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Abstract 

Vacuum ultraviolet (VUV) spectra of line emissions from tungsten ions at lower ionization 

stages have been measured in the Large Helical Device (LHD) using a high-resolution 3m 

normal incidence spectrometer in the wavelength range of 495 to 1475 Å.  Tungsten was 

introduced in the LHD plasma by injecting a coaxial tungsten impurity pellet.  Many 

tungsten lines of W IV - W VII were successfully observed in low-temperature plasmas just 

after the tungsten pellet injection.  It is found that some W VI lines are emitted with 

extremely high intensity and entirely isolated from other intrinsic impurity lines, in 

particular, W VI at 605.926 Å (5d-6p), 639.683 Å (5d-6p), 677.722 Å (5d-6p), 1168.151 Å 

(6s-6p) and 1467.959 Å (6s-6p).  The result strongly suggests that those lines may be useful 

for the spectroscopic study in ITER and other magnetic fusion devices with tungsten 

materials as the plasma facing component.  The ion temperature was also measured from 

Doppler broadening of W V and W VI lines.   The result indicates that the measured ion 

temperature is clearly higher than the ionization energy of such ions.  The reason is 

discussed with regarding to the pellet injection. 
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1.Introduction 

Tungsten is regarded as a possible candidate material for the plasma facing 

component (PFC) in divertor region of ITER and future fusion reactors because of its high 

melting point, low sputtering yield, and low tritium retention [1-3].  One of the major 

concerns regarding the tungsten PFC is that the tungsten ion causes a large radiation loss 

due to its large atomic number of Z = 74 when the plasma is contaminated by the tungsten 

impurity.  At present, therefore, study of tungsten behaviors in fusion devices is crucially 

important.  At the initial stage of the tungsten transport process in fusion devices with 

tungsten PFCs, firstly, neutral tungsten atoms sputtered and released from the divertor 

plates are ionized in the divertor region and start to move upstream toward X-points along 

magnetic field lines.  The singly ionized tungsten ion is a tungsten impurity influx to the 

scrape-off layer of tokamaks.  On the other hand, a line emission from the tungsten neutrals 

has been measured at the wavelength of  = 4009 Å, using visible spectroscopies as an 

indicator of the sputtering yield [4,5].  Once the tungsten ion enters the main plasma 

passing through the scrape-off layer, it is ionized to higher ionization stages in the core region 

of high-temperature plasmas.  A large number of tungsten line emissions from highly 

ionized tungsten ions have been measured in the past in the wavelength ranges of extreme 

ultraviolet (EUV) and soft X-ray (SX).  For example, the line emissions at  = 61 Å from W44+ 

ions and 62 Å from W45+ ions  have been observed in the plasma center and utilized to study 

the impurity accumulation phenomena [6,7].  An imaging diagnostic of SX radiation from 

highly-ionized tungsten ions has also been developed to measure the two-dimensional 

distribution of tungsten emissions on a poloidal cross section [8,9]. 

On the other hand, tungsten ions at lower ionization stages existing in edge and 

divertor plasmas including the scrape-off layer have rarely been observed until now in the 

present fusion devices, while the line emission from low-ionized tungsten is necessary for 

accurate evaluation of tungsten influx and understanding of the tungsten transport in the 
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scrape-off layer or edge plasma.  The line emissions from tungsten ions in such low charge 

states have only been measured in several basic plasma experiments based on vacuum 

ultraviolet (VUV) spectroscopy [12,13].  Figure 1 shows ionization energy of tungsten ions, 

Ei, as a function of charge state, q+ [10].  In fusion plasmas the impurity ion is basically 

located in a radial position where the electron temperature, Te, is equal to Ei.  Although 

accurate determination of the radial position where the impurity ion is located requires 

further discussion on impurity and plasma transport, we can obtain a rough guideline of the 

impurity location by assuming Te = Ei.  According to a numerical simulation by the ITER 

