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Parallel momentum input by tangential neutral beam injections
in stellarator and heliotron plasmas
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(Received 20 January 2015; accepted 3 August 2015; published online 9 September 2015)

The configuration dependence of parallel momentum inputs to target plasma particle species by

tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model

magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of

the full Rosenbluth-MacDonald-Judd collision operator in thermal particles’ kinetic equations,

numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute

to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on

magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive

to the modulation. In future plasma flow studies requiring flow calculations of all particle species

in more general non-symmetric toroidal configurations, the eigenfunction method investigated here

will be useful. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929789]

I. INTRODUCTION

Recently, impurity flow velocities of NBI (neutral beam

injection) heated plasmas in Heliotron-J were successfully

explained by the neoclassical transport theory.1,2 That study

applied a recently developed moment equation approach for

general non-symmetric toroidal plasmas, including the exter-

nal momentum input.2 In the moment method, problems,

including the field particle portion CabðfaM; fbÞ of the linear-

ized collision operator with the local Maxwellian distribution

faM, are converted to generalized parallel force balance

expressed in an algebraic form. The recent study handled the

external parallel momentum input by including the parallel

friction collision moments
Ð

vkL
ð3=2Þ
j ðx2

aÞCafðfaM; ffÞd3v of

each target plasma species (denoted by the subscript “a”)

with the fast ions (“f”) in this simultaneous algebraic equa-

tion. Here, L
ðaÞ
j ðKÞ � ðeKK�a=j!Þdjðe�KKjþaÞ=dKj is the

Laguerre (Sonine) polynomial corresponding to the algebraic

expression of the energy space structure and x2
a � mav2=

ð2hTaiÞ. The fast ion birth profile was obtained by using the

HFREYA and MCNBI, which are parts of a widely used

NBI analysis code FIT3D.3 Although the prompt orbit effect

in non-symmetric toroidal configurations just after the beam

ionization is taken into account in this method, a simple ana-

lytical formula of the fast ions’ slowing down velocity distri-

bution ffðx; vÞ for uniform magnetic field strength

B � rB ¼ 0 is used for these collision integrals. It means that

the fast ion trapping effect, which will be important for lower

energy regions of ffðx; vÞ broadened to full pitch angle range,

is neglected. Therefore, a more systematic method for the

friction collision moments in general non-symmetric toroidal

configurations is required for more quantitative understand-

ings of physical processes determining plasma flows.

5D-simulation methods4,5 also may be thought to be

applicable for investigating this kind of fast ion drift orbit

effect in the slowing down process especially in cases of per-

pendicular injection of the beams.5 In this type of injection,

generating the fast ions in the trapped pitch-angle range,

methods for handling the complicated bounce-center motion

of the trapped ions will be required. However, for the tangen-

tial NBI used in the studies to investigate its parallel flow

driving effect,1 the beam ionization occurs at the circulating

pitch-angle range. The fast ion trapping discussed here is

that when these circulating fast ions enter into toroidally

trapped pitch-angle range as a result of the pitch-angle-scat-

tering (PAS) collision in the slowing down process, they do

not contribute to the parallel friction moments. This reduc-

tion of the friction between the fast ions and target plasma

species is analogous to the neoclassical parallel viscosity of

the thermalized particles, as discussed below. This type of

trapped fast ions should be excluded in these integrals. For

the studies of physics of target plasma species, this exclusion

is an important requirement and the behaviors of deeply

trapped fast ions are not the purpose. It corresponds also to a

basic idea of the moment method6 that the field particle por-

tion CabðfaM; fbÞ is an integral operator,2 in which the higher

Legendre orders in fbðx; vÞ expressing its detailed pitch-

angle space structure are reduced. A more important require-

ment for the studies of multi-ion-species target plasmas is to

know momentum and energy transfer ratios to each target

plasma species and energy space structure of CafðfaM; f
ðl¼1Þ
f Þ

as the specific Legendre order l¼ 1 in the collision with the

fast ion, which are governed by the slowing down and the

pitch-angle-scattering collision of the circulating fast ions. In

addition to the computational cost for handling the deeply

trapped fast ions, there is another problem. If the drift

approximation, including the perpendicular guiding center

motion, is applied to the unbalanced tangential injections,

the parallel force moment of the fast ions’ drift kinetic equa-

tion (DKE) cannot reproduce the force moment of the

Landau equation (Vlasov-Fokker-Planck equation) without

the gyro-phase-averaging. Therefore, here we shall apply thea)Electronic mail: nishimura.shin@lhd.nifs.ac.jp
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eigenfunction method, which is originally proposed for the

a-particle diffusion in axisymmetric tokamaks,7 for plasma

flow studies based on the parallel force balance, including

the neoclassical parallel viscosity of both of the fast ions and

target plasma species in non-symmetric stellarator/heliotron

configurations.

The rest of this work is organized as follows. In Sec. II,

the concept of flux-surface coordinates systems for NBI

heated plasmas is explained. In neoclassical theories for stel-

larator/heliotron plasmas,8–10 various integral theorems had

been used for handling the 2-D real space of poloidal and to-

roidal angles in the coordinates systems,11 such as Boozer

and Hamada coordinates. However, it has been clarified in

many experimental studies on the Shafranov shifts of the

NBI heated plasmas12,13 including resultant changes of the

B-field strength modulation on the surfaces14,15 that a modi-

fication of the Pfirsch-Schl€uter current due to the large radial

gradient of the fast ions’ parallel pressure @pkf=@s is not neg-

ligible. The validity of the previously used theorems in these

situations is explained in this section. The charge conserva-

tion r � J ¼ 0 in plasmas with the anisotropic pressure is

another important issue. The relation of these problems with

the recent analyses is discussed there. The drift kinetic equa-

tion for the fast ions is introduced in Sec. III. Since our pres-

ent study is focused on the friction collision integrals for the

target plasma species, specific approximations are used

there. The application of the eigenfunction method to non-

symmetric stellarator/heliotron configurations is explained in

Secs. IV and V with numerical examples. A summary is

given in Sec. VI. Since these issues are related to (1) radial

transport of general particle species, (2) analytical expres-

sions of the fast ion velocity distribution and its energy inte-

grals, and (3)
Ð

d3v integral formulas of the test particle

portion of the linearized collision operator Cabðfa; fbMÞ, they

are described in Appendix. Formulas shown there hold also

for fast ions in NBI-heated or burning plasmas, and for the

anisotropic pressure equilibriums.

II. FLUX-SURFACE COORDINATES SYSTEM FOR NBI
HEATED PLASMAS

When including the unbalanced tangential NBI in the

MHD equilibrium and transport calculation based on the

equilibrium, the following definition of perpendicular and

parallel pressures is useful:

2p?a � ma

ð
jv? � u?aj2fad3v ¼ ma

ð
v2
?fad3v� namau2

?a;

(1)

pka � ma

ð
v2
kfad3v: (2)

Here, ma, na �
Ð

fad3v, and naua �
Ð

vfad3v are the mass,

density, and particle flux of the species number a, respec-

tively. Notations Fk � bðb � FÞ � bFk and F? � F� Fk
[b � B=B: the unit vector tangential to the magnetic field]

for the parallel and perpendicular components of arbitrary

vectors FðxÞ are used hereafter. The viscosity tensor also is

defined by

pa � ma

ð
fðv� u?aÞðv� u?aÞ � jv� u?aj2I=3gfad3v; (3)

with the unit tensor I, and it is assumed that this tensor has

the symmetric CGL (Chew-Goldberger-Low) form

pa ¼ ðpka � p?aÞðbb� I=3Þ. Then parallel and perpendicu-

lar components of the force balance

r � paIþ pað Þ þ mar � na uaua � ukaukað Þ
� �

� eana Eþ ua � B

c

� �
¼ Fa1 þ ma

ð
vkSa x; v; nð Þd3v (4)

as the
Ð

vd3v integral of the Landau equation using

@ðnauaÞ=@t ¼ 0 and pa � ð2p?a þ pkaÞ=3 can be written

more explicitly by following formulas for the CGL tensor:16

b � r � pa ¼
2

3
b � r pka� p?að Þ� pka� p?að Þb � r ln B

¼ 2

3
B3=2b � r

pka� p?a

B3=2
;

b � r � paIþ pað Þ ¼ 1

2
b � r pkaþ p?að Þ þB2r

pka� p?a

B2

� �
;

(5)

r � pað Þ? ¼
1

3
r? p?a � pkað Þ � p?a � pkað Þb � rb

ffi B3

3
r?

p?a � pka
B3

;

r � paIþ pað Þ
� �

? ¼
1

2
r? p?a þ pkað Þþ B2r?

p?a � pka
B2

� �
:

(6)

Here, r? � r� bðb � rÞ, the steady-state Ampere’s law

cr� B ¼ 4pJ for J �
P

a eanaua and a low-perpendicular-

beta approximation 8p
P

a p?a=B2 � 1 for the B-field curva-

ture b � rb ¼ r?lnBþ 4p
c J� B=B2 ffi r?lnB are used in

ðr � paÞ?. The inertia force can be rewritten as r � fnaðuaua

�ukaukaÞg ¼ naðua � rua � uka � rukaÞ þ ukar � ðnau?aÞ by

using the particle conservation r � ðnauaÞ ¼ 0. It is

neglected here since manau2
?a;manau?auka � pa for general

particle species. An assumption of manau2
ka � pa, which

does not hold for the fast ions a ¼ f in unbalanced tangential

NBI operations, is not required in this approximation.

