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A Laguerre expansion method for the field particle portion in the linearized
Coulomb collision operator
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The spherical coordinates expressions of the Rosenbluth potentials are applied to the field

particle portion in the linearized Coulomb collision operator. The Sonine (generalized Laguerre)

polynomial expansion formulas for this operator allowing general field particles’ velocity

distributions are derived. An important application area of these formulas is the study of flows of

thermalized particles in NBI-heated or burning plasmas since the energy space structure of the

fast ions’ slowing down velocity distribution cannot be expressed by usual orthogonal polynomial

expansions, and since the Galilean invariant property and the momentum conservation of the

collision must be distinguished there. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936799]

I. INTRODUCTION

Past kinetic theories on NBI (neutral beam injection)-

heated or burning plasmas from the 1970s into the 1990s

were constructed for investigating the beam driven currents1

and the bootstrap currents.2 After development of the charge

exchange recombination spectroscopy,3,4 the flow velocities

of thermalized ions caused by the existence of the fast ions

also are regarded as an important physics issue.4 The appli-

cation of the neoclassical transport theory for this purpose

requires a simultaneous solving of the kinetic equations of

all thermal particles, including the Coulomb collision oper-

ator CafðfaM; ffÞ that describes the collision of the thermal

particle species a with the fast ions’ slowing down velocity

distribution function ffðx; vÞ (velocity distribution function

of proton or deuterium in NBI-heated plasmas or helium in

burning plasmas). In a recent theory for general toroidal

configurations,5,6 problems including the field particle por-

tion CabðfaM; fbÞ in the linearized collision operator with the

local Maxwellian distribution faM (integro-differential equa-

tions) are converted to generalized parallel force balance

expressed in an algebraic form by taking
Ð

vkL
ð3=2Þ
j ðx2

aÞd3v

integrals of the drift kinetic equation. Here, L
ðaÞ
j ðKÞ �

ðeKK�a=j!Þdjðe�KKjþaÞ=dKj is the Sonine (generalized

Laguerre) polynomial,7 and xa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mav2=2Ta

p
� v=vTa. This

neoclassical calculation was conducted recently for the NBI-

heated plasmas in the Heliotron-J (a non-axisymmetric toroi-

dal device), and its theoretical results successfully explained

the experimentally measured impurity flow velocities.8 In

this paper, we report a method used there for obtaining the

collision integrals
Ð

vkL
ð3=2Þ
j ðx2

aÞCafðfaM; ffÞd3v.

II. ROSENBLUTH POTENTIAL

We shall start from the well-known RMJ (Rosenbluth-

MacDonald-Judd) form of the Coulomb collision operator9

Cab fa; fbð Þ ¼ �4p
eaeb

ma

� �2

lnKab

� @

@va

ma

mb
fa
@H fbð Þ
@va

� 1

2

@2G fbð Þ
@va@vb

@fa

@vb

 !
: (1)

The Rosenbluth potentials in this operator are defined by

H fbð Þ �
ð

fb v0ð Þ
jv� v0j d

3v0;G fbð Þ �
ð

fb v0ð Þjv� v0jd3v0; (2)

where v and v0 are velocities of test particles (a) and field

particles (b), respectively. The Coulomb logarithm10 ln Kab

¼ ln Kba for the colliding species pair a-b in this operator is

a constant being independent of the colliding velocity.

Hereafter, velocity distribution functions of the field particles

fbðvÞ ¼ fbðv; h;/Þ given in the spherical harmonic expansion

form

fbðvÞ¼
X1
l¼0

h
a0

l ðvÞPlðcoshÞ

þ
Xl

m¼1

Pm
l ðcoshÞfam

l ðvÞcosðm/Þþbm
l ðvÞsinðm/Þg

i
�
X1
l¼0

f
ðlÞ
b ðv;h;/Þ; (3)

are assumed. For the potentials in Eq. (2) including these

functions, we shall apply a basic idea in Ref. 11. In this

spherical velocity coordinate system, jv� v0j�1
and jv� v0j

in Eq. (2) are functions of

z ¼ cos h cos h0 þ sin h sin h0 cosð/� /0Þ; (4)

which is the cosine of the angle between v and v0, and can

be expressed by Legendre polynomial Pn(z) expansions bya)Electronic mail: nishimura.shin@lhd.nifs.ac.jp
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applying the generating function ð1� 2hzþ h2Þ�� ¼
P1

n¼0 C�
nðzÞhn for the Gegenbauer functions C�

nðzÞ (a special case of it

is the Legendre polynomial C1=2
n ðzÞ ¼ PnðzÞ).12 Substituting these expansions and the velocity distribution function Eq.

