtained from (33) as

U2 = U ′
1ψ2 + U2∗ (ψ1) , (40)

where U2∗ is a free function of ψ1. The derivation of the reduced equilibrium equations

by using Ψ and Φ, including the effects of two-fluid, ion finite Larmor radius and pressure

anisotropy, is shown in [19]. The first order density n1 is obtained from the expansion

of (2) with (20) as

n1 − n′0ψ2 +
n0v‖

B0R0U ′
1

+
2x

R0

n0 ≡ n1∗ (ψ1) . (41)

Substituting (36) into (41), we obtain

n1 = n′0ψ2 + n1∗ (ψ1) +
(2x/R0)M

2
Ap

β1 −M2
Ap

n0 − p2∗ − p3∗
(β1 −M2

Ap)(B
2
0/µ0)

n0, (42)

where n1∗ is a free function of ψ1. The leading order of the entropy S in (16) is given by

S1 (ψ1) = p1n
−γ
0 . The derivation of the GS equations shown here can be applied for the

two-fluid MHD with finite Larmor radius effects [17, 18, 19] where the full GS equations

have not derived yet since the equations are complicated.

An analytic solution for the set of (24) and (25) can be found for linear profiles of

the following free functions [20],

p1 = ε
(
B2

0/µ0

)
p1c (ψ1/ψc) , (43)

g∗ +
I2
1

2µ0R2
0

= ε2
(
B2

0/µ0

)
gc

(
ψ1

ψc

)
, (44)

M2
Ap = εM2

Apc (ψ1/ψc) , (45)

where p1c, gc, and M2
Apc are constant values of the order of unity and ψc is a normalization

constant of ψ1. Here, we consider a simple case where p2∗ = p3∗ =E∗ = 0. The fixed

boundary conditions for ψ1 and ψ2 are given by assuming circular cross section as

ψ1(R0 + a cos θ, a sin θ) = 0, (46)

ψ2(R0 + a cos θ, a sin θ) = 0, (47)

where −π ≤ θ ≤ π. We then apply the following normalization

(R−R0) /a ≡ x, Z/a ≡ z, (48)

a/R0 ≡ ε, (49)

ψ1/ψc ≡ ψ1 (x, z) , (50)

ψ2/ψc ≡ εψ2 (x, z) , (51)

and

ψc/B0R0a ≡ εB̄p. (52)
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In the following, we omit the overbars. Equations (24) and (25) are rewritten as(
∂2

∂x2
+

∂2

∂z2

)
ψ1 = −2xp1c

B2
p

− gc

B2
p

, (53)

(
∂2

∂x2
+

∂2

∂z2

)
ψ2 − ∂ψ1

∂x

= M2
Apcψ1

(
∂2

∂x2
+

∂2

∂z2

)
ψ1 +

|∇ψ1|2
2

M2
Apc

− x2p1c

B2
p

(
1 +

2γM2
Apc

γp1c −M2
Apc

)
. (54)

The analytic solution of

ψ (x, z) ' ψ1 (x, z) + εψ2 (x, z) (55)

is written in the coordinates (x, z) as

ψ1 (x, z) =
gc

4B2
p

1− 3∆2
s1 + 2∆s1x

1− 3∆2
s1

(
1− x2 − z

2
)

, (56)

ψ2 (x, z) = − gc

16B2
p

1− x2 − z
2

1− 3∆2
s1

{
−2∆s1

[
x2 + z2 +

γM2
Apc

γp1c −M2
Apc

(1 + x2 + z2)

]

+
M2

Apc

8

gc

B2
p

(
1− 3∆2

s1

) {
3
(
x2 + z2

)− 5

+
1

9

(
2∆s1

1− 3∆2
s1

)2 [
13

(
x2 + z2

)
2 − 14

(
x2 + z2

)− 5
]
}

+ x

{
−1 + 3∆2

s1 +
M2

Apc

2

gc

B2
p

∆s1

[
3
(
x2 + z2

)− 4
]}

+ 2∆s1

(
x2 − z2

)
{
−1− 4

3

γM2
Apc

γp1c −M2
Apc

+
M2

Apc

24

gc

B2
p

∆s1

1− 3∆2
s1

[
9
(
x2 + z2

)− 11
]}}

, (57)

where ∆s1 is the shift of the magnetic axis of ψ1 from the geometric axis,

∂ψ1

∂x

∣∣∣∣
(x,z)=(∆s1,0)