The local parallel force balance and the local perpendicu-

lar current in the MHD equilibrium equation, which are given

by summation of the force balance equation of all particle spe-

cies with using the charge neutrality
P

a eana ¼ 0 and the mo-

mentum conservation
P

a Fa1 ¼ 0 of the friction integral

Fa1 � ma

Ð
v
P

b Cabðfa; fbÞd3v of the Coulomb collision op-

erator, are

b � r
X

a

pka þ p?að Þ þ B2r
X

a

pka � p?a

B2

� �
¼ 0; (7)

and

J? ¼ �
c

2B2
r
X

a

p?a þ pkað Þ þ B2r
X

a

p?a � pka
B2

� �
� B;

(8)
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respectively. The parallel momentum input
Ð

vkSad3v due to

the source term Saðx; v; nÞ [n � vk=v: cosine of pitch-angle in

the spherical velocity coordinates], which exists only in the

fast ions’ kinetic equation a ¼ f in unbalanced tangential NBI

operations giving surface-averaged force
P

ahB � r � pai
¼ mfhB

Ð
vkSfd

3vi, is neglected in this local parallel force

balance since it is a 1st order of ðvbsSÞ�1
, as explained in

Sec. III. We shall consider only the 0th order in constructing

the flux-surface coordinates. When

b � r
X

a

pka þ p?að Þ ¼ 0 ¼ b � r
X

a

pka � p?a

B2
(9)

can be assumed,
P

aðpka þ p?aÞ ¼ const contour surfaces sat-

isfy also J � r
P

aðpka þ p?aÞ ¼ 0. These kinds of surfaces

are usually called flux-surface,11 and we shall use s as an arbi-

trary label for them. As in Refs. 8–10, this s can be arbitrary

surface-quantities in the following discussion, such as w, V,

and the minor radius r. However, it also should be noted that

Eq. (9) is not generally guaranteed, and thus effects of the

deviation b � r
P

a
pka�p?a

B2 6¼ 0 also should be investigated af-

ter the explanation of the “ideal” condition B � rs
¼ J � rs ¼ 0. In this ideal condition, J � r

P
aðpka þ p?aÞ

¼ 0 ¼ J � r
P

aðpka � p?aÞ=B2 and the formula

r � HrF� Bð Þ ¼ rF� B � rH � H rFð Þ � r � B

¼ rF� B � rH � H
4p
c

J � rF (10)

for arbitrary scalar functions FðxÞ; HðxÞ, which is valid

when cr� B ¼ 4pJ holds, give

r � Jk ¼ �r � J? ¼
c

2

@

@s

X
a

p?a þ pkað Þ
 !

rs� B � r 1

B2

(11)

for the parallel current Jk. Therefore, a basic characteristic of

the current in cases with the anisotropic heating can be

understood as a sum of that in isotropic pressure equilibrium

with the pressure
P

aðp?a þ pkaÞ=2 and the second term in

Eq. (8) as a divergence free perpendicular component.

The straight field line (SFL) coordinates11 ðs; h; fÞ [h; f:

the poloidal and toroidal angles, respectively] giving the

contravariant and covariant expressions

B ¼ w0rs�rhþ v0rf�rs ¼ Bsrsþ Bhrhþ Bfrf;

(12)

and the Jacobian
ffiffiffi
g
p � ½ðrs�rhÞ � ðrfÞ��1 ¼ ðw0Bf þ

v0BhÞ=B2 can be constructed when only this r � B ¼ r � J
¼ B � rs ¼ J � rs ¼ 0 is satisfied. Here, volume integrals

vðsÞ � 1
4p2

Ð
V B � rhð Þd3x and wðsÞ � 1

4p2

Ð
V B � rfð Þd3x for

the volume V enclosed by the surface s ¼ const correspond

to poloidal and toroidal magnetic fluxes, respectively, and
0 � d=ds indicates radial gradients of them. A relation

between the volume and the Jacobian is V0 ¼
Þ Þ ffiffiffi

g
p

dhdf.

For the flux-surface-average operation h�i �
Þ Þ
� ffiffiffigp dhdf=Þ Þ ffiffiffi

g
p

dhdf, there are two important theorems for the parallel

and perpendicular gradients B � rF, rs� B � rF of

arbitrary scalar quantity FðxÞ. First, B � r ¼ ð1= ffiffiffi
g
p Þ

ðv0@=@hþ w0@=@fÞ of this contravariant expression of B

satisfies

hHB � rFi ¼ �hFB � rHi (13)

for arbitrary FðxÞ and HðxÞ. A frequently appearing formula

of the surface-averaged parallel force hB � r � ðpaIþ paÞi
¼ hB � r � pai ¼ �hðpka � p?aÞB � r ln Bi for Eq. (5), in

which the scalar pressure moment pa is eliminated, it is an

important example of consequences of Eq. (13). Next, when

the covariant expression B ¼ Bsrsþ Bhrhþ Bfrf is

determined to satisfy cr� B ¼ 4pJ; ðh; fÞ can be chosen in

a manner in which Bf ¼ const; Bh ¼ const, and conse-

quently
ffiffiffi
g
p ¼ w0Bf þ v0Bh

� �
=B2 ¼ V0

4p2 hB2i=B2 on the surfa-

ces. This selection is called Boozer coordinates, and its

rs � B � r ¼ �ð1= ffiffiffiffiffi
gB
p ÞðBðBoozerÞ

f @=@hB � B
ðBoozerÞ
h @=@fBÞ

indicates that

hHrs� B � rFi ¼ �hFrs� B � rHi: (14)

For Eq. (11), the set of Eqs. (13) and (14) gives �hr � J?i ¼
hr � Jki ¼ hB � rðJk=BÞi ¼ 0 as the solubility condition of

the charge conservation r � J ¼ 0. This set of theorems does

not require the complete isotropic pressure
P

a pka ¼
P

a p?a,

and thus we can use it for cases with the external anisotropic

heating.

In the “ideal” situations, ðh; fÞ can be chosen in another

manner in which not only the B-vector but also the J-vectors

are straight lines. Although this selection is known as Hamada

coordinates for the isotropic pressure equilibriums, here we

call it straight current line (SCL) coordinates. (“Hamada” is

used below for coordinates giving the Jacobian
ffiffiffiffiffiffi
gH
p ¼ V0

4p2,

which are constants on the surfaces.) The contravariant

expression of current J ¼ ffiffiffiffiffiffiffiffiffi
gSCL
p ðJf

SCLrs�rhSCL þ
Jh

SCLrfSCL �rsÞ in this selection satisfies
ffiffiffiffiffiffiffiffiffi
gSCL
p

Jf
SCL ¼

const and
ffiffiffiffiffiffiffiffiffi
gSCL
p

Jh
SCL ¼ const on the surfaces, and thus we

know by J � r ¼ Jh
SCL@=@hSCL þ Jf

SCL@=@fSCL that

hHJ � rFi ¼ �hFJ � rHi: (15)

However, actual situations are not “ideal” for guaranteeing

Eq. (15) as noted on Eq. (9). When reading Eq. (7) with an

approximation of B2 ’ hB2i, the equation indicates a charac-

teristic of the B-field lines that they are constrained to follow

the
P

a pka ¼ const contour surfaces. When these surfaces are

closed ones surrounding the magnetic axis, it is reasonable to

assume s ¼ const surfaces satisfying r � B ¼ 0 ¼ B � rs. In

contrast to these B-field lines, J? vectors determined by Eq.