Physics Expert Group on Divertor, the value of Te in ITER divertor plasmas ranges below 150 

eV [11].  A grey-striped region indicates the electron temperature range for typical ITER 

divertor plasmas.  From the figure, observation of W8+ (Ei = 160.2 eV), W7+ (Ei = 141.2 eV), 

and tungsten ions in further low-charge states are expected in the divertor plasma.  Thus, 

application of the VUV spectroscopy to high temperature plasma experiments is very 

important for identification of line emissions from tungsten ions in lower charge states which 

leads to the tungsten transport study in edge plasmas and also the quantitative evaluation of 

tungsten influx in fusion plasmas in addition to the enhancement of spectroscopic database 

on tungsten line emissions. 

Based on the background mentioned above, VUV spectra from low-ionized tungsten 

are measured in the Large Helical Device (LHD) for the contribution to the tungsten 

transport study in edge plasmas of ITER and other tungsten-divertor fusion devices and for 

the expansion of experimental database of tungsten line emissions. 

 

 

2. Tungsten pellet injection experiment in LHD 

High-density and high-temperature plasmas in LHD are produced and maintained 

by negative-ion-source-based neutral beam injection (n-NBI) with high beam energy of 180 
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keV and high port-through power of 18 MW in the absence of toroidal plasma current [14].  

Typical electron temperature range at the core plasma of NBI discharges in the standard 

configuration (major/minor radii of 3.6/0.64 m, plasma volume of 30 m3 and toroidal magnetic 

field of 3 T) is indicated by the gray region in Fig.1.  The electron temperature at the plasma 

center and the plasma edge defined by the last closed flux surface (LCFS) ranges in 2  Te  3 

keV and 0.15  Te  0.5 keV, respectively, depending on the electron density. 

In order to observe the tungsten emission a tungsten impurity pellet accelerated by 

pressurized He gas of 10-20 atm is injected in the LHD plasma with speed of 200 m/s.  The 

tungsten impurity pellet has a coaxial structure of a thin tungsten wire inserted into a 

polyethylene or carbon cylindrical tube [15,16].  Since the tungsten wire with sizes of 0.6 

mm in length and 0.15 mm in diameter is used in the present experiment, approximately 7 × 

1016 tungsten atoms are deposited in the plasma at single pellet injection.  In the present 

study, the VUV spectroscopy was attempted for hydrogen discharges with magnetic axis 

position of Rax, = 3.60 m at toroidal magnetic field of Bt, = -2.75 T.  Here, the minus sign of Bt 

means inverse direction, i.e., counter-clockwise direction.  Figure 2 shows a typical 

waveform in experiments with the tungsten pellet injection.  The discharge initiated by the 

electron cyclotron heating is grown by three n-NBI beams with total port-through power of 10 

MW and maintained for 5 s as shown in Fig. 2(a).  Figures 2 (b), (c), (d) and (e) show the 

central electron temperature, Te0, the central electron density, ne0, the electron kinetic energy, 

Wpe, and the total radiation power, Prad, respectively.  After the tungsten pellet injection at 

4.3 s, Te0 and Wpe quickly decrease, while ne0 increases.  It has been confirmed 

experimentally that the increase in ne is caused by ablation of tungsten in the pellet 

dominantly and increase in ne by carbon ablation in the pellet is small [15].  Prad once 

increases significantly and turns to decrease at 4.35 s.  After Te0 reaches the minimum value 

around 0.5 keV, Te0 starts to recover.  During the Te0 recovery phase, Prad continues to 
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decrease and line emissions from tungsten ions appear in the order from lower to higher 

ionization stages. 

Temporal evolutions of electron temperature and density profiles in the same 

discharge as Fig. 2 are plotted in Figs. 3(a) and (c) and Figs. 3(b) and (d), respectively.  The 

profiles at t = 4.266 s (open circles) and 4.4 s (solid circles) indicates ones just before and after 

the tungsten pellet injection, respectively.  When the pellet is injected, the edge Te rapidly 

drops and the edge ne quickly increases because the pellet is evaporated in the plasma edge, 

as shown in Figs. 3(a) and (b).  Figure 3(c) and (d) show increases of core Te and ne, 

respectively, in a phase in which Te recovers (4.8-5.4 s). 