= 0, (58)

∆s1 =
−1 +

√
1 + 3(p1c/gc)2

3(p1c/gc)
. (59)

The solution for ψ1, (56), coincides with that for static equilibria [5, 6], and the solution

for ψ2, (57), reduces to that of static equiribria [30] in the absence of flow. The pressure

normalized with εB2
0/µ0 is obtained from ψ1 and ψ2 as

p = p1c

(
ψ1 + εψ2+ε

2γM2
Apc

γp1c −M2
Apc

ψ1x

)
. (60)



Magnetic flux coordinates for analytic high-beta tokamak equilibria with flow 10

The third term in the parentheses of the RHS of (60) is non-constant on each flux

surface ψ ' ψ1 + εψ2 = const. in the presence of the poloidal flow. The quantity

M2
Apc/γp1c reads as the square of the poloidal Mach number, the ratio between the

poloidal flow velocity, and the poloidal sound velocity. We define the poloidal flow

with M2
Apc/γp1c < 1 as sub-sonic and M2

Apc/γp1c > 1 as super-sonic. The poloidal sound

velocity is the characteristic velocity of the slow magnetosonic wave. This order of

poloidal flow had been analytically studied for low-beta plasmas [2, 10, 11] to model

transport barriers or pedestals associated with transonic poloidal flows. The analytic

solutions (56) and (57) show that the magnetic flux surfaces are non-circular even when

the poloidal cross-section of plasma region is circular. This is the key feature of high-

beta equilibrium and the reason why magnetic flux coordinates suitable to stability

analysis are investigated in this paper. Since the flow in [23] is incompressible and

the poloidal flow in [24] is the order of
√

ε slower than the poloidal sound velocity,

their analytic solutions do not include the interaction between poloidal flow and the

slow magnetosonic wave. In the analytic solution shown here describes the behavior of

poloidal flow comparable to poloidal sound velocity in high-beta equilibrium that cannot

be described by other models, though the toroidal flow is not independently defined.

In the next section, we show the flux coordinates obtained from the solutions (56)

and (57) for sub- and super-sonic poloidal flows. In the following sections, we choose the

parameters p1c = 3.2, gc = 4.0, ε = 0.1, and Bp = 1.0 as in [20]. It is shown in [22] that

the analytic solution shown here is extended to include pressure anisotropy associated

with parallel heat flux for nearly collisionless tokamaks. This includes isothermal

electron pressure in a limit. The isothermal pressure only changes the poloidal sound

velocity quantitatively from (Bp/B0)(γp/nmi)
1/2 to (Bp/B0)[(γpi + pe)/nmi]

1/2 in the

case of adiabatic ion pressure and isothermal electron pressure. In the present study,

we consider adiabatic pressure to obtain the standard formulation. Extension of the

magnetic flux coordinates derived in the present paper to non-adiabatic pressure in [22]

is straightforward but requires more lengthy formulation.

3. Flux coordinates

The flux coordinates obtained in [4] in the case of circular poloidal cross section at

the boundary are reproduced from the first order magnetic flux ψ1 in (56). The flux

coordinates (ξ,Θ) are related to (x, z) as
(
1− ξ2cos2Θ

)
ψ11 (∆s1) = ψ11 (x) , (61)

(−ξ2sin2Θ
)
ψ11 (∆s1) = ψ12 (x, z) , (62)

where ψ1 has been split as

ψ1 (x, z) = ψ11 (x) + ψ12 (x, z) , (63)

ψ11 (x) =
gc

4B2
p

1− 3∆2
s1 + 2∆s1x

1− 3∆2
s1

(
1− x2

)
, (64)
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and

ψ12 (x, z) = − gc

4B2
p

1− 3∆2
s1 + 2∆s1x

1− 3∆2
s1

z2. (65)