(8) are not constrained to the surfaces when Eq. (9) is not sat-

isfied. Even when the J? vectors deviate from the B-surfaces

(J � rs 6¼ 0) due to the violation of Eq. (9), these vectors are

connected by the differential operation cr� B ¼ 4pJ.

Therefore, Eqs. (13) and (14) as basic characteristics of

Eq. (12) are not easily broken. A violation of Eq. (15) is

more easily caused since the contravariant expression of J

does not exist when J � rs 6¼ 0. Although most of the prob-

lems in heating and transport analyses require only Eqs. (13)

and (14) and do not require Eq. (15), we shall consider how
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the charge conservation r � J ¼ 0 in the volume V is

retained and how the theorem hJ � rFi ¼ 0 is modified in

cases with the parallel force component

b � r
P

aðpka � p?aÞ=B2 6¼ 0.

By using Eqs. (8) and (14), the surface-averaged radial

current is given by

hJ � rsi ¼ c
X

a

p?a þ pkað Þ
rs� B

B2
� r ln B

* +
: (16)

Because of the Gauss’ theorem11
Ð V

0
hr�FidV¼

Ð V
0
hr�F?i

dV¼hF? �rVi¼hF �rVi (*hr�Fki¼hB �rðFk=BÞi¼0 due

to Eq. (13)) for arbitrary vector field FðxÞ, the so-called ambi-

polar condition hJ �rsi¼0 at all radial positions is hr�J?i
¼0 as the solubility condition of r�J¼0. In configurations

with the stellarator symmetry Bðs;�h;�fÞ¼Bðs;h;fÞ, for

example,
P

aðp?aþpkaÞ also should basically be a symmetric

phase function Fðs;�h;�fÞ¼Fðs;h;fÞ for retaining the local

charge conservation. Although there are no contradictions in

this determination of the geometrical shapes of the B-surfaces

by Eq. (7) and the charge conservation with Eq. (16) when the

external parallel force is
Ð

vkSfd
3v¼0, it should be considered

that there is one constraint on the real space structure of this

force term when its finite values are added. The allowed force

that we noted previously as “1st order of ðvbsSÞ�1
” is a

divergence-free vector
Ð

vkSfd
3v ¼hB

Ð
vkSfd

3viB=hB2i.
Deviations from this form that can be written as parallel gra-

dients of scalar quantities will be problematic in the simultane-

ous retaining of the geometrical shape and the charge

conservation. When we define the scalar PSðs;h;fÞ by

b � rPS � ma

ð
vkSfd

3v�ma

	
B

ð
vkSfd

3v



B

hB2i ; hPSi ¼ 0;

(17)

the local parallel force balance Eq. (7) is modified to be

b � 1

2
r
X

a

pkaþp?að Þþ
B2

2
r
X

a

pka�p?a

B2
�rPS

 !
¼0:

Even in this case, we shall assume that the structure of the

B-field has the stellarator symmetry Bðs;�h;�fÞ
¼ Bðs; h; fÞ as in Eq. (16). Therefore, instead of the afore-

mentioned
P

a pka ¼ const contour surfaces,
P

a pka � PS

¼ const contour surfaces should be adjusted to this geometri-

cal shape of the B-field. However, this adding of b � rPS can

alter only b � r
P

aðpka þ p?aÞ without changing b �
r
P

aðpka � p?aÞ=B2 since the anisotropy should be deter-

mined to satisfy the aforementioned surface-averaged force

balance �h
P

aðpka � p?aÞB � rlnBi ¼ mfhB
Ð

vkSfd
3vi and

cannot be balanced with b � rPS. Therefore, when the exter-

nal parallel force term has forms giving anti-symmetric

phase functions PSðs;�h;�fÞ ¼ �PSðs; h; fÞ 6¼ 0, there is a

serious contradiction that the geometrical shape of the B-

field requires the anti-symmetric phase component inP
aðpka þ p?aÞ, while the charge conservation with Eq. (16)

forbids that component in the pressure. For retaining geomet-

rical shapes of the B-surfaces following Eq. (7) and the

charge conservation r � J ¼ 0 with Eq. (16) in those

configurations simultaneously, it is concluded that Eq. (17)

should vanish, and, in particular, the anti-symmetric phase

component PSðs;�h;�fÞ ¼ �PSðs; h; fÞ 6¼ 0 is forbidden

when the B-field has the stellarator symmetry Bðs;�h;�fÞ
¼ Bðs; h; fÞ.

Next, we shall show some practically usable formulas

for cases, including the parallel force component b �
r
P

aðpka � p?aÞ=B2 6¼ 0 and resulting local radial current

J � rs 6¼ 0. The parallel force balance for

X
a

pka þ p?að Þ ¼
X

a

hpka þ p?ai þ
X

a

d pka þ p?að Þ

X
a

pka � p?a

B2
¼
X

a

pka � p?a

B2
þ
X

a

d
pka � p?a

B2

+*

is

b � r
X

a

d pka þ p?að Þ þ B2r
X

a

d
pka � p?a

B2

� �
¼ 0

X
a

d pka þ p?að Þ ffi �B2
X

a

d
pka � p?a

B2
: (18)

Substituting it into the current formula, Eq. (8), gives

J? ¼ �
c

2B2
r
X

a

hp?a þ pkai � B

� c

2
r
X

a

p?a � pka
B2

D E
þ 2

X
a

d
p?a � pka

B2

� �
� B:

(19)

This current results in

r � Jk ¼ �rJ? ¼
c

2

@

@s

X
a

hp?a þ pkai
 !

rs� B � r 1

B2

(20)

by a low-beta approximation b � 8p
P

a pa=B2 � 1 for

neglecting J � r in Eq. (10). This is also due to a relation

between radial gradient scale lengths j @@s ln
P

ahp?a þ pkaij
	 j @@s lnhB�2ij in the approximation

r � r
X

a

p?a þ pkað Þ � B=B2
� �

¼ @

@s

X
a

hp?a þ pkai
 !

rs� B � r 1

B2

� @

@s

1

B2

	 
� �
rs� B � r

X
a

p?a þ pkað Þ

for retaining the solubility condition hr � J?i ¼ 0. As long

as the ambipolar condition hJ � rsi ¼ 0 is satisfied, the

divergence r � Jk ¼ �r � J? is insensitive to the parallel

force perturbation. We shall define a function ~U by8

B � r
~U

B
¼ B�rsð Þ � r 1

B2
; hB ~Ui ¼ 0 (21)
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for handling this type of parallel flow divergences. Explicit expressions of this function for the B-field with the stellarator sym-

metry Bðs;�h;�fÞ ¼ Bðs; h; fÞ are given in following Fourier series forms with the symmetric phase:

~U ¼ B

hB2i
X

m;nð Þ6¼ 0;0ð Þ

B
ðBoozerÞ
f mþ B

ðBoozerÞ
h n

v0m� w0n
eðBoozerÞ

mn cos mhB � nfBð Þ

¼ 1

B

X
m;nð Þ6¼ 0;0ð Þ

B
ðBoozerÞ
f mþ B

ðBoozerÞ
h n

v0m� w0n
eðHamadaÞ

mn cos mhH � nfHð Þ;

eðBoozerÞ
mn � 1

2p2

ð2p

0

dhB

ð2p

0

dfB

hB2i
B2
� 1

� �
cos mhB � nfBð Þ;

eðHamadaÞ
mn � 1

2p2

ð2p

0

dhH

ð2p

0

dfH 1� B2

hB2i

 !
cos mhH � nfHð Þ: (22)

As noted previously, the Boozer coordinates ðs; hB; fBÞ and

the Hamada coordinates ðs; hH; fHÞ are defined here as sys-

tems that have
ffiffiffiffiffi
gB
p ¼ V0

4p2 hB2i=B2 and
ffiffiffiffiffiffi
gH
p ¼ V0

4p2, respec-

tively. A relation between these coordinates is shown in

Refs. 8 and 17. Equation (21) combined with Eqs. (13) and

(14) implies

rs� B

B2
� rF

	 

¼ F B�rsð Þ � r 1

B2

	 


¼ FB � r
~U

B

	 

¼ �h ~Ub � rFi: (23)

By using it and h ~Ub � r
P

aðpka þp?aÞi ¼ �h ~UB2b � r
P

a

ðpka � p?aÞ=B2i, Eq. (16) can be rewritten as another expres-

sion that agrees with
P

a eahnaua � rsi given in Appendix A.