The large variation of Te after the tungsten pellet injection as shown in Fig. 2 can 

provide us an excellent opportunity to observe tungsten line emissions in various kinds of 

charge states as a function of discharge time.  In the previous studies in LHD, EUV 

spectroscopy has been extensively carried out by observing tungsten line emissions at the 

temperature recovery phase.  Unresolved transition array (UTA) from tungsten ions in 

ionization stages of W24+ to W33+ is clearly observed in the wavelength range around 50 Å in 

the time sequence when Te recovers from 0.13 keV to 1.7 keV.  The line emission from W44+ 

ions at 61 Å and its radial profile also have been successfully observed in the temperature 

recovery phase at 2.3  Te  3.2 keV [17].  In the present study, the VUV spectroscopy is 

attempted in the temperature reduction phase at which low-ionized tungsten ions are 

expected to exist in the plasma core.  Therefore, it strongly suggests that VUV line 

emissions from such ions can be measured with sufficient intensity.  

 

 

3. VUV spectra of W IV-W VII in wavelength range of 495-1475Å 

A 3m normal incidence VUV spectrometer (McPherson model 2253) working in the 

wavelength range of 300-3200 Å is installed on an outboard midplane diagnostic port with 
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the impurity pellet injector as shown in Fig. 4(a) [18].  A back-illuminated CCD detector 

(Andor model DO435-BN: 1024 × 1024 pixels) is used for measuring a focal image of VUV line 

emissions at the exit slit of the spectrometer.  A high wavelength dispersion of 0.037 Å/pixel 

enables Doppler profile measurement of the impurity lines basically over the whole 

wavelength range.  The viewing angle covers an entire vertical region of the elliptical LHD 

plasma at horizontally-elongated poloidal plasma cross section to measure the top-to-bottom 

vertical profile as shown in Fig. 4(b).  In this study, the wavelength spectrum is simply 

measured instead of the vertical profile diagnostic by fully opening the spatial-resolution slit 

for detailed observations of tungsten line emissions.  For the purpose the CCD is operated in 

"full-binning" mode with time resolution of 50 ms.  The CCD then works as a linear detector 

by summing up all 1024 vertical pixels.  The wavelength interval which can be measured in 

a single discharge is about 37 Å, and does not depend significantly on the wavelength range 

to be measured.  Since the wavelength interval is quite narrow due to the high dispersion of 

the spectrometer, the measurement of tungsten line emissions is carried out by changing the 

central wavelength for each shot in the wavelength range of 495-1475 Å.  Therefore, at least 

28 successful discharges were necessary for observation over the whole wavelength range. 

Many VUV line emissions from low-ionized tungsten, i.e., W IV, W V, W VI and W 

VII, were successfully observed at the time frame just after the tungsten pellet injection, in 

particular, the time frame of 4.30-4.35 s in Fig. 2.  The observed tungsten VUV spectra are 

displayed in Fig.5.  It should be noticed here that the plasma parameters rapidly change 

during the signal integration time of 50 ms.  The observed spectrum therefore includes 

information at temporally changing plasma parameters.  In addition, the discharge behavior 

after the tungsten pellet injection has some variation for each shot.  The discharge condition 

during observation of the tungsten spectrum is not then identical in a very strict sense.  In 

order to examine an effect of the temporal change of plasma parameters and conditional 

variation among discharges the tungsten spectrum was observed in several discharges with 
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tungsten pellet by fixing the wavelength.  However, the observed spectra did not show any 

large difference in the spectral intensity and structure.  This indicates the tungsten spectra 

observed in the present study can be a typical dataset from low-temperature fusion plasmas.  