(3) into Eq. (2) with the theorem12

Pn zð Þ¼Pn coshð ÞPn cosh0ð Þþ2
Xn

m¼1

n�mð Þ!
nþmð Þ!P

m
n coshð ÞPm

n cosh0ð Þ cos m/ð Þcos m/0
� �

þsin m/ð Þsin m/0
� �� �

; (5)

results in spherical harmonic expansion forms of the Rosenbluth potentials and/or their energy differential as follows.

H fbð Þ ¼ 4p
X1
l¼0

1

2lþ 1

1

vlþ1

ðv

0

v0ð Þlþ2
f lð Þ
b v0; h;/ð Þdv0 þ vl

ð1
v

f lð Þ
b v0; h;/ð Þ

v0ð Þl�1
dv0

( )
; (6)

@H fbð Þ
@v

¼ 4p
X1
l¼0

1

2lþ 1
� lþ 1

vlþ2

ðv

0

v0ð Þlþ2
f lð Þ
b v0; h;/ð Þdv0 þ lvl�1

ð1
v

f lð Þ
b v0; h;/ð Þ

v0ð Þl�1
dv0

( )
; (7)

@G fbð Þ
@v

¼ 4p
X1
l¼0

1

2lþ 1

(
� lþ 1

2lþ 3

1

vlþ2

ðv

0

ðv0Þlþ4f
ðlÞ
b ðv0; h;/Þdv0 þ l� 1

2l� 1

1

vl

ðv

0

v0ð Þlþ2
f lð Þ
b v0; h;/ð Þdv0

þ lþ 2

2lþ 3
vlþ1

ð1
v

f lð Þ
b v0; h;/ð Þ

v0ð Þl�1
dv0 � l

2l� 1
vl�1

ð1
v

f lð Þ
b v0; h;/ð Þ

v0ð Þl�3
dv0
)
; (8)

@2G fbð Þ
@v2

¼ 4p
X1
l¼0

1

2lþ 1

(
lþ 1ð Þ lþ 2ð Þ

2lþ 3

1

vlþ3

ðv

0

v0ð Þlþ4
f lð Þ
b v0; h;/ð Þdv0 � l� 1ð Þl

2l� 1

1

vlþ1

ðv

0

v0ð Þlþ2
f lð Þ
b v0; h;/ð Þdv0

þ lþ 1ð Þ lþ 2ð Þ
2lþ 3

vl

ð1
v

f lð Þ
b v0; h;/ð Þ

v0ð Þl�1
dv0 � l� 1ð Þl

2l� 1
vl�2

ð1
v

f lð Þ
b v0; h;/ð Þ

v0ð Þl�3
dv0
)
: (9)

They are generalizations of the integral formulas for gyro-phase-averaged velocity distributions fbðv; cos hÞ, which were first

derived by Rosenbluth, MacDonald, and Judd in Ref. 13, to arbitrary spherical harmonics (l, m). One application of them may

be

Cab fa; f
l¼0ð Þ

b

	 

¼ 4p

eaeb

ma

� �2

lnKab
1

v3

@G f 0ð Þ
b

	 

@v

Lfa þ
1

v2

@

@v
v2 �ma

mb

@H f 0ð Þ
b

	 

@v

þ 1

2

@2G f 0ð Þ
b

	 

@v2

@

@v

0@ 1A
fa

8<:
9=;

264
375; (10)

(collision of arbitrary distributions fa of the test particle species a with isotropic distributions f
ðl¼0Þ
b of the field particle species

b) that is obtained by using
P

a va@F=@va ¼ v@F=@v;
P

a @ðvaFÞ=@va ¼ v�2@ðv3FÞ=@v, and

L � 1

2

@2

@h2
þ cos h

sin h
@

@h
þ 1

sin2h

@2

@/2

 !
;

and will result in the well-known formula of the test particle portion Cabðfa; fbMÞ of the linearized Coulomb collision operator

when the Maxwellian velocity distribution f
ðl¼0Þ
b ¼ fbM is substituted. [faM � nafma=ð2pTaÞg3=2

exp ð�mav2=2TaÞ
� nap�3=2v�3

Ta exp ð�x2
aÞ: Maxwellian distribution with the density na �

Ð
fad3v, the temperature defined by Ta� pa/na using the

pressure pa � ma

Ð
v2fad3v=3 of the species a, and without the velocity moment ua �

Ð
vfad3v=na]. These kinds of indefinite

integrals of the Maxwellian can be calculated byð
x2nþ1 exp �a2x2ð Þdx ¼ � exp �a2x2ð Þ

2a2

Xn

k¼0

n!

n� kð Þ!a2k
x2 n�kð Þ; (11)

and

ð
x2n exp �a2x2ð Þdx ¼ � 2n� 1ð Þ!!