Equation (61) is a cubic equation for x (ξ,Θ) and (62) is a quadratic equation for z (ξ,Θ)

which are analytically solved as

x = x1 ≡ ∆s1+
1 + 3∆2

s1

6∆s1

{−1

+2 cos

{
2

3
arccos

[
3
√

3∆s1 (1−∆2
s1)

(1 + 3∆2
s1)

3/2
ξcosΘ

]}}
, (66)

z = z1 ≡ 1−∆2
s1√

1− 3∆2
s1 + 2∆s1x1

ξsinΘ. (67)

The flux coordinates (ξ,Θ) constitute a non-orthogonal coordinate system in the poloidal

cross section. The ξ coordinate represents flux surfaces and ranges from ξ = 0 at the

magnetic axis ∆s1 of ψ1 to ξ = 1 at the boundary. The Θ coordinate represents the

poloidal angle where Θ = 0 for outer midplane, Θ = ±π for inner midplane, and

−π < Θ < 0 for lower half and 0 < Θ < π for upper half. This coordinate system

is different from the straight field line and the constant arc length coordinate systems

which are obtained numerically [4, 32].

To extend the above coordinates to the magnetic flux including the second order,

ψ ' ψ1+εψ2, in the presence of flow, we add the contribution of ψ2 into (61) and (62)

by splitting ψ2 in the similar manner as ψ1 such as

ψ2 (x, z) = ψ21 (x) + ψ22 (x, z) (68)

ψ21 (x) = − gc

16B2
p

1− x2

1− 3∆2
s1

{−x
(
4∆s1x + 1− 3∆2

s1

)

− 2∆s1

3

γM2
Apc

γp1c −M2
Apc

(
3 + 7x2

)

+
M2

Apc

2

gc

B2
p

[
1

4

(
1− 3∆2

s1

)
(3x2 − 5) + ∆s1(3x

2 − 4)x

+
1

18

∆2
s1

1− 3∆2
s1

(53x4 − 61x2 − 10)

]}
(69)

ψ22 (x, z) = − gc

16B2
p

z2

1− 3∆2
s1

{(
1− x2

)

×
{
−2∆s1

(
1 +

γM2
Apc

γp1c −M2
Apc

)

+
M2

Apc

8

gc

B2
p

(
1− 3∆2

s1

)

×
[
3 +

1

9

(
2∆s1

1− 3∆2
s1

)2

(26x2 + 13z
2−14)

]
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+
3M2

Apc

4

gc

B2
p

∆s1x

(
2 +

∆s1

1− 3∆2
s1

x

)}

− 2∆s1

(
1− z2

)
{
−1− 4

3

γM2
Apc

γp1c −M2
Apc

+
M2

Apc

24

∆s1

1− 3∆2
s1

gc

B2
p

[
9
(
x2 + z2

)− 11
]}

+ 2∆s1

[
x2 + z2 +

γM2
Apc

γp1c −M2
Apc

(
1 + x2 + z2

)
]

− M2
Apc

8

gc

B2
p

(
1− 3∆2

s1

) {
3
(
x2 + z2

)− 5

+
1

9

(
2∆s1

1− 3∆2
s1

)2 [
13

(
x2 + z2

)2 − 14
(
x2 + z2

)− 5
]}

−x

{
−1 + 3∆2

s1 +
M2

Apc

2

gc

B2
p

∆s1

[
3
(
x2 + z2

)− 4
]}}

. (70)

We, then, obtain
(
1− ξ2cos2Θ

)
[ψ11 (∆s) + εψ21 (∆s)] = ψ11 (x) + εψ21 (x) , (71)

(−ξ2sin2Θ
)
[ψ11 (∆s) + εψ21 (∆s)] = ψ12 (x, z) + εψ22 (x, z) , (72)

where ∆s is the shift of the magnetic axis of ψ ' ψ1 + εψ2 from the geometric axis,

dψ11

dx

∣∣∣∣
x=∆s

+ ε
dψ21

dx

∣∣∣∣
x=∆s

= 0. (73)

We, first, find ∆s by solving (73), and solve (71) and (72) with respect to (x, z) for given

(ξ, Θ). Since (71) - (73) are high order polynomial equations, solutions are obtained

numerically with the Newton method. Although ∆s was also obtained by asymptotic

expansions with respect to ε in [20, 21], it must be calculated from (73) in order to solve

(71) and (72) rigorously.