In addition to this,

rs� B

B2
þ ~Ub

� �
� r

¼ � 1ffiffiffiffiffiffi
gH
p hB2i B

ðBoozerÞ
f

@

@hH

� B
ðBoozerÞ
h

@

@fH

� �

given by a procedure in Refs. 8 and 17 indicates also that

F
rs�B

B2
þ ~Ub

� �
� rH


	
¼ � H

rs�B

B2
þ ~Ub

� �
� rF

	 

(24)

for arbitrary FðxÞ and HðxÞ. Equation (24) corresponds to

hHJ � rFi ¼ �hFJ � rHi in isotropic pressure equilibriums

with the pressure of
P

ahp?a þ pkai=2. The Gauss’ theorem

gives another important formula

hr � HrF� Bð Þi ¼ @

@V
hHrF� B � rVi

¼ � @

@V
hHrV � B � rFi

¼ @

@V
hFrV � B � rHi: (25)

In addition to Eqs. (13) and (14), Eqs.(23)–(25) also had

played important roles in the moment equation approach

(Refs. 8–10 and references cited therein).

Then, by assuming this form of the parallel current

Jk ¼
hJ � BiB
hB2i �

c

2
~U
@

@s

X
a

hp?a þ pkai; (26)

we shall derive hJ � rFi for arbitrary scalar FðxÞ except

surface-quantities, such as s; v;w, and V. (When F is a

surface-quantity, hJ � rFi should be calculated by hJ �
rsi@F=@s with Eq. (16) or the formula in Appendix A with-

out the jemnj � 1 approximation in Eqs. (18) and (19) for J?
and without following b� 1 approximation in Eq. (10). The

result will vanish by the ambipolar constraint.) By using

hrF� B � rHi ¼ hr � ðHrF� BÞi as a b� 1 approxima-

tion, neglecting J � r in Eq. (10) for Eq. (25),

hrF� B � rHi ¼ � @

@V
hHrV � B � rFi

¼ @

@V
hFrV � B � rHi b� 1ð Þ (27)

for arbitrary scalars FðxÞ and HðxÞ is given. By combining

Eqs. (13), (14), (19), (23), (27),

hJ � rFi ¼ c
@

@V

	
FrV � B � r

X
a

p?a � pka
B2




¼ �c
@

@V

	X
a

p?a � pka
B2

rV � B � rF



(28)

is obtained. In configurations with the stellarator symmetry,

the ambipolar condition with Eq. (16) does not have any lim-

itations on
P

aðp?a � pkaÞ=B2 �
P

ahðp?a � pkaÞ=B2i with

the symmetric phase Fðs;�h;�fÞ ¼ Fðs; h; fÞ, which is

caused by various mechanisms, such as the collisionless

detrapping � regime ripple diffusions of light low-Z spe-

cies,18 the resonant viscosity of heavy impurity ions,10 and a

characteristic of fast ions velocity distribution discussed in

Sec. III. When J � rs 6¼ 0 by these reasons, Eq. (28) is a
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main deviation from the usual SCL coordinates system giv-

ing Eq. (15).

One conclusion of this section on a consistency of the

B,J vector fields is that when the B-field has the stellarator

symmetry Bðs;�h;�fÞ ¼ Bðs; h; fÞ, the local parallel and

radial currents Jk and J � rs should be functions with a

symmetric phase Fðs;�h;�fÞ ¼ Fðs; h; fÞ and an anti-

symmetric phase Fðs;�h;�fÞ ¼ �Fðs; h; fÞ, respectively.

Although it is a rigorous constraint for the symmetric config-

urations where c1@B=@hþ c2@B=@f ¼ 0 holds,8 non-

axisymmetric Fourier components of sinðmh� nfÞ inP
aðpka þ p?aÞ and

P
aðpka � p?aÞ can actually exist in non-

symmetric stellarator/heliotron configurations. This is an

essential difference between these configurations and is

clarified especially when investigating the ambipolar condi-

tion hJ � rsi ¼ 0 in cases with the external momentum input

hB
Ð

vkSfd
3vi 6¼ 0 as analyzed in Appendix A. For this rea-

son, the NBI heated stellarator/heliotron plasmas1 could be

analyzed by the pure neoclassical procedure8–10 without any

phenomenological momentum dissipation terms, such as that

in Sec. 8 in Ref. 6.

III. DRIFT KINETIC EQUATION FOR UNBALANCED
TANGENTIAL NBI

Hereafter, a set of r � vk=jvkj ¼ 61 and k � lBM=w �
ðBM=BÞv2

?=v
2 with the maximum magnetic field strength BM

on each flux-surfaces is used mainly as the pitch-angle space

parameter, rather than n � vk=v ¼ rð1� kB=BMÞ1=2
in Eq.

(4) and some references, such as Refs. 8 and 19. A range 0 

k 
 1 corresponds to the circulating pitch-angle in the full

range 0 
 k 
 BM=B. Various pitch-angle integrals for

moment equations in the moment method should be

obtained by
Ð 1

�1
dn ¼ �

P
r

Ð BM=B
0
f@ð1� kB=BMÞ1=2=@kgdk.

Fast ions’ gyro-phase-averaged velocity distribution
�f fðx; v; r; kÞ discussed here is defined as a part of velocity dis-

tribution of a specific ion species, such as proton and deute-

rium in NBI heated plasmas and helium in burning plasmas.

This part does not include the exponential factor

exp ð�mav2=2TaÞ with the temperature Ta � pa=na as shown

in following discussions, and is categorized to be one particle

species a ¼ f. The remaining component, including the expo-

nential factor, corresponds to the thermalized ions that are

categorized to be another particle species a 6¼ e,f [e:electron].

It should be handled by usual neoclassical procedures, in

which the self-adjoint property of the Coulomb collision is

fully utilized,8–10 and energy scattering/exchange

collision effects for the lower Legendre orders l¼ 0, 1 are

included in Braginskii’s matrix elements6
Ð

vlPlðnÞLðlþ1=2Þ
j

ðx2
aÞCabðvlPlðnÞLðlþ1=2Þ

k ðx2
aÞfaM; fbMÞd3v;

Ð
vlPlðnÞLðlþ1=2Þ

j

ðx2
aÞCabðfaM; vlPlðnÞLðlþ1=2Þ

k ðx2
bÞfbMÞd3v. The fast ions’ pres-

sure 3pf � mf

Ð
v2ffd

3v� nfmfu
2
?f and particle flux nfuf �Ð

vffd
3v as a component of J in the MHD equilibrium are not

negligible as observed in experiments and as discussed in Sec.

II. For thermalized particle species a 6¼ f,
Ð

vnCafðfa; ffÞd3v

and
Ð

v2Cafðfa; ffÞd3v are important input of parallel momen-

tum and energy, respectively. Since these integrals are non-

negligible only due to the fast ions’ large initial velocity of

mfv2
b=2	 Te; Ti (Ti �

P
a6¼e;f pa=

P
a6¼e;f na) and the heavy

mass mf 	 me, the density moment nf �
Ð

ffd
3v can be

assumed to be

Z2
f nf � ne; Zeffne: (29)

Hereafter, following previous works related to fast

ions,7,19,20 charge number Za � ea=e also is used to express

various collision parameters and Zeff �
P

a 6¼e; f Z2
ana=ne. One

reason of Eq. (29) is given in Appendix B.

In this section, we shall consider a determination proce-

dure of this �f fðx; v; r; kÞ by the drift approximation. Firstly,

we should note that the fast ions DKE for the parallel mo-

mentum input in the unbalanced tangential NBI opera-

tions1,20 should exclude the perpendicular guiding center

drift velocity vdf ¼ ðc=efÞðmfv2
k=Bþ lÞb�rlnB. The equa-

tion for the steady-states is given by20

vkb � r�f f ¼
X

b

Cfbð�f f ; fbÞ þ Sfðx; v; r; kÞ: (30)