2a2
exp �a2x2ð Þ

Xn�1

k¼0

x2n�2k�1

2ka2k 2n� 2k � 1ð Þ!!
þ 2n� 1ð Þ!!

ffiffiffi
p
p

2nþ1a2nþ1
U axð Þ

¼ � 2n� 1ð Þ!!
2a2

exp �a2x2ð Þ
Xn�2

k¼0

x2n�2k�1

2ka2k 2n� 2k � 1ð Þ!!
þ 2n� 1ð Þ!!

ffiffiffi
p
p

2na2n�1
x2G axð Þ: (12)
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Here, UðxÞ � 2ffiffi
p
p
Ð x

0
e�y2

dy and GðxÞ � fUðxÞ � xU0ðxÞg=
ð2x2Þ are the error and the Chandrasekhar functions, respec-

tively. They are routinely included in general neoclassical

transport analyses. Instead of the already known Cabðfa; fbMÞ,
however, we shall investigate here the field particle portion

CabðfaM; fbÞ in the linearized collision operator by using Eqs.

(6)–(9) in Section III.

III. APPLICATION TO THE FIELD PARTICLE PORTION

The field particle portion is given by9

Cab faM; fbð Þ ¼ 4p
eaeb

ma

� �2

lnKabfaM

ma

Ta

(
4pTa

mb
fb

�H fbð Þþ
ma

mb
�1

� �
v
@H fbð Þ
@v

þmav2

2Ta

@2G fbð Þ
@v2

)
:

(13)

This formula is obtained by using the Poisson equations

r2
vHðfbÞ ¼ �4pfb and r2

vGðfbÞ ¼ 2HðfbÞ with r2
v �P

a @
2=@v2

a for Eq. (1). The field particles’ velocity distribu-

tion function fb in this operator may be sometimes that of

thermal particles fb ’ fbM and, at other time, may be func-

tions with quite different v-space structures, such as the

aforementioned fast ions’ slowing down velocity distribution

ffðx; vÞ which we will discuss in detail later. One common

feature of Eq. (13) for these general cases is that faM /
exp ð�x2

aÞ is multiplied to the full part. Therefore, even when

CafðfaM; ffÞ is included in the collision operatorP
b Cabðfa; fbÞ of thermal particles a 6¼ f, we can use the pre-

vious solving procedure for the kinetic equations for them5,6

where the perturbation bfa in the velocity distribution

faðx; vÞ ¼ faMð1þ bf aÞ must be jbf aj � 1 in most of the ther-

mal velocity range mav2 � 2Ta and jbf aj� 1 even for colli-

sionless high energy range mav2 � 2Ta. (If CafðfaM;ffÞ is not

/ exp ð�x2
aÞ, this constraint on the energy space structure

will be strongly violated.) As long as the CabðfaM; fbÞ has this

energy space structure of / exp ð�x2
aÞ, the orthogonal

expansion of this energy space structure using the Sonine

polynomials can be defined for cases of general field

particle distributions fb. General expansion coefficientsÐ
vlPm

l ðnÞ cos fmð/� /0ÞgL
ðlþ1=2Þ
j ðx2

aÞCabðfaM; fbÞd3v with

n � cos h � vk=v can be derived by integrations by parts forÐ1
0

dv using Eqs. (11) and (12). For example, the integrals

for the lower Legendre orders l¼ 0, 1, 2 in the gyro-phase-

averaged distribution �f b � 1
2p

Ð p
�p fbd/ as m¼ 0 are given as

follows:

ma

ð
v2Cab faM; fbð Þd3v ¼ �mb

ð
v2Cba fb; faMð Þd3v

¼ 32p2
na eaebð Þ2lnKab

ma

ma

2Ta

� �1=2 ð1
0

xaG xað Þ �
ma

mb

1ffiffiffi
p
p exp �x2

a

� �� � ð1

�1

�f bdn

 !
v2dv; (14)