Figure 1 shows the dependence of ∆s on the poloidal Mach number. Compared

with ∆s1, the shift is enhanced due to the contribution of the second order magnetic

flux ψ2 for sub-sonic poloidal flow, including static equilibrium, and increase with the

poloidal Mach number. There is a transition across M2
Apc/γp1c = 1. The vicinity of this

point must be excluded since the assumption
∣∣β1 −M2

Ap

∣∣ ∼ β1 is violated or a separatrix

appears in the plasma region [20, 21]. For super sonic flow, ∆s is less than ∆s1.

To find the roots of x and z that are originated from those for static equilibrium,

(71) and (72) are solved for [x (ξ, Θ) , z (ξ, Θ)], 0 ≤ ξ ≤ 1, and −π ≤ Θ ≤ π, by using

(x1, z1) in (66) and (67) as initial guesses for the Newton method and the restrictions

x2+z2 ≤ 1, x < ∆s for−π ≤ Θ < −π/2 and π/2 < Θ ≤ π, x > ∆s for−π/2 < Θ < π/2,

z < 0 for −π < Θ < 0, z > 0 for 0 < Θ < π, x = ∆s for Θ = ±π/2, and z = 0 for Θ = 0

and ±π. The flux coordinates (ξ,Θ) obtained from ψ ' ψ1 + εψ2 also constitute a non-

orthogonal coordinates in the poloidal cross section. The ξ coordinate represents flux
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surfaces and ranges from ξ = 0 at the magnetic axis ∆s to ξ = 1 at the boundary. The

Θ coordinate represents the poloidal angle where Θ = 0 for outer midplane, Θ = ±π

for inner midplane, −π < Θ < 0 for lower half, and 0 < Θ < π for upper half.

Figures 2 - 4 show the flux coordinates (ξ, Θ) in the poloidal cross section obtained

from ψ ' ψ1 + εψ2 by solving (71) and (72) for M2
Apc/γp1c = 0 (static equilibrium), 0.5

(sub-sonic poloidal flow) and 2.5 (super-sonic poloidal flow), respectively, compared

with those obtained from ψ1, (66) and (67). Flux surfaces for ξ < 1 become non-

circular because of high-beta. For the static equilibrium M2
Apc/γp1c = 0 (figure 2), the

contribution of the second order magnetic flux modifies the flux coordinates along with

the shift of the magnetic axis from ∆s1 to ∆s. The flux coordinates in figures 3 and 4

indicate modification due to flow. For sub-sonic poloidal flow M2
Apc/γp1c = 0.5 (figure

3), the modification mainly occurs in the inside region of a torus. The ξ coordinate

is shifted toward the magnetic axis in the core region ξ < 0.8. The Θ coordinate at

Θ = ±0.9π is shifted toward the outer midplane Θ = ±π. For super-sonic poloidal

flow M2
Apc/γp1c = 2.5 (figure 4), the modification occurs in the whole region. The ξ

coordinate is shifted toward the magnetic axis for ξ < 1. The Θ coordinate in the

upper (lower) half is shifted toward Θ = π/2 (Θ = −π/2). For applicability to stability

analysis, both of the modication of mode structure and the fluxcoordinates due to flow

should be considered.

In sections 4 and 5, properties of static equilibrium, equilibria with sub- and super-

sonic poloidal flows are compared with each other by using the flux coordinates of figures

2 - 4.

4. Poloidal profiles on magnetic surfaces

As an application of flux coordinates, we present poloidal profiles of equilibrium

quantities on flux surfaces. Figures 5 - 7 show the pressure profiles, obtained from

(60), in the poloidal angle Θ on each flux surface, ξ = const., for M2
Apc/γp1c = 0, 0.5,

and 2.5, respectively. For static equilibrium M2
Apc/γp1c = 0, the pressure is constant

on each flux surface (figure 5). The pressure is peaked at Θ = 0, the outer midplane,

for sub-sonic flow M2
Apc/γp1c = 0.5 (figure 6) while it is peaked at Θ = ±π, the inner

midplane, for super-sonic flow M2
Apc/γp1c = 2.5 (figure 7). In both cases, the pressure

becomes maximum at ξ > 0. This is consistent with the analysis of the shift of the

pressure maximum that is outward for sub-sonic flow and inward for super-sonic flow

from the magnetic axis [20, 21] and gives more detailed description of pressure profiles

of equilibrium with flow.