Each line in Fig.5 is carefully identified using the NIST atomic spectra database [10].  The 

line emission in each ionization stage of W IV, W V, W VI and W VII are drawn in purple, blue, 

green and orange solid lines and denoted with arrows in the same colors, while line emissions 

from intrinsically existing impurity ions and tungsten lines blended with other lines are 

drawn in black dashed lines and denoted with black dashed arrows in Fig. 5.  The 

wavelength scale in abscissa of Fig.5 is determined by linear interpolation and extrapolation 

based on the wavelengths of intrinsic or extrinsic impurity ions (H, He, B, C, N, O and Fe) 

which have been already known with high accuracy.  A brief description of observed lines is 

summarized in the following. 

 

3.1 W IV 

The W IV lines appear at longer wavelengths of in the VUV range which are mainly 

seen in Figs. 5(d)-(g).  The spectral identification is listed in Table 1 with relative spectral 

intensity.  NIST and obs are the wavelengths of line emissions registered in Ref. [10] and 

observed by our VUV spectroscopy, respectively.  Discrepancy between NIST and obs is much 

smaller than 0.1 Å for all identified lines, which indicates a high accuracy of the line 

identification.  The spectral intensity is evaluated as count rate (counts/50ms) at the peak 

channel of line emissions by subtracting the background level.  The intensity of W IV lines is 

relatively weak and most of the lines are blended with other lines.  In Table 1 the blended 

line is denoted as 'b' in the column of relative intensity.  Since the ionization energy of W3+ 

ions is very small, i.e., 38.2 eV, the W IV emission is located in outer region of the LHD 

plasma even if the electron temperature largely drops after the tungsten pellet injection.  

This indicates a small emission volume along the viewing chord, which leads to weaker 
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intensity.  In addition, there are many transitions in the W IV isoelectronic sequence 

reflecting its complex electronic structure, i.e., three 5d electrons in the outer shell.  This 

suggests that the intensity of single transition is relatively weaker.  These may be a possible 

reason why the intensity of W IV is weak. 

 

3.2 W V 

 The W V lines are also identified in a wide wavelength range of 715-1475 Å as well 

as in the case of W IV.  The result is shown in Figs. 5(b)-(g) and the identification is 

summarized in Table 2.  The line intensity of W V is generally stronger than that of W IV.  

In the W V isoelectronic sequence we can select typical isolated lines with substantial 

intensity as follows; W V lines at 797.649 Å, 810.228 Å, 811.459 Å, 814.648 Å, 817.489 Å, 

821.190 Å, 842.724 Å, 847.744 Å, 867.637 Å, 1305.614 Å and 1311.472 Å. 

 

3.3 W VI 

In the VUV line emission from low-ionized tungsten ions the W VI line gives the 

strongest intensity because the electronic structure in the W VI isoelectronic sequence is 

relatively simple.  As the W5+ ion only has single 5d electron in the outer shell, the number 

of transitions is very limited.  Therefore, the intensity of each transition becomes stronger.  

In particular, five W VI transitions at 605.926 Å (5d-6p), 639.683 Å (5d-6p), 677.722 Å (5d-6p), 

1168.151Å (6s-6p) and 1467.959 Å (6s-6p) have very strong intensity as listed in Table 3.  

These lines are useful for the spectroscopic study because they are entirely isolated from 

other impurity lines in addition to the sufficient intensity. 

It is worth stating that one may suspect an effect of the superposition of the WVI 

677.722 Å line and the BIII 677.142 Å line because the BIII line is one of strong lines among 

boron lines, even though the BIII line is not identified in the present case shown in Fig. 5(b).  

Due to a high wavelength dispersion of 0.037 Å/pixel, difference of wavelengths of these two 



- 9 - 

 

lines 0.58 Å is about 16 pixels.  It is large enough to distinguish these two lines in the 

spectrum when BIII 677.142 Å emission becomes significant.  We also measured WVI lines 

using poor-resolution VUV spectrometers with 0.85 Å/pixel, which cannot distinguish 

between WVI 677.722 Å and BIII 677.142 Å.  Then temporal evolutions of line emission 

intensities of WVI 639.683 Å and WVI 677.722 Å are proportional to each other [19].  It 

suggests that superposition of the WVI 677.722 Å and BIII 677.142 Å is negligible. 