ð
L

1=2ð Þ
2 x2

a

� �
Cab faM; fbð Þd3v ¼ 32p

ffiffiffi
p
p

na
eaeb

ma

� �2

lnKab

ð1
0

x2
a

3

2

ma

mb
� ma

mb
þ 1

� �
x2

a

( )
exp �x2

a

� � ð1

�1

�f bdn

 !
dxa: (15)

ma

ð
vnCab faM; fbð Þd3v ¼ �mb

ð
vnCba fb; faMð Þd3v ¼ 8p2

na eaebð Þ2lnKab

Ta

ma

mb
þ 1

� �ð1
0

G xað Þ
ð1

�1

n�f bdn

 !
v2dv; (16)

ma

ð
vnL

3=2ð Þ
1 x2

a

� �
Cab faM; fbð Þd3v ¼ 24p2

na eaebð Þ2lnKab

Ta

ð1
0

ma

mb
þ 1

� �
xaffiffiffi
p
p exp �x2

a

� �
� G xað Þ

� � ð1

�1

n�f bdn

 !
v2dv; (17)

ma

Ð
vnL

3=2ð Þ
2 x2

a

� �
Cab faM; fbð Þd3v¼ 10p2

na eaebð Þ2lnKab

Ta

ð1
0

5
ma

mb
þ1�2

ma

mb
þ1

� �
x2

a

� �
xaffiffiffi
p
p exp �x2

a

� � ð1

�1

n�f bdn

 !
v2dv; (18)

ma

Ð
vnL

3=2ð Þ
3 x2

a

� �
Cab faM; fbð Þd3v ¼ 7

3
p2

na eaebð Þ2lnKab

Ta

ð1
0

5 7
ma

mb
þ 1

� �
� 4 7

ma

mb
þ 4

� �
x2

a þ 4
ma

mb
þ 1

� �
x4

a

 �
� xaffiffiffi

p
p exp �x2

a

� � ð1

�1

n�f bdn

 !
v2dv:

(19)

ð
x2

aP2 nð ÞCab faM; fbð Þd3v ¼ 16p2na
eaeb

ma

� �2

lnKab

ð1
0

x2
a

ma

mb

3G xað Þ
xa

� 2ffiffiffi
p
p exp �x2

a

� �� �

�xaG xað Þ �
3ffiffiffi
p
p exp �x2

a

� �� ð1

�1

P2 nð Þ�f bdn

 !
dxa; (20)
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ð
x2

aL
5=2ð Þ

1 x2
a

� �
P2 nð ÞCab faM; fbð Þd3v ¼� 4p2na

eaeb

ma

� �2

lnKab

ð1
0

99xaG xað Þ � 8 3þ 2 1þ ma

mb

� �
x2

a

� �
� x2

affiffiffi
p
p exp �x2

a

� �� ð1

�1

P2 nð Þ�f bdn

 !
dxa: (21)

Agreements of integrals of test and field particle portions in

Eqs. (14) and (16) are due to the conservation of energy and

momentum, respectively. As discussed also in Ref. 14,

because of a characteristic of CabðfaM; fbÞ as an integral oper-

ator, we shall investigate these lower Legendre orders first.

When �f b ¼ xl
bPlðnÞLðlþ1=2Þ

j ðx2
bÞfbM is substituted into these

formulas, the definite integrals
Ð1

0
x2n�1

a UðxbÞ exp ð�x2
aÞdxa

or
Ð1

0
x2n�1

a GðxbÞ exp ð�x2
aÞdxa, which will appear

there, correspond to the Gauss hypergeometric function7

2F1 by

ð1
0

x2n�1
a U xbð Þexp �x2

a

� �
dxa ¼

vTa

vTb

2n� 1ð Þ!!
2n 2F1

1

2
þ n;

1

2
;
3

2
;� vTa

vTb

� �2
 !

¼ 1

2

2n� 1ð Þ!!
2n

vTb

vTa

� �2n ð1

0

t�1=2

vTb=vTað Þ2 þ t
n o1=2þn

dt;

that can be obtained by a recurrence relation

ð1

0

t�1=2

vTb=vTað Þ2 þ t
n o1=2þn

dt ¼ vTa

vTb

� �2 1þ vTb=vTað Þ2
n o1=2�n

n� 1=2
þ vTa

vTb

� �2 n� 1

n� 1=2

ð1

0

t�1=2

vTb=vTað Þ2 þ t
n on�1=2

dt;

and
Ð1

0
xaUðxbÞ exp �x2

a

� �
dxa ¼ 1

2
1þ vTb=vTað Þ2
n o�1=2

.