To study the mechanism of structures of equilibrium pressure, we compare the

poloidal profiles of the terms in the radial force balance equations (53) and (54) on flux

surfaces. For the present case where p2∗ = p3∗ =E∗ = 0, we examine the dependence of

the forces of flow, poloidal magnetic field and pressure on the poloidal Mach number.
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The first order force balance equation is obtained from (53) as

FB1 + Fp1 =
gc

B2
p

, (74)

where the RHS is the sum of the forces of the toroidal magnetic field and second order

pressure, kept constant, gc/B
2
p = 4.0, and the forces of the poloidal magnetic field and

pressure are, respectively,

FB1 = −
(

∂2

∂x2
+

∂2

∂z2

)
ψ1, (75)

Fp1 = −2xp1c

B2
p

. (76)

The second order force balance equation is obtained from (54) as

Fv + FB2 + Fp2 = 0, (77)

where the forces of the inertia of poloidal flow, poloidal magnetic field and pressure are,

respectively,

Fv = M2
Apcψ1

(
∂2

∂x2
+

∂2

∂z2

)
ψ1 +

|∇ψ1|2
2

M2
Apc, (78)

FB2 = −
(

∂2

∂x2
+

∂2

∂z2

)
ψ2 +

∂ψ1

∂x
, (79)

Fp2 = −x2p1c

B2
p

(
1 +

2γM2
Apc

γp1c −M2
Apc

)
. (80)

The RHS of (77) is zero since we have assumed p2∗ = p3∗ =E∗ = 0 in (25) for simplicity.

The contribution of the toroidal magnetic field for this order appears in the poloidal

force balance (31) and balances with the other terms. The inertial force of flow (78)

does not include the contribution of toroidal flow since the toroidal curvature is small.

The second term in the parentheses of the pressure force (80) is the contribution of p2.

Equations (28) and (29) show that p2 is coupled with poloidal flow, U1, and the toroidal

flow, v‖, through the convection due to the poloidal flow and compression. Since these

equations are projections along ∇ψ and ψ is spatially decreasing in all directions from

the magnetic axis, the positive signs in the LHSs of (74) and (77) mean the forces toward

the magnetic axis. We examine the cases for M2
Apc/γp1c = 0 (static equilibrium), 0.5

(sub-sonic poloidal flow), and 2.5 (super-sonic poloidal flow).

Figure 8 shows the poloidal profiles of the first order forces in (74) on different

magnetic flux surfaces for M2
Apc/γp1c = 0. The averages in Θ show the force balance in

the minor radius of the torus while the variations in Θ with the period 2π show the force

balance in the major radius. It is noted that the poloidal profiles for M2
Apc/γp1c = 0.5

and 2.5 are omitted here since (74) does not include the effect of flow and only small

quantitative changes in the profiles of the first order forces occur due to changes of

magnetic flux ψ when the flow is included. Figure 8 (a) indicates that, at ξ = 0.1
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near the magnetic axis, the pressure force Fp1 is outward from the magnetic axis in the

minor radius for all Θ due to the poloidal curvature and the amplitude is maximum

in the outer midplane, Θ = 0, and minimum in the inner midplane, Θ = ±π, due to

the outward force in the major radius by the toroidal curvature. The direction and the

variation of the force of poloidal magnetic field FB1 is opposite to Fp1 to balance. In

the outer region from the magnetic axis ξ = 0.9 [figure 8 (b)], on the other hand, Fp1

in the inner midplane Θ = ±π is inward to the magnetic axis in the minor radius since

the pressure force due to the toroidal curvature becomes larger than that due to the

poloidal curvature.

Figures 9 - 11 show the poloidal profiles of the second order forces in (77) multiplied

by ε, on different magnetic flux surfaces for M2
Apc/γp1c = 0, 0.5, and 2.5, respectively.