 

3.4 W VII 

 The W VII lines are dominated in shorter wavelength range of 495-600 Å as seen in 

Fig. 5(a).  Second order emissions of those lines can also be observed in the wavelength 

range of 900-1200 Å (see Figs.5 (d) and (e)).  However, these lines are not sufficiently 

adequate for the spectroscopic study of tungsten because the intensity is relatively weak and 

most of the lines are blended with other lines.  The throughput of the present 3m normal 

incidence spectrometer system gradually decreases below 1000 Å [20], while it is roughly 

constant above 1000Å.  The absolute intensity calibration has not been performed yet.  

However, the spectral intensity from intrinsic impurities of carbon and oxygen is still strong 

as seen in Fig. 5(a).  When the line ratio is taken into account for carbon and oxygen lines, 

the throughput reduction at 500-600 Å is at least much smaller than order of magnitude.  

Therefore, the relatively weak intensity of W VII is not mainly caused by the reduction of the 

spectrometer throughput. 

 

3.5 W V and W VI lines useful for tungsten diagnostics 

The W VI and W V lines which seem to be useful for tungsten diagnostics are listed 

in Table 5.  Measurement of Doppler profiles is attempted using such lines.  Figures 6(a) 

and (b) show spectral profiles of W VI at 605.926 × 2 Å and W V at 1311.472 Å with Doppler 

broadening, respectively.  The profile fitting to raw spectral data was very good due to the 
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sufficient signal intensity.  The full width of half maximum (FWHM) in the Doppler 

broadening and resulting ion temperature, Ti, are determined with error bars.  The result is 

also listed in Table 5.  The spectral instrumental width of the spectrometer system is 

carefully examined using a low pressure mercury lamp (HAMAMATSU L937-02) and VUV 

lines from neutral mercury particles with extremely low Ti.  It is finally determined to be 

0.206 ± 0.06 Å in FWHM of which the value is basically independent of the wavelength.  The 

Ti is thus calculated by taking into account the instrumental width.  However, the error bar 

of Ti listed in Table 5 is still large except for a few tungsten lines at 2nd order light and longer 

wavelength, e.g. W VI at 605.926 × 2 Å and W V at 1311.472 Å.  This means that the error 

bar is mainly caused by a lack of spectral resolution of the spectrometer system but not by a 

lack of signal intensity.  It is difficult to discuss difference among Ti from different 

transitions or charge states using present data quality.  However, we can expect to observe 

higher order emissions of the lines listed in this table within the observable wavelength 

range,  < 3200 Å, because the observed intensity of tungsten lines are relatively strong.  If 

we can find higher order emissions with broader Doppler width in future studies, it will lead 

to improve the signal to noise ratio for the Ti measurements.  At present, available 

discussion is limited to an overall tendency that the measured Ti seems to be higher than the 

ionization energy of W4+ and W5+ which is 51.6 eV and 64.8 eV, respectively.  In LHD the 

electron temperature where the impurity ion exists, TeZ, was compared with the ionization 

energy [21].  In the previous study the TeZ is almost equal to the ionization energy for the 

impurity ion existing at plasma edge, while the TeZ is considerably smaller than the 

ionization energy for the impurity staying at the plasma core.  If this condition can be 

applied to low-ionized tungsten ions, the measured Ti should be equal to the ionization energy.  

The ionization time of W4+ or W5+ ions is smaller than 1ms and much smaller than the data 

acquisition time (= 50 ms).  The tungsten ions are then already in the ionization equilibrium.  

The Te rapidly decreases due to the large ionization and radiation losses after the tungsten 
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pellet injection, while the bulk ion loses the energy through collision with electrons.  

However, the energy exchange time between ion and electron is considerably long in the 

discharge shown in Fig.2, e.g., 50 ms [22].  Therefore, the Ti seems to be higher than the Te 

as a transient effect just after the tungsten pellet injection.  This will be a possible 

explanation of why the Ti of the tungsten ions is higher than the ionization energy. 