Using these integrals, Eqs. (14)–(21) reproduce the well-

known Braginskii’s matrix elements9,14–17 for the orders

l¼ 0, 1, 2, which were previously obtained by a method to

substitute the generating function of the Sonine polynomials

into the Landau operator. It also should be noted that Eqs.

(6)–(9) and (11)–(13) can be used also for deriving explicit

expressions of CabðfaM; x
l
bPlðnÞLðlþ1=2Þ

j ðx2
bÞfbMÞ that cannot

be obtained by this Braginskii’s procedure.

However, the most important application area of the

expansion coefficients Eqs. (14)–(21) will not be such al-

ready known collision processes between thermal particles,

but collisions of the thermal particles with the fast ions in the

NBI-heated plasmas or the burning plasmas. For general par-

ticle species a,
Ð

fad3v (number of particles),
Ð

vfad3v (mo-

mentum), and
Ð

v2fad3v (energy) must be absolutely finite

under a constraint of fa> 0. If functions with continuous

derivatives @fa/@v satisfy this convergence of integrals in the

3-dimensional velocity space, they would have the energy-

space structure that is nearly equal to the shifted anisotropic

exponential. The v-space structure of the slowing down

velocity distribution is an exception to this rule. It has the

step function structure1,2,9,18 ffðx; vÞ / Hðvb � vÞ at the

initial velocity v ffi vb, and its energy space broadening is

mfv2
b � 2Ti. Analogously to these past references, we shall

define this ffðx; vÞ also as a function that does not include the

exponential structure / exp ð�mfv2=2TiÞ at mfv2 � 2Ti in

the energy space, since the distribution function component

of / exp ð�mfv2=2TiÞ must be handled by the kinetic equa-

tion for the thermalized ions with ma¼mf and ea¼ ef where

the self-adjoint property19 in the following discussion is fully

utilized. This energy space structure is a typical example for

which we cannot use usual orthogonal expansion methods,

and we cannot assume there consequences of the lineariza-

tion assuming the aforementioned limitations jbf aj � 1 in

mav
2� 2Ta and jbf aj1 even at mav

2� 2Ta, such as the self-

adjoint property. As pointed out previously,14,20 the

Braginskii’s matrix expression of collisions also cannot be

applicable for this function. Another important feature of

this ffðx; vÞ is pf=nf=Zf � Te; Ti=Zi, where Zi is the charge

number Za� ea/e of the dominant ion species. Since

diamagnetic-driven perpendicular and parallel flow veloc-

ities ua in toroidal plasmas are determined by (@pa/@r)/na/Za

of the species a, and this radial gradient scale length

j@ ln pa=@rj�1
is common for all species, juaj � jubj � jucj �

::::� juf j can be assumed not only for hB�f
ðl¼1Þ
a i in unbal-

anced tangential NBIs1,21 but also for the diamagnetic driven

flows due to the radial gradients2,18 @p?f=@r; @pkf=@r.

(Perpendicular and parallel flow velocities driven by

�crU� B=B2 of the ambipolar electrostatic potential being

order of jrUj � jðrpaÞ=ðeanaÞj (a 6¼ f) are negligible for

fast ions’ drift motions and thus not calculated in the kinetic

equation for the fast ions.1,2,18,21) Therefore, we do not need

to retain the Galilean invariant property of the Coulomb colli-

sion in Eqs. (1) and (2) so rigorously in the determination of
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the ffðx; vÞ. It should be emphasized here that, if the self-

adjoint property does not exist, the momentum conservation,

which should be retained for general colliding species pairs a-
b from the viewpoint of the ambipolarity of classical and neo-

classical particle diffusions,5,14,21 and this Galilean invariant

property are inherently different and irrelative concepts.