Figure 9 shows the small correction of each force due to the higher order terms for the

static equilibrium M2
Apc/γp1c = 0. The pressure force Fp2 is outward from the magnetic

axis due to the poloidal curvature with variations due to the toroidal curvature and

balances with the force of poloidal magnetic field FB2. The variations in the poloidal

angle Θ have the period 2π at ξ = 0.1 while the variations with the period π are relevant

at ξ = 0.9, which come from the x2 dependence of each force. Figures 10 and 11 indicate

large contributions of poloidal flow to the second order force balance (77). For the sub-

sonic poloidal flow M2
Apc/γp1c =0.5 (figure 10), the force of flow Fv is outward from

the magnetic axis to the boundary except for the edge region ξ = 0.9. The pressure

force Fp2 is outward from the magnetic axis as in the static case M2
Apc/γp1c = 0 (figure

9). In figure 10 (a), Fv in the inner region ξ = 0.1 acts as the centrifugal force due to

poloidal curvature, and the sum of Fv and Fp2, outward from the magnetic axis in the

minor radius on average, balance with inward FB2. Figure 10 (b) shows that Fv in the

edge region ξ = 0.9 acts as the dynamic pressure force and the sum of Fv and FB2,

inward to the magnetic axis on average, balance with outward Fp2. For the super-sonic

poloidal flow M2
Apc/γp1c =2.5 (figure 11), Fv is outward from the magnetic axis except

for the edge region ξ = 0.9, as for sub-sonic flow. However, the direction of Fp2 becomes

opposite to that of the static equilibrium. The force of flow Fv act as centrifugal force

due to poloidal curvature and balances with the sum of FB2 and Fp2 in the core region

ξ = 0.1 [figure 11 (a)], and the sum of Fv acting as the dynamic pressure and Fp2

balances with FB2 in the edge region ξ = 0.9 [figure 11 (b)].

There are transitions between sub-sonic and super-sonic poloidal flows both in the

toroidal and poloidal curvature effects. Figure 12 compares the poloidal profiles of the

second order pressure force Fp2 at ξ = 0.1 for M2
Apc/γp1c = 0, 0.5, and 2.5 with each

other. The variations in Θ show that the sub-sonic poloidal flow enhances the outward

component in the major radius of the torus in Fp2 due to the effect of toroidal curvature

while the super-sonic poloidal flow changes its direction. This transition of the toroidal

curvature effect comes from compressibility of flow [20] and results in the transition of

the poloidal profile of the pressure shown in figures 6 and 7 that the pressure is peaked

in the outer mid-plane for sub-sonic poloidal flow and peaked in the inner mid-plane

for super-sonic poloidal flow. The second order pressure force Fp2 on average in Θ show
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the transition of the pressure force in the minor radius of the torus due to the poloidal

curvature effect. This transition of the effect of poloidal curvature will be discussed in

comparison with the flux average of pressure in the next section.

5. Flux average of pressure

The flux coordinates can also be used to calculate flux averages. The flux average of

the pressure is given by

〈p〉 (ξ) =

∫ π

−π

p (ξ, Θ) DdΘ/

∫ π

−π

DdΘ, (81)

where

D =
∂x

∂ξ

∂z

∂Θ
− ∂x

∂Θ

∂z

∂ξ
. (82)

From (71) and (72),

∂x

∂ξ
=

ψ11 (∆s) + εψ21 (∆s)

ψ′11 (x) + εψ′21 (x)

(−2ξcos2Θ
)
, (83)

∂x

∂Θ
=

ψ11 (∆s) + εψ21 (∆s)

ψ′11 (x) + εψ′21 (x)

(
2ξ2 cosΘ sin Θ

)
, (84)

∂z

∂ξ
= −2ξ [ψ11 (∆s) + εψ21 (∆s)]

∂ψ12

∂z
+ ε∂ψ22

∂z

[
sin 2Θ−

∂ψ12

∂x
+ ε∂ψ22

∂x

ψ′11 (x) + εψ′21 (x)
cos2Θ

]
, (85)

∂z

∂Θ
= −2ξ2sin Θ cos Θ [ψ11 (∆s) + εψ21 (∆s)]