 

 

4. Summary 

VUV spectroscopy using a high-resolution 3 m normal incidence spectrometer has 

been applied to measure VUV lines from tungsten ions at lower ionization stages in 

wavelength range of 495-1475 Å in LHD.  The tungsten is externally introduced in the LHD 

plasma by injecting a coaxial tungsten impurity pellet.  Many tungsten lines of W IV - W VII 

were successfully observed just after the tungsten pellet injection.  It is found that five W VI 

lines at 605.926 Å, 639.683 Å, 677.722 Å, 1168.151 Å and 1467.959 Å have the highest 

intensity and are entirely isolated from other intrinsic impurity lines.  The result strongly 

suggests that those lines will be useful for the spectroscopic study in ITER and other 

tungsten-divertor devices.  The ion temperature was measured from Doppler broadening of 

W V and W VI lines.  The measured ion temperatures were higher than the ionization 

energy, suggesting a transient effect after the pellet injection.  
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Table 1  Wavelength list of VUV lines from W IV (5s25p65d3).  Symbol ‘b’ in relative  

intensity means the line is blended with other lines. 

 

  

NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

 NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

876.748   b  1161.365   b 

876.898   b  1161.426   b 

889.777 889.734 0.043 142  1167.164   b 

935.856 935.807 0.049 60  1172.471   b 

968.837 968.914 -0.077 73  1175.621   b 

987.065 987.08 -0.015 102  1186.174 1186.177 -0.003 140 

995.867 995.868 -0.001 52  1193.451   b 

1003.859   b  1202.899   b 

1006.670   b  1208.885   b 

1036.571   b  1225.692 1225.651 0.041 67 

1041.591 1041.590 0.001 135  1242.856   b 

1046.047 1046.060 -0.013 75  1247.307   b 

1048.245 1048.209 0.036 76  1247.368   b 

1049.204   b  1249.230   b 

1051.503   b  1259.482   b 

1063.288 1063.261 0.027 95  1293.094   b 

1068.248   b  1301.215   b 

1068.250   b  1309.520   b 

1068.630   b  1312.280   b 

1072.963 1072.955 0.008 146  1332.102   b 

1074.748   b  1334.539   b 

1088.027 1088.025 0.002 76  1334.579   b 

1093.261   b  1338.699   b 

1097.653 1097.672 -0.019 72  1340.640 1340.635 0.005 134 

1098.240   b  1343.084   b 

1099.049   b  1353.548 1353.543 0.005 168 

1102.938   b  1354.489 1354.492 -0.003 254 

1106.154 1106.158 -0.004 48  1370.023   b 

1112.433 1112.432 0.001 188  1372.005   b 

1113.935 1113.932 0.003 142  1379.588 1379.558 0.03 243 

1119.718 1119.705 0.013 97  1390.623   b 

1135.148 1135.157 -0.009 70  1404.040   b 

1136.937 1137.015 -0.078 49  1406.866   b 

1140.273   b  1452.248 1452.285 -0.037 128 

1140.337   b  1455.504   b 

1152.570   b  1464.327   b 

1153.898   b  1470.239   b 

1161.360   b      
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Table 2  Wavelength list of VUV lines from W V (5s25p65d2).  Symbol ‘b’ in relative intensity 

means the line is blended with other lines. 

 

  

NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

 NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

716.727 716.721 0.006 139  435.023×2 870.07 -0.024 164 

723.876 723.877 -0.001 190  873.042 873.032 0.01 238 

725.623 725.617 0.006 84  875.102 875.098 0.004 121 

726.167 726.168 -0.001 313  441.073×2 882.144 0.002 66 

730.525 730.533 -0.008 50  887.575 887.575 0 363 

731.726 731.729 -0.003 207  448.510×2 897.047 -0.027 89 

733.561 733.59 -0.029 90  453.849×2 907.709 -0.011 59 

738.451 738.448 0.003 150  455.416×2 910.812 0.02 73 

744.887 744.892 -0.005 401  913.350 913.344 0.006 220 

752.845 752.84 0.005 89  457.732×2 915.474 -0.01 58 

757.424 757.442 -0.018 107  933.413 933.412 0.001 113 

760.743   b  942.951 942.969 -0.018 77 

775.211 775.207 0.004 166  953.095 953.09 0.005 135 

780.888 780.872 0.016 175  1189.140   b 

785.898   b  1262.704 1262.697 0.007 184 

786.254 786.252 0.002 739  1264.060 1264.055 0.005 183 

797.056 797.05 0.006 189  1286.468   b 

797.649 797.647 0.002 1069  1291.759   b 

800.829 800.825 0.004 111  1305.614 1305.613 0.001 697 

809.569 809.594 -0.025 80  1311.472 1311.473 -0.001 988 

810.228 810.228 0 1236  1312.312   b 

811.459 811.462 -0.003 1044  446.272×3   b 

812.001   b  448.510×3   b 

812.042   b  455.416×3   b 

813.527 813.525 0.002 255  1367.344 1367.347 -0.003 455 

814.648 814.654 -0.006 765  1373.453   b 

817.489 817.492 -0.003 1007  1385.070   b 

821.190 821.184 0.006 682  1399.948   b 

823.868 823.863 0.005 188  468.928×3   b 

829.448 829.442 0.006 117  1423.891   b 

842.724 842.725 -0.001 993  479.035×3   b 

847.744 847.749 -0.005 514  1445.421 1445.408 0.013 230 

864.020 864.015 0.005 89  1455.570   b 

867.637 867.631 0.006 502      
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Table 3  Wavelength list of VUV lines from W VI (5s25p65d).  Symbol ‘b’ in relative intensity 

means the line is blended with other lines. 

 

  

NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

 NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

605.926 605.929 -0.003 2096  1006.289 1006.295 -0.006 377 

639.683 639.674 0.009 16535  1168.151 1168.147 0.004 3449 

677.722 677.723 -0.001 13415  605.926×2 1211.860 -0.008 3081 

394.134×2 788.265 0.003 388  639.683×2 1279.361 0.005 8417 

876.106 876.112 -0.006 551  677.722×2 1355.442 0.002 7605 

878.127 878.142 -0.015 163  1467.959 1467.954 0.005 1763 

994.500   b      
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Table 4  Wavelength list of VUV lines from W VII (5s25p6).  Symbol ‘b’ in relative intensity 

means the line is blended with other lines. 

  

NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

 NIST (Å) obs (Å) NIST 

- obs 

(Å) 

Relative 

intensity 

(counts 

/50ms) 