When using the notation in Eqs. (4.5) and (4.6) in Ref. 14 or

Eq. (4.30) in Ref. 9 where the test and the field particle por-

tions of the thermal-thermal collision are expressed by Mjk
ab

and Njk
ab, respectively, the Galilean invariant property is

Mj0
ab ¼ �Nj0

ab while the momentum conservation in Eq. (16) is

M0j
ab ¼ �TavTaN0j

ba=ðTbvTbÞ. Because of the self-adjoint prop-

erty expressed by Mjk
ab ¼ Mkj

ab and Nkj
ba ¼ TbvTbNjk

ab=ðTavTaÞ,
these two physical laws have been often written in only one

relation Mj0
ab ¼ M0j

ab ¼ �TavTaN0j
ba=ðTbvTbÞ ¼ �Nj0

ab and it has

been considered that they should be satisfied simultaneously,

in theories for thermal-thermal collisions.9,14 However, we

should distinguish the two laws when handling the fast ions’

velocity distribution ffðx; vÞ since the self-adjoint property

does not exist there. Based on this distinguishing, following

approximations of collisions between fast ions and the ther-

malized target plasma species are considered. In the kinetic

equation for the fast ions, the flow velocities ub in the shifted

Maxwellians fbMðv� ubÞ of target plasma species b can be

neglected. In fact, an approximationX
b

Cfbðff ; fbÞ ffi
X
b 6¼f

Cfbðff ; fbMÞ; (22)

in which the ub are neglected and the non-linear collision op-

erator Cffðff ; ffÞ is omitted because of the low-density of fast

ions themselves Z2
f nf � Zeffne and the momentum/energy

conservation of like-particle collisions, has been widely used

in past calculations of the ffðx; vÞ.1,18,21–24 In contrast to the

simultaneous algebraic equation for the thermalized par-

ticles,5,6 the algebraic handling of the
Ð

d3v integrals of the

velocity distribution and the collision term is not required in

this independent determination without knowing bf aðx; vÞ of

the thermalized particles. Once one has obtained the ffðx; vÞ,
the next step is to solve the kinetic equations for the bf aðx; vÞ,
including the newly added CafðfaM; ffÞ. Here, Cafðbf afaM; ffÞ
should be omitted for retaining the momentum/energy con-

servation that is realized by Eqs. (14) and (16) in a combined

use with Eq. (22). It also is worth to consider here Sonine

polynomial expansion coefficients of Cabðv 	 uL
ð3=2Þ
k ðx2

aÞ
faM; f

ðl¼0Þ
b Þ in the Appendix. We can confirm the unimpor-

tance of the thermal particles’ flows naua and qa � ðma=2ÞÐ
vv2fad3v� 5

2
paua (a 6¼ f) in the fast ions’ friction collision

by substituting ffðx; vÞ in Refs. 1, 2, 18, and 21 as fbðx; vÞ
into Eqs. (16), (17) and (A1)–(A4). The low density Z2

f nf �
Zeffne giving a relation jCafðbf afaM; ffÞj � j

P
b 6¼f Cab

ðbf afaM; fbMÞj also is another reason of this omission. Even

for higher Legendre order structures l� 1 in bf a, this

Cafðbf afaM; ffÞ is negligible in the total
P

b Cabðfa; fbÞ. In the

algebraic conversion of these simultaneous integro-differential

equations for a 6¼ f, direct numerical integrals of Eqs. (16)–(19)

are used since we do not use the
Ð

d3v integrals of ffðx; vÞ
itself20 such as

Ð
v1þ2nnffd

3v in the determination of it, and

since we cannot reproduce the energy space structure of it only

by such integrals of finite numbers. The recent theoretical cal-

culation for the Heliotron-J experiments8 adopted this numeri-

cal integral method with substituting an analytical solution of

the fast ions’ collision term Eq. (22)25 as the ffðx; vÞ.

IV. CONCLUSION

We have shown a Sonine (generalized Laguerre) poly-

nomial expansion procedure for the field particle portion in

the linearized Coulomb collision operator that is applicable

for both thermal-thermal collisions14–17 and thermal par-

ticles’ collision with fast ions in NBI-heated and/or burning

plasmas. In particular, the application to the fast ions’ slow-

ing down velocity distribution1,2,18,21–24 without using its

energy-integral moments will be important since (1) this

energy space structure cannot be expressed by usual orthogo-

nal polynomial expansions, and (2) the self-adjoint property

does not exist for energy-integrals of the distribution func-

tion and the collision operator, and thus the Galilean invari-

ant property and the momentum conservation must be

distinguished. In this Sonine polynomial expansion proce-

dure, we did not use an assumption of 2Ti=mi � v2
b �

2Te=me that had been frequently used in past analytical theo-

ries on the fast ions’ slowing down process.1,2,14,18,20,25

From the viewpoint of the field particle portion CafðfaM; ffÞ,
the assumption v2

b � 2Te=me previously corresponded to

the use of the usual small mass ratio approximation for the

electron-ion collisions9 also for the e-f collision CefðfeM; ffÞ
in calculations of the shielding current component in the