∂ψ12

∂z
+ ε∂ψ22

∂z

[
1+

∂ψ12

∂x
+ ε∂ψ22

∂x

ψ′11 (x) + εψ′21 (x)

]
.(86)

Substituting (83) - (86) into (82), we obtain

D =
4ξ3sin Θ cos Θ [ψ11 (∆s) + εψ21 (∆s)]

2

[ψ′11 (x) + εψ′21 (x)]
(

∂ψ12

∂z
+ ε∂ψ22

∂z

) . (87)

The flux average of the pressure, (81), is calculated with numerical integration with

respect to Θ by using the solution of [x (ξ, Θ) , z (ξ, Θ)] obtained in section 3. We

employ the Gaussian quadrature with 1000 intervals as a numerical integration method.

Figure 13 compares the radial profiles of the flux surface average of the pressure for

M2
Apc/γp1c = 0, 0.5, and 2.5 with each other. They are normalized with the values of

pressure at ξ = 0. Though the differences are small, the profile of the flux surface

average of the pressure is more peaked near the magnetic axis for sub-sonic poloidal

flow M2
Apc/γp1c = 0.5 while it is broader for super-sonic poloidal flow M2

Apc/γp1c = 2.5,

compared with that for the static equilibrium M2
Apc/γp1c = 0. Comparing the flux

average of the pressure (figure 13) with the second-order force balances (figure 12),

the pressure is more peaked and the second-order force of pressure is outward in the

minor radius for sub-sonic poloidal flow while the pressure is broader and the second-

order force of pressure is inward for super-sonic poloidal flow. Thus the flux average

of pressure is compressed to concentrate near the magnetic axis due to the poloidal

curvature by sub-sonic poloidal flow while it is decompressed by super-sonic poloidal

flow.
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6. Analytic flux coordinates

The flux coordinates can be obtained analytically by expanding the relations between

geometrical and magnetic flux coordinates, (71) and (72), with respect to the

inverse aspect ratio. We apply asymptotic expansions to the geometric coordinates

[x (ξ, Θ) , z (ξ, Θ)] as

x ' x1 + εx2, (88)

z ' z1 + εz2, (89)

and expanding ∆s as

∆s ' ∆s1 + ε∆s2, (90)

where x, x1, x2, z, z1, z2, ∆s, ∆s1 and ∆s2 are normalized quantities with the minor

radius a and, from [20],

∆s2 = −ψ′21 (∆s1) /ψ′′11 (∆s1) . (91)

In the leading order, Eqs (71) and (72) are
(
1− ξ2cos2Θ

)
ψ11 (∆s1) = ψ11 (x1) , (92)

(−ξ2sin2Θ
)
ψ11 (∆s1) = ψ12 (x1, z1) , (93)

which are the same as (61) and (62) and the solutions of x1 and z1 are (66) and (67),

respectively. The first order equations are
(
1− ξ2cos2Θ

)
ψ21(∆s1) = ψ′11 (x1) x2 + ψ21(x1), (94)

(−ξ2sin2Θ
)
ψ21 (∆s1) =

∂ψ12

∂x

∣∣∣∣
(x,z)=(x1,z1)

x2 + ψ22(x1, z1) (95)

+
∂ψ12

∂z

∣∣∣∣
(x,z)=(x1,z1)

z2, (96)

which yield

x2 = [ψ′11 (x1)]
−1 [(

1− ξ2cos2Θ
)
ψ21(∆s1)− ψ21(x1)

]
, (97)

z2 =

(
∂ψ12

∂z

∣∣∣∣
(x,z)=(x1,z1)

)−1

×
[
(−ξ2sin2Θ

)
ψ21(∆s1)− ∂ψ12

∂x

∣∣∣∣
(x,z)=(x1,z1)

x2 − ψ22(x1, z1)

]
. (98)

It is noted that zeros at x1 = ∆s1 and z1 = 0 in the denominators of (97) and (98),

respectively, are eliminated by their numerators to obtain x2 = ∆s2 and z2 = 0.