Here, b � r is a differential keeping constant ðv; r; kÞ, i.e.,

vkb � r ¼ vnb � rðv;nÞ¼const � v
2

1� n2
� �

b � rlnBð Þ@=@n. By

excluding the perpendicular drift term vdf � r from Eq. (30),

the
Ð

vnd3v moment of this equation agrees with the parallel

component of Eq. (4) with a ¼ f and with neglecting

mfnfu
2
?f ;mfnfu?fukf � pf in that rB�2 � B � rukf of the

parallel velocity moments of the �f fðx; v; r; kÞ does not

appear there. Here, this
Ð

vnd3v integral will be obtained by

using the formula

vkb � r Pl nð ÞF x; vð Þ
� �

¼ v
l

2lþ 1
Pl�1 nð ÞB lþ1ð Þ=2b � r F

B lþ1ð Þ=2

� �

þ v
lþ 1

2lþ 1
Plþ1 nð Þ 1

Bl=2
b � r FBl=2ð Þ

that is applicable for pitch-angle integrals
Ð 1

�1
PlðnÞðvkb �

r�f aÞdn with general Legendre polynomials PlðnÞ. The per-

pendicular drift term will be important when calculating

�f
ðevenÞ
f � ½�f fðx; v; r; kÞ þ �f fðx; v;�r; kÞ�=2 as the even com-

ponent of vk in �f fðx; v; r; kÞ, since vdf � r�f
ðevenÞ
f corresponds

to (1) generation of the Pfirsch-Schl€uter current in Eq. (26),

(2) the bounce-center motion of trapped particles5 especially

in the ripple-trapped pitch-angle range 0 
 j2 
 1 of j2 �
fw� lB0ð1þ eT � eHÞg=ð2lB0eHÞ in stellarator/heliotron

magnetic fields B=B0 ¼ 1þ eTðs; hÞ þ eHðs; hÞ cos½Lh� Nf
þcðs; hÞ�, where B0 is the volume averaged field strength,

and (3) radial particle and energy transport.7 However,Ð
vnL

ð3=2Þ
j ðx2

aÞCafðfaM; �f fÞd3v required for studying physics of

target plasma species2 and/or hBnfukfi � hB
Ð

vn�f fd
3vi in

parallel current20 hJ � Bi are contributions of �f
ðoddÞ
f

� ½�f fðx; v; r; kÞ � �f fðx; v;�r; kÞ�=2. This �f
ðoddÞ
f should be

handled by Eq. (30) excluding vdf � r�f
ðoddÞ
f since this drift
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term generates a deviation from Eq. (4) especially in

the unbalanced NB injections, which is a main purpose of the

present work. It also should be noted that E � @ff=@v in the

Landau equation as well as the resultant E� B motion is not

taken into account in Eq. (30) since

(1) Because of the low density equation (29), this exclusion

(corresponding to efnfE ¼ 0 in Eq. (4)) is not a serious

inconsistency from the view of the MHD equilibrium.

(2) At present, stellarator/heliotron experiments are con-

ducted without inductive electric fields EðAÞ � �c�1@A

=@t � 0. Only one purpose for retaining hB � EðAÞi in stel-

larator/heliotron theories is to confirm the Onsagar sym-

metric relation between bootstrap currents and Ware

pinches in the full neoclassical transport matrix.10 The

electric field is substantially that due to the ambipolar

electrostatic potential E ¼ �rU. Since this ambipolar

potential is order of jrUj � jðrpaÞ=ðeanaÞj (a 6¼ f), it is

negligible for the drift motions of fast ions with

mfv2
b=2	 Te; Ti, while it is non-negligible for thermal-

ized particles with mav2=2 � Te; Ti.

Secondly, the collision operator
P

b Cfbðff ; fbÞ in Eq.

(30) is simplified in contrast with that in thermalized par-

ticles’ kinetic equations.6,8–10 The Coulomb collision opera-

tor for the colliding particle species pair a-b is basically

used in the linearized form Cabðfa; fbÞ ffi Cabðfa1; fbMÞ þ
CabðfaM; fb1Þ for fa ¼ faM þ fa1. When we linearize the ki-

netic equations for these thermal particles velocity distribu-

tions, faM is the Maxwellian velocity distribution defined by

the surface-averaged density and pressure moments that van-

ish in b � rfa; rs� b � rfa, and without the velocity

moment
Ð

vfaMd3v ¼ 0, while fa1 is the poloidally and toroi-

dally varying deviation from faM (i.e., b � rfa1 6¼ 0 or

rs� b � rfa1 6¼ 0). In theories for thermal particles,6,8–10

this CabðfaM; fb1Þ is retained to include field particles’ flows.

In other words, Cabðfa; fbÞ ffi Cabðfa; fbMðv� ubÞÞ, where

fbMðv� ubÞ is the shifted Maxwellian velocity distribution

of the thermal particle species b. These flow velocities of

thermal particle species are often comparable jukaj � jukbj
� jukcj � ::::, and therefore f

ðl¼1Þ
a1 � 3

2
n
Ð 1

�1
nfa1dn of all spe-

cies are regarded to be comparable there because of the

Galilean invariant property of the Coulomb collision. In Eq.

(30) for fast ions, however, these flow velocities of

target thermal particles being juaj � jubj � jucj � :::�
vb ða; b; c; :: 6¼ fÞ can be neglected and thus Cfbðff ; fbÞ ffi
Cfbðff ; fbMÞ for b 6¼ f (test particle portion only). Because of

an extreme difference between the velocity moments in the

tangential NBI, we do not need to retain the Galilean invari-

ant property so rigorously in this Cfbðff ; fbÞ. In this approxi-

mation, for retaining the conservation of momentum and

energy, collisions of thermalized particles (a) with the fast

ions (f) should be calculated by Cafðfa; ffÞ ffi CafðfaM; ffÞ
(field particle portion only).2 When Eq. (29) is satisfied,

Cafðfa1; ffÞ is negligibly smaller than
P

b 6¼f Cabðfa1; fbMÞ.
Furthermore, in Eq. (30), because of this low density of the

fast ions themselves and the momentum/energy conservation

of like-particle collisions
Ð

vCaaðfa; faÞd3v ¼ 0 ¼
Ð

v2Caa

ðfa; faÞd3v, the non-linear collision term Cffðff ; ffÞ can be

omitted. An explicit expression of the exact test particle por-

tion in the spherical velocity coordinates is given by21

Cab fa; fbMð Þ ¼ 4pnb
eaeb

ma

� �2

ln Kab

U xbð Þ � G xbð Þ
v3

Lfa

�

þv�2 @

@v
G xbð Þv

mav

Tb
þ @

@v

� �
fa

� 
�

L � 1

2

@

@n
1� n2
� � @

@n
þ 1

1� n2

@2

@/2

 !

¼ BM

B
2

vk
v
@

@k
k

vk
v
@

@k
þ 1

2k
@2

@/2

 !
: (31)

In Eq. (30) determining the gyro-phase-averaged distribu-

tion, the gyro-angle differential @2=@/2 is not used. The

error and the Chandrasekhar functions are defined by

U xð Þ � 2ffiffiffi
p
p
ðx

0

e�y2

dy ¼ 2ffiffiffi
p
p
X1
n¼0

�1ð Þn

2nþ 1ð Þn!
x2nþ1

and

G xð Þ � U xð Þ � xU0 xð Þ
2x2

¼ 2ffiffiffi
p
p
X1
n¼0

�1ð Þn

2nþ 3ð Þn!
x2nþ1;

respectively, and xb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbv2=ð2TbÞ

p
. Connection formulas

of their x� 1 and x	 1 asymptotic limits

U xð Þ � G xð Þ ffi 3
ffiffiffi
p
p

4x

� �5=2

þ 1

( )�2=5

;

G xð Þ ffi 3
ffiffiffi
p
p

2x
þ 2x2

� ��1

also will be useful. The Coulomb logarithm lnKab ¼ lnKba for

the colliding species pair a-b is a constant being independent

of ðh; f; vÞ, on each flux-surfaces. Not only the omission of

@2=@/2, a straightforward use of Eq. (31) for
P

b 6¼f

Cfbðff ; fbMÞ in Eq. (30) is inadequate and thus other minor

modifications are required because of the following reason.

The straightforward use in this equation with the source term

will result in a time evolution of a velocity distribution compo-

nent, including exp ð�mfv2=2TiÞ at mfv2 � 2Ti following the

H-theorem. A strongly peaking structure at mfv2 � Ti shown

in Fig. 2 in Ref. 5 is an example. Note that this structure indi-

cates only a qualitative characteristic of the velocity distribu-

tion since it corresponds to Maxwellian of protons for which a

prior existence in the source and collision terms is assumed. It

also should be noted that this energy region mfv2 � Ti in Ref.

5 could not contribute to the substantial heating power22 due to

a well-known relation CabðfaM; fbMÞ / ðTa=Tb � 1Þ. When we

choose a method preventing this formation of the exponential

structure, the approximation should be optimized for mfv2 	
2Ti and simultaneously the particle conservation

Ð P
b

Cfbðff ; fbMÞd3v ¼ 0 should be artificially broken at mfv2 � 2Ti

to make the collision operator sink low energy particles.