495.078 495.119 -0.041 119  743.513 743.457 0.056 111 

495.681 495.645 0.036 129  455.844×2 916.703 -0.015 135 

496.424   b  483.912×2 967.834 -0.01 347 

496.517   b  487.093×2 974.192 -0.006 214 

497.337 497.327 0.01 371  496.424×2    b 

498.655 498.669 -0.014 122  496.517×2   b 

500.835 500.869 -0.034 120  331.534×3   b 

501.438 501.466 -0.028 91  498.655×2 997.337 -0.027 83 

501.993 501.998 -0.005 146  500.835×2   b 

503.332   b  501.438×2 1002.887 -0.011 114 

503.534   b  501.993×2   b 

504.605 504.624 -0.019 120  503.332×2   b 

510.490 510.51 -0.02 126  503.534×2 1007.077 -0.009 283 

511.626   b  504.605×2 1009.224 -0.014 96 

512.617 512.634 -0.017 486  510.490×2 1021.04 -0.06 102 

513.549 513.512 0.037 47  511.254×2 1022.52 -0.012 123 

516.582 516.595 -0.013 157  511.626×2   b 

519.116 519.128 -0.012 97  512.617×2 1025.236 -0.002 458 

520.321 520.325 -0.004 461  516.582×2 1033.188 -0.024 173 

521.570 521.575 -0.005 124  518.275×2   b 

523.250 523.259 -0.009 444  520.321×2 1040.643 -0.001 394 

524.845 524.748 0.097 89  521.570×2 1043.188 -0.048 77 

525.335 525.335 0 311  523.250×2 1046.494 0.006 340 

527.620 527.617 0.003 325  1049.329   b 

529.005 529.077 -0.072 52  525.335×2   b 

530.954 530.929 0.025 240  527.620×2   b 

533.630 533.605 0.025 437  530.954×2 1061.904 0.004 98 

536.916 536.956 -0.04 296  533.630×2 1067.248 0.012 147 

537.348 537.328 0.02 294  1070.577   b 

540.495 540.431 0.064 86  537.348×2   b 

542.954 543.008 -0.054 206  543.411×2   b 

543.411 543.398 0.013 488  549.279×2   b 

549.279 549.316 -0.037 210  551.448×2   b 

557.973 557.937 0.036 70  596.999×2   b 

560.322 560.332 -0.01 171  463.548×3   b 

568.539 568.569 -0.03 91  464.020×3   b 

596.999 597.012 -0.013 166  467.523×3   b 
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Table 5  List of VUV line emissions from W ions useful for spectroscopic measurement. 

 

  

Charge 

state 

Wavelength 

(Å) 

Relative 

intensity 

(counts/50ms) 

FWHM 

(Å) 

Ion 

temperature 

(eV) 

W VI 605.926 2096 0.207 51 ± 231 

W VI 639.683 16535 0.211 167 ± 186 

W VI 677.722 13415 0.214 228 ±166 

W VI 1168.151 3449 0.219 121 ± 59 

W VI 605.926 × 2 3081 0.221 137 ± 52 

W VI 639.683 × 2 8417 0.219 102 ± 47 

W VI 677.722 × 2 7605 0.231 182 ± 42 

W VI 1467.959 1763 0.222 97 ± 37 

W V 797.649 1069 0.213 139 ± 127 

W V 810.228 1236 0.220 285 ± 126 

W V 811.459 1044 0.214 155 ± 129 

W V 817.489 1007 0.219 251 ± 129 

W V 842.724 993 0.209 53 ± 120 

W V 1311.472 988 0.232 208 ± 77 
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Figure 1  Ionization energy, Ei, of W ions as a function of charge state, q+.  Grey-striped and 

gray-hatched regions indicate electron temperature range at Te = Ei for ITER divertor 

plasmas and LHD plasmas with NBI, respectively. 

 

  



- 20 - 

 

 

 

 

 

 

Figure 2  Typical waveform of W pellet injection experiment in LHD: (a) n-NBI power, (b) 

central electron temperature, (c) central electron density, (d) electron kinetic energy and (e) 

total radiation power. 
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Figure 3  Temporal evolutions of radial profiles of electron temperature, Te, and electron 

density, ne: (a) Te and (b) ne profiles just before (4.266 s) and after (4.4-4.6 s) the pellet 

injection and (c) Te and (d) ne profiles in Te recovery phase.  

 

  



- 22 - 

 

 

 

 

 

 

Figure 4  Schematic drawing of VUV spectroscopy in tungsten pellet injection experiments.  

(a) Top view of the instruments together with the optical axis of the VUV spectrometer and 

the injection direction of the tungsten pellet.  (b) Vertical viewing angle and the pellet 

injection direction on the poloidal cross section of the magnetic field in LHD. 
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Figure 5 (a)  VUV spectra of emission lines from W ions observed in LHD (495-635Å). 
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Figure 5 (b)  (continued; 635-775Å) 
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Figure 5 (c)  (continued; 775-915Å) 
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Figure 5 (d)  (continued; 915-1055Å) 
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Figure 5 (e)  (continued; 1055-1195Å) 
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Figure 5 (f)  (continued; 1195-1335Å) 
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Figure 5 (g)  (continued; 1335-1475Å) 
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Figure 6  Spectral profiles of (a) 2 × W VI and (b) W V with Doppler broadening. Opened 

circles indicate raw experimental data and solid lines are fitting curves with Gaussian 

profiles. 