Figures 14 - 16 show the flux coordinate systems constructed from analytic

representation of (88) and (89) with (66), (67), (97), and (98), compared with numerical

solutions for M2
Apc/γp1c = 0, 0.5, and 2.5, respectively. The analytic flux coordinates
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well agree with the numerical solution for M2
Apc/γp1c = 0 and 0.5 (figures 14 and 15).

For M2
Apc/γp1c = 2.5 (figure 16), the modification of the magnetic flux coordinates

qualitatively agree with the numerical solution mentioned in section 3 although M2
Apc

becomes large compared to the ordering M2
Apc ∼ 1 for p1c = 3.2 in the present case,

which is not essential for the transition between sub- and super-sonic poloidal flows.

7. Summary

We have obtained magnetic flux coordinates from the analytic solution for the reduced

MHD equilibrium equations in the presence of flow comparable to the poloidal sound

velocity for high-beta tokamaks. The flux coordinates represent non-circular magnetic

flux surfaces and indicate modification due to flow. We have shown the poloidal

distributions of the pressure on each magnetic flux surface by using magnetic flux

coordinates. We have shown from the profiles of the terms in the radial force balance

equations that there are transitions between sub- and super-sonic poloidal flows both

in the toroidal and poloidal curvature effects on the radial force balance. We have also

obtained the flux average of the pressure with the magnetic flux coordinates. Though the

differences are small, the profile of the flux surface average of the pressure is more peaked

near the magnetic axis for sub-sonic poloidal flow while it is broader for super-sonic

poloidal flow compared with that for the static equilibrium. These transitions of the

effects of toroidal and poloidal curvatures result in the transitions in the poloidal profiles

and the flux average of the pressure, respectively. We have also obtained the analytic

representation of the flux coordinates by the expansion of the geometric coordinates

with respect to the inverse aspect ratio. The flux coordinates will be applied to the

stability analysis of equilibrium with flow.
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Figure 1. Shift of the magnetic axis ∆s as a function of the square of the poloidal
Mach number M2

Apc/γp1c.
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Figure 2. Flux coordinates (ξ, Θ) obtained from ψ ' ψ1 + εψ2 for M2
Apc/γp1c = 0

(solid lines) and from ψ1 (dotted lines) in the poloidal cross section.
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Figure 3. Flux coordinates (ξ, Θ) obtained from ψ ' ψ1 + εψ2 for M2
Apc/γp1c = 0.5

(solid lines) and from ψ1 (dotted lines) in the poloidal cross section.
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Apc/γp1c = 2.5

(solid lines) and from ψ1 (dotted lines) in the poloidal cross section.
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Figure 7. Poloidal profiles of the pressure on each flux surface for M2
Apc/γp1c = 2.5.
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Figure 8. First order force balance at different flux surfaces for the static equilibrium,
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Apc/γp1c = 0.
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Figure 9. Second order force balance for the static equilibrium, M2
Apc/γp1c = 0.
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Figure 10. Second order force balance for the equilibrium with sub-sonic flow,
M2

Apc/γp1c = 0.5.
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Figure 11. Second order force balance for the equilibrium with super-sonic flow,
M2

Apc/γp1c = 2.5.
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Figure 12. Second order pressure forces for different poloidal Mach numbers
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Figure 13. Profiles in ξ of the flux surface average of the pressure for different values
of the square of the poloidal Mach number M2

Apc/γp1c.



Magnetic flux coordinates for analytic high-beta tokamak equilibria with flow 33

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

2

1
/ 0

Apc c
M pγ =

z

x

Figure 14. Flux coordinate systems (ξ, Θ) of analytic solution, (88) and (89) (solid
lines) and of the numerical solution of (71) and (72) (dashed lines) for M2

Apc/γp1c = 0
in the poloidal cross section.
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Figure 15. Flux coordinate systems (ξ, Θ) of analytic solution, (88) and (89) (solid
lines) and of the numerical solution of (71) and (72) (dashed lines) for M2

Apc/γp1c = 0.5
in the poloidal cross section.
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Figure 16. Flux coordinate systems (ξ, Θ) of analytic solution, (88) and (89) (solid
lines) and of the numerical solution of (71) and (72) (dashed lines) for M2

Apc/γp1c = 2.5
in the poloidal cross section.