Although our present approximation method for this purpose is

basically identical to that in previous tokamak studies related
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to fast ions,7,19,20 we shall summarize the approximation here.

Although the collisions with electrons Cfeðff ; feMÞ and those

with thermal ions Cfbðff ; fbMÞ (b 6¼ e,f) use different approxi-

mations, a common modification to optimize them for mfv2 	
2Ti is ðmfv=Tb þ @=@vÞff ffi mfvff=Tb. The energy transfer

rates of the standard RMJ (Rosenbluth-MacDonald-Judd) oper-

ator are retained within accuracies neglecting 3Te=mf � v2
b

for f-e collisions and 2Ti=mi � v2
b for f-i collisions.

(Comparisons of the momentum/energy transfer rates with

those of the standard RMJ operator are shown in Appendix C.)

In Cfeðff ; feMÞ, the pitch- and gyro-angle scattering function

Lff should be simultaneously omitted for retaining the f-e, e-f

momentum transfer rate of the standard RMJ within an

accuracy neglecting only me � mf . This approximation

corresponds to a neglect of the second term in the Cartesian

coordinates expression Cfeðff ; feMÞ ffi s�1
S

P
a @=@vafva þ

ðTe=mfÞ@=@vagff for a velocity range v < ð3
ffiffiffi
p
p

=4Þ1=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
to optimize it for mfv2 	 2Te. The Lff operator in

Cfeðff ; feMÞ is only a minor component of that inP
b 6¼f Cfbðff ; fbMÞ with Zeff > 1 in general v-space regions,

especially in v < ð3
ffiffiffi
p
p

=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
. In the collision with

thermal ions Cfbðff ; fbMÞ (b 6¼ e,f), the standard form Eq. (31)

is used in its Ti=mf ! 0 limit and consequently

GðxbÞvðmfv=Tb þ @=@vÞff ffi ðmf=mbÞff . This replacement in

the energy scattering term is not only for the optimization for

mfv2 	 2Ti but also the artificial break of the particle conser-

vation
Ð

Cfbðff ; fbMÞd3v ¼ 0 for obtaining the steady-state so-

lution of Eq. (30). In this use in the Ti=mf ! 0 limit, the

momentum transfer rate of the standard RMJ is retained within

an accuracy neglecting 2Ti=mi � v2
b. Now it is concluded for

Eq. (30) that

X
b

Cfb ff ; fbð Þ ffi
X
b 6¼f

Cfb ff ; fbMð Þ ffi CPAS
f ff þ CES

f ff

CPAS
f ff � 4p

e4Z2
f

m2
f

X
b 6¼e;f

hnbiZ2
b ln Kfb

� �
v�3Lff �

Z2

sS

v3
c

v3
Lff

CES
f ff � 4p

e4Z2
f

mf

v�2 @

@v
hneiln Kfe

v2

hTei
G xeð Þ þ

X
b 6¼e;f

hnbiZ2
b ln Kfb

mb

 !
ff

( )

� 1

sS

v�2 @

@v
v2vTe

3
ffiffiffi
p
p

2
G xeð Þ þ v3

c

� �
ff

� 

: (32)

Here, the following parameters and/or variables are used:

vTe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hTei=me

p
; xe � v=vTe;

3
ffiffiffi
p
p

4sS

� 4pe4Z2
f hneilnKfe

mfmev3
Te

; Z2 �
1

mf

X
a 6¼e; f

hnaiZ2
a ln KfaX

a 6¼e; f

hnaiZ2
a ln Kfa=ma

;

v3
c �

3
ffiffiffi
p
p

4
v3

Te

me

hneiln Kfe

X
a 6¼e; f

hnaiZ2
a ln Kfa

ma
:

A possibility of x3
e � 3

ffiffiffi
p
p

=4 in CES
f at low-Te regions is allowed in following calculations. The approximation of CPAS

f is justi-

fied later also by the resulting v-space structure of �f fðx; v; r; kÞ. Since this velocity distribution in NBI-heated or burning plas-

mas is generated as a response to the source term being the delta function in the energy space Sfðx; v; r; kÞ / dðv� vbÞ=v2, it

includes the unit step function in the energy space7,19,20 Uðvb � vÞ. Actually, it is not a rigorous step function but is a continu-

ous function having an exponential decay structure19

Uc vb � vð Þ �
(

1 for v 
 vb

exp �CD v� vbð Þ=vb

� �
for v 
 vb

CD �
mf

X
a 6¼f;e

hnaiZ2
a ln Kfa=ma þ mf v2

b=hTei
� �

hneiln KfeG vb=vTeð Þ

hTii=v2
b

� � X
a6¼f;e

hnaiZ2
a ln Kfa=ma þ hneiln KfeG vb=vTeð Þ

that satisfies ð@=@vÞf
P

b 6¼fhnbie2
blnKfbGðxbÞvðmfv=hTbi þ

@=@vÞ�f fg ¼ 0 for the full part of the energy scattering

term in Eq. (31) at an energy space region of

0 < ðv� vbÞ=vb � Te=ðmfv2
bÞ; Ti=ðmfv2

bÞ � 1. In spite of

this, the solution in v < vb should be obtained by using

Eq. (32) when investigating the steady-states. Both substi-

tuting Uðvb � vÞ into CES
f and substituting Ucðvb � vÞ into

the full energy scattering operator result in the same delta

function at the initial velocity that is balanced with the

source by
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CES
f U vb � vð Þ ¼ 4p

ef

mf

� �2

v�2 @

@v

X
b 6¼f

hnbie2
blnKfbG xbð Þv

mfv

hTbi
þ @

@v

� �
Uc vb � vð Þ

( )

¼ � 1

sS

v2
bvTe

3
ffiffiffi
p
p

2
G

vb

vTe

� �
þ v3

c

( )
d vb � vð Þ

v2
at jv� vbj=vb � 1:

Since this high-energy tail region 0 < ðv� vbÞ=vb � 1

does not have any essential roles in practically important in-

tegral formulas, such as
Ð

L
ð1=2Þ
j ðx2

aÞCafðfaM; ffÞd3v;
Ð

vL
ð3=2Þ
j

ðx2
aÞCafðfaM; ffÞd3v of the field particle portion,2Ð
v2Cfbðff ; fbMÞd3v;

Ð
vvnCfbðff ; fbMÞd3v of the test particle

portion (Appendix C), and/or nfuf �
Ð

vffd
3v of the velocity

distribution,20 we assume ff / Uðvb � vÞ at jv� vbj=vb � 1

for the 0th order of qp=Lr [qp: typical poloidal gyro-radius,

Lr: typical radial gradient scale length] in discussions below.

Thirdly, there is a constraint on the real space structure

Sxkðx; r; kÞ in the source term Sfðx; v; r; kÞ ¼ Sxkðx; r; kÞ
dðv� vbÞ=v2. The constraint is due to fast ions initial parallel

drift motions just after the beam ionization (or the nuclear

reaction generating the a-particles) which conserve the mag-

netic moment l ¼ mfv2
?=2B. The resultant real space struc-

ture should be Sxkðx; r; kÞ ¼ Sxkðs; r; kÞ especially in the

circulating pitch-angle range 0 
 k 
 1, and consequentlyÐ
vkvnSfd

3v / Bðh; fÞ on each flux-surfaces for arbitrary inte-

ger n � 1. We already discussed in Sec. II this characteristic

of the source term from the viewpoint of the B,J vector fields

determination in the MHD equilibrium. Here, we explain it

in another viewpoint of the fast ions drift motion and their

collision equation (32). The solution method for Eq. (30)

explains this reason. A typical collision time sS in Eq. (32)

corresponds to the longest time scale in various Braginskii’s

collision times, which express the time scale of collisions

between thermalized particles. Because of this collision

time scale and the fast initial velocity mfv2
b=2	 Te; Ti,

the method is an asymptotic expansion that uses the inverse

mean free path �=v as the expansion parameter.7,20

This method is analogous to the banana regime expansion

for thermalized particles’ energy regions of �=v
� ðdB=BÞ3=2=Lc, where 1=Lc � b � rlnB is the characteris-

tic length along the B-field line.23–25 In Eq. (30), the 0th

order of �=v should satisfy b � r�f
0

f ¼ 0 and thus �f
0 ðoddÞ
f

exists only in 0 
 k 
 1, i.e.,

�f
0 ðoddÞ
f � ½�f 0

f ðx; v; r; kÞ � �f
0

f ðx; v;�r; kÞ�=2

¼ ½�f 0

f ðx; v; r; kÞ � �f
0

f ðx; v;�r; kÞ�Uð1� kÞ=2

¼ �f
0 ðoddÞ
f ðs; v; r; kÞ (33)

and �f
0 ðoddÞ
f ðk ¼ 1Þ ¼ 0. As mentioned in the introduction,

this is the fast ion trapping effect, in which the trapped pitch-

angle range cannot contribute to integrals in a form of

hB
Ð

nFðvÞffd
3vi, such as hB

Ð
vnL

ð3=2Þ
j ðx2

aÞCafðfaM; ffÞd3vi.
Then the 1st order of �=v is governed by vkb � r�f

1

f

¼ ðCPAS
f þ CES

f Þ�f
0

f þ Sfðx; v; r; kÞ. The solubility condition

of this 1st order equation in 0 
 k 
 1 and v < vb is

B
v

vk
CPAS

f þ CES
f

� �
�f

0

f

	 

¼ 0 (34)

because of Eq. (13). This condition determines the v-space

structure of �f
0

f in 0 
 k 
 1 as investigated in Section IV.

Note that this h�i also is a surface-average keeping constant

ðv; r; kÞ.
For Eqs. (4) and (30) handling the @fa=@t ¼ 0 steady-

states, the source term Sfðx; v; r; kÞ ¼ Sxkðx; r; kÞdðv�
vbÞ=v2 in them does not correspond to the number of beam

ionization event at each real space position x (so-called birth

of fast ions), but is defined for a short (but finite) time scale

of 2pR=vb � t� sS just after the ionization by taking into

account the initial drift motions in this time scale. Therefore,

the balance of the DKE terms at the initial energy is given

by

Sfðx; v; r; kÞ ¼ �CES
f

�f
0

f at jv� vbj=vb � 1: (35)

In the recent study1 applying the FIT3D code,3 for example,

results of a Monte Carlo code MCNBI in it, which calculate

the initial drift orbit trace in 2pR=vb � t� sS after the beam

ionization handled by HFREYA, are used as the source. The

PAS operator in Eq. (32) satisfying
Ð 1

�1
ðCPAS

f
�f fÞdn ¼ 0 does

not have any essential roles in this particle/energy balance at

the energy region of jv� vbj=vb � 1. Since (as long as afore-

mentioned vdf � r�f
ðevenÞ
f as the 1st order of qp=Lr is excluded)

�f
0

f in j2 > 1 is a function of ðs; v; r; kÞ only, the source term

in Eq. (35) should be Sxkðx; r; kÞ ¼ Sxkðs; r; kÞ except the

deeply trapped pitch-angle range j2 < 1 that we do not need

to consider for the tangential NBI operations. This (x,v) space

structure of Sxkðs; r; kÞ includes also an implicit assumption

b � rðv;nÞ¼constff ¼ 0 in Ref. 19 as the b � rB! 0 limit.

Following this conclusion that the generation of �f
0 ðoddÞ
f should

be calculated by using Sxkðx; r; kÞ ¼ Sxkðs; r; kÞ at least in

0 
 k 
 1, the adjoint equation in Ref. 20 for allowing arbi-

trary function forms of Sxkðx; r; kÞ is not used in this present

study. Instead of that, we directly solve Eq. (30) for 0 
 k 

1 in Section IV.

The
Ð 1

�1
�dn ¼ �

P
r

Ð BM=B
0

�f@ð1� kB=BMÞ1=2=@kgdk
integral of Eq. (35) with Eq. (33) indicates thatÐ

vkvnSfd
3v ¼ hB

Ð
vkvnSfd

3viB=hB2i on each flux-surface in

Eq. (4) and a
Ð

vv2d3v moment of the Landau equation (A5).

By Eq. (21), this constraint leads also to

~U

ð
vkv

nSfd
3v

	 

¼ 0: (36)

Even when the vdf � r�f
ðevenÞ
f as the 1st order of qp=Lr gener-

ating poloidal and toroidal variations of �f
ðoddÞ
f corresponding

to the Pfirsch-Schl€uter current in Eq. (26) is included as in

Ref. 7, this 1st order variation cannot affect Eq. (35), and
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consequently Eq. (36). When the 0th order of qp=Lr in �f
ðevenÞ
f

is obtained by the above procedure, �f f1 as the 1st order of

qp=Lr will be determined by ðvkb � r � CPAS
f � CES

f Þ�f f1

¼ �vdf � r�f
ðevenÞ
f . Although details of this equation and its

solution will depend on configurations and the injection con-

ditions Sfðs; v; r; kÞ, for a consistency with Eq. (26), theÐ 1

�1
dn integral of this equation in v < vb would commonly

be

B � r
ð1

�1

n�f f1dn=B

 !

¼ c

ef

mfv

4
rs� B � r 1

B2

@

@s

ð1

�1

1þ n2
� �

�f fdn

	 

;

giving ð1

�1

n�f f1dn� B

ð1

�1

n�f f1dn

	 

B

hB2i

¼ � c

ef

mfv

4
~U
@

@s

ð1

�1

1þ n2
� �

�f fdn

	 

(37)

by Eq. (21). Here, the energy scattering collision
Ð 1

�1

ðCES
f

�f f1Þdn is neglected by vbsS 	 Lc, and
Ð 1

�1
ðCPAS

f
�f f1Þ

dn ¼ 0 vanishes for general gyro-phase-averaged velocity

distributions. Equation (37) as the 1st order of qp=Lr is the

contribution of fast ions in Eq. (26), on which it is reported

in various experiments that this poloidal variation of �f
ðl¼1Þ
f1

has a non-negligible effect in determining the Shafranov

shift. In spite of the fact that this 1st order also may be �f f1 /
Uðvb � vÞ at jv� vbj=vb � 1 when the 0th order component

is �f
ðevenÞ
f / Uðvb � vÞ there, �f f1 cannot be included in Eq.

(35) because of a constraint in Sec. II that Eq. (17) should

vanish. This kind of perpendicular gradient effects b�
r�f
ðevenÞ
f of the fast ions at jv� vbj=vb � 1 in NBI heated

and/or burning plasmas cannot be investigated only by the

drift approximation for describing the gyro-phase-averaged

velocity distribution functions. When the perpendicular gra-

dient exists, the gyro-phase-dependent part ~f f ¼ mf c
ef B

v �

b�r�f
ðevenÞ
f

� �
exists and it is a cause of vdf � r�f

ðevenÞ
f in the

gyro-phase-averaged equation. The collision against this

component CES
f

~f f (i.e., the collision against the gyro-motion)

also diverges as the delta function at jv� vbj=vb � 1

(Generations of the classical diffusions Ccl
f and Qcl

f defined

in Appendix A have a peaking contribution at this initial ve-

locity in the v-space.), and thus the concept of the collision-

less perpendicular guiding center drift velocity vdf for

efc
�1B=mf 	 1=sS is violated there. We investigated the

constraint on Eq. (35) in the viewpoint of the consistency of

the B,J vector fields for this reason. When the poloidally and

toroidally varying parallel flow Eq. (37) as the 1st order of

qp=Lr is included in Eq. (35) as a definition of the fast ion

source, it corresponds to PSðs;�h;�fÞ ¼ �PSðs; h; fÞ 6¼ 0

that is forbidden in Sec. II. Therefore, �f f1 at jv� vbj=vb � 1

cannot be / Uðvb � vÞ nor / Ucðvb � vÞ, but is a function

with a continuous derivative @�f f1=@v that is determined by

Eq. (31). These approximated expressions for ~f f and/or �f
ðl¼1Þ
f1

that are caused by b�r�f
ðevenÞ
f 6¼ 0 can be used only for the

aforementioned integrals
Ð

vL
ð3=2Þ
j ðx2

aÞCafðfaM; ffÞd3v;
Ð

vvnP
b 6¼f Cfbðff ; fbMÞd3v and/or nfuf �

Ð
vffd

3v. (Differential

operations @�f f1=@v; @
2 �f f1=@v

2 will have large uncertainty.)

Generations of hCPS
f � rsi; hQPS

f � rsi, and modifications of

hCPS
a � rsi; hQPS

a � rsi (a 6¼ f) in Appendix A due to this

�f
ðl¼1Þ
f1 are future themes. It also should be noted that this dis-

cussion on
Ð

vkvnSfd
3v assumes the core regions where initial

drift orbits crossing the last closed flux surface (LCFS) do

not exist.

IV. EIGENFUNCTION METHOD

A. Definition and obtaining method of the
eigenfunction

In the circulating pitch-angle 0 
 k 
 1, instead of the

local balance of source and collision in uniform magnetic

field19
b � rB ¼ 0, this balance now becomes a surface-

averaged balance

Z2

v3
c

v3

@

@k
kh 1� kB=BMð Þ1=2i @

�f
0

f

@k
� @h 1� kB=BMð Þ1=2i

@k
v�2

� @

@v
v2vTe

3
ffiffiffi
p
p

2
G xeð Þ þ v3

c

� �
�f

0

f

� 


¼ @h 1� kB=BMð Þ1=2i
@k

sSSxk s; r; kð Þ
d v� vbð Þ

v2
; (38)

in which B � r is eliminated by Eq. (13). Here,

hðB=BMÞð1� kB=BMÞ�1=2i ¼ �2@hð1� kB=BMÞ1=2i=@k is

used. For solving this equation, the following eigenfunctions

KnðkÞ with the eigenvalues jn (numbered as n¼ 1,2,3,.) are

required in describing the pitch-angle (k) space, instead of

the usual Legendre polynomial PlðnÞ:

@

@k
kh 1�kB=BMð Þ1=2i@Kn

@k
¼jn

@h 1�kB=BMð Þ1=2i
@k

Kn

in 0
k
1; Kn 0ð Þ¼1; Kn 1ð Þ¼0: (39)

This type of eigenfunction is often required when handling

the pitch-angle-scattering collision in the toroidal plasmas.

Theoretical study on electron cyclotron current drive26–28 is

another application area in addition to the a-particle diffusion7

and the NB-driven effects.20 We shall consider here only a

determination method for �f
0 ðoddÞ
f in Eq. (33), and therefore

Knð1Þ ¼ 0 as the boundary condition at the circulating/

trapped boundary k ¼ 1 corresponding to a fact �f
0 ðoddÞ
f ðk ¼

1Þ ¼ 0 is used in this definition. Although the even compo-

nent �f
0 ðevenÞ
f requires a different boundary condition and a

handling of the trapped pitch-angle range k > 1 by bounce-

integrals instead of the surface-averaging,29 a practically im-

portant component hf ðl¼0Þ
f i / ½v2vTeð3

ffiffiffi
p
p

=2ÞGðxeÞ þ v3
c �
�1

Uðvb � vÞ (the surface-averaged lowest Legendre order l¼ 0)

in �f
0 ðevenÞ
f is not affected by the B-field strength modulation
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along the field line as discussed in Appendix B. A collision in-

tegral ma

Ð
v2CafðfaM; ffÞd3v ¼ �mf

Ð
v2Cfaðff ; faMÞd3v in

Appendix C for power deposition analyses requires only this

hf ðl¼0Þ
f i. A main purpose of the present study is �f

0 ðoddÞ
f deter-

mining aforementioned integrals in the common form of

hB
Ð

nFðvÞffd
3vi. There is a self-adjoint property of this

surface-averaged PAS operator for arbitrary functions satisfy-

ing this boundary condition Fðk ¼ 1Þ ¼ Gðk ¼ 1Þ ¼ 0:ð1

0

G kð Þ @
@k

kh 1� kB=BMð Þ1=2i @F kð Þ
@k

dk

¼
ð1

0

F kð Þ @
@k

kh 1� kB=BMð Þ1=2i @G kð Þ
@k

dk: (40)

By using this property and the definition Eq. (39), we can im-

mediately find the following orthogonal relation between

eigenvalue numbers m, n:

ð1

0

KmKn
@ 1� kB=BMð Þ1=2

@k
dk

* +
¼ 0 for m 6¼ n: (41)

(In non-symmetric toroidal configurations, this type of three

dimensional definite integrals in a form of
Ð 1

0
h�idk ¼ h

Ð 1

0
�dki

is often numerically calculated by surface-averaging the pitch-

angle integrals, such as
Ð 1

0
KmKnf@ð1� kB=BMÞ1=2=@kgdk as

function of B, especially when kBðh; fÞ=BM ¼ 1 is a singular

point in the 3D space25 ðh; f; kÞ.) Equation (41) will be used

later for orthogonal expanded expressions of Eq. (33) and the

source term.

It also should be noted that when our purpose is limited

to the integrals in the form of hB
Ð

nFðvÞffd3vi, a complete

expression for the full energy range 0 
 v 
 vb is not

required. Not only the usual Legendre expansion19 for b �
rB ¼ 0 but also the present orthogonal expansion by KnðkÞ
for b � rB 6¼ 0 will require an infinite number of expansion

terms (0 
 l <1 or 1 
 n <1) at high energy regions

v 
 vc or v � vb when the Sxkðs; r; kÞ in the fast ion source

term is a strongly localized function in the pitch-angle (k)

space. However, these higher order (l> 1 or n	 1) pitch-

angle space structures will vanish in the integrals

hB
Ð

nFðvÞffd
3vi. The focusing on these types of integrals

rather than ff itself is motivated especially by the applica-

tion to the field particle portion CafðfaM; ffÞ in thermalized

particles kinetic equation. This portion is an integral opera-

tor reducing the higher Legendre orders l	 1 especially

when Ti=ma � ðpf=nfÞ=mf � Te=me (a 6¼ e,f).2,6 Therefore,

1 
 n 
 6 of Eq. (39) is used here. These eigenfunctions of

finite n numbers can be obtained by a numerical shooting

method, in which

@Kn

@k
¼ Pn

k
@Pn

@k
¼ @ lnh 1� kB=BMð Þ1=2i

@k
jnKn �Pnð Þ

8>><
>>: (42)

is integrated using an initial condition of

Kn k! 0ð Þ ¼ 1� k
2

hBi
BM

jn 1þ k
8

hBi
BM

1� jnð Þ
� �

Pn k! 0ð Þ ¼ � k
2

hBi
BM

jn 1þ k
4

hBi
BM

1� jnð Þ
� �

8>>>><
>>>>:

(43)

with a guess value of jn. When the solution satisfying

Knð1Þ ¼ 0 is found, the exact eigenvalue jn is determined by

jn ¼ �
ð1

0

kh 1� kB=BMð Þ1=2i @Kn

@k

� �2

dk

�

�
ð1

0

K2
n

@ 1� kB=BMð Þ1=2

@k
dk

* +
; (44)

which is obtained by multiplying KnðkÞ to Eq. (39). A

Legendre polynomial expansion

Kn kð Þ ¼ 1� kð Þ1=2

h 1� kB=BMð Þ1=2i

X9

m¼1

anmP2m�1 1� kð Þ1=2
� �

;

(45)

in which the last term m¼ 9 is determined by the boundary

condition Knð0Þ ¼ 1 as an9 ¼ �
P8

m¼1 anm þ 1 is convenient

for this kind of pitch-angle integrals, including the

hB
Ð

nFðvÞffd
3vi formula derived below.

To execute this procedure effectively for arbitrary non-

symmetric stellarator/heliotron configurations, it is conven-

ient to use results for axisymmetric tokamaks with concen-

tric circular flux geometries7 as the initial guess jn value in

an iterative calculation of Eqs.(42) and (43) (Knð1Þ ¼ 0 is

not guaranteed)

jðnewÞ
n ¼ jðoldÞ

n

Ð 1

0
kh 1� kB=BMð Þ1=2i @Kn=@kð Þ2dk� h 1� B=BMð Þ1=2i Kn@Kn=@k½ �k¼1Ð 1

0
kh 1� kB=BMð Þ1=2i @Kn=@kð Þ2dk

: (46)

In this previous tokamak calculation, the flux-surface coordinates system with the Jacobian and the magnetic field strength of

ffiffiffi
g
p ¼ V0

4p2
1þ e cos hð Þ; B ¼ B0

1þ e cos h
(47)

was used. The obtained eigenvalues with 1 
 n 
 6 were (The result in Ref. 7 is extended to include n¼ 6 and e ¼ 0:65.)
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e ¼ 0:01; jn ¼ 1:16127; 6:84497; 17:0693; 31:8307; 51:1263; 75:581

e ¼ 0:04; jn ¼ 1:36030; 7:88083; 19:5941; 36:4914; 58:5683; 85:809

e ¼ 0:09; jn ¼ 1:61375; 9:19224; 22:7862; 42:3856; 67:9864; 99:559

e ¼ 1=6; jn ¼ 1:98220; 11:0918; 27:4123; 50:9352; 81:6583; 119:53

e ¼ 1=3; jn ¼ 2:93115; 15:9782; 39:3295; 72:9835; 116:940