beam driven currents.14 For future studies requiring the

CafðfaM; ffÞ of all thermal particle species a 6¼ f, however,

these kinds of asymptotic limit approximations giving the e-f

and the i-f collision formulas separately will be confusing

and inconvenient. Therefore, we unified the formulas for

electrons and thermal ions based on a derivation procedure

allowing arbitrary energy space structures of the field par-

ticles’ velocity distributions.
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APPENDIX: LAGUERRE EXPANSION OF EQ. (10) FOR
THE 13M APPROXIMATION

By integrations by parts using Eqs. (11) and (12) forÐ1
0

dv, Sonine polynomial expansion coefficients of

Cabðv 	 uL
ð3=2Þ
k ðx2

aÞfaM; f
ðl¼0Þ
b Þ, where fa ¼ v 	 uL

ð3=2Þ
k ðx2

aÞfaM

is substituted in Eq. (10), are given as follows:
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ma

ð
vCab

ma

Ta
v 	 uafaM; f

l¼0ð Þ
b

� �
d3v ¼ �mb

ð
vCba f l¼0ð Þ

b ;
ma

Ta
v 	 uafaM

� �
d3v

¼ �naua
64p3=2

3
eaebð Þ2lnKab

1

ma
þ 1

mb

� �ð1
0

f l¼0ð Þ
b exp �x2

a

� �
x2

adxa; (A1)

ma

ð
vCab

ma

Ta

v 	 qa

pa
L

3=2ð Þ
1 x2

a

� �
faM; f

l¼0ð Þ
b

� �
d3v ¼ �mb

ð
vCba f l¼0ð Þ

b ;
ma

Ta

v 	 qa

pa
L

3=2ð Þ
1 x2

a

� �
faM

� �
d3v

¼ � qa

Ta

64p3=2

3
eaebð Þ2lnKab

1

ma
þ 1

mb

� �ð1
0

f l¼0ð Þ
b

3

2
� x2

a

� �
exp �x2

a

� �
x2

adxa;

(A2)

ma

ð
vL

3=2ð Þ
1 x2

a

� �
Cab

ma

Ta
v 	 uafaM; f

l¼0ð Þ
b

� �
d3v ¼� naua

64p3=2

3

eaebð Þ2lnKab

ma

�
ð1

0

f l¼0ð Þ
b 5

ffiffiffi
p
p

xaG xað Þ þ
3

2
� 1

2

ma

mb
� 3

ma

mb
þ 1

� �
x2

a

( )
exp �x2

a

� �" #
x2

adxa;

(A3)

ma

ð
vL

3=2ð Þ
1 x2

a

� �
Cab

ma

Ta

v	qa

pa
L

3=2ð Þ
1 x2

a

� �
faM; f

l¼0ð Þ
b

� �
d3v¼�qa

Ta

64p3=2

3

eaebð Þ2lnKab

ma

�
ð1

0

f l¼0ð Þ
b

13

4
þ9

4

ma

mb
� 1þ4

ma

mb

� �
x2

aþ3 1þma

mb

� �
x4

a

( )
exp �x2

a

� �
x2

adxa:

(A4)

The momentum conservation is used in Eqs. (A1) and (A2).

When f
ðl¼0Þ
b ¼ fbM is substituted, these formulas reproduce

the usual friction matrix elements Mjk
ab for the 13M approxi-

mation in Refs. 9, 14–17. The M
a=f
jk matrix discussed in

Ref. 20 will be obtained by substituting the surface-averaged

lowest Legendre order l¼ 0 of the fast ions’ velocity distri-

bution21 hf ðl¼0Þ
f i / ½v2vTeð3

ffiffiffi
p
p

=2ÞGðxeÞ þ v3
c 

�1Hðvb � vÞ as

the field particles’ velocity distribution f
ðl¼0Þ
b , and taking a

limit of x2
e � 1 and me=mf � 1 (corresponding to the usual

small mass ratio approximation of electron-ion collisions9)

for electrons’ friction a¼ e and a limit of v3
Ti � v3

c for ions’

friction a¼ i in calculations of exp ð�x2Þ and GðxÞ
ffi fð3

ffiffiffi
p
p

=2Þ=xþ 2x2g�1
.
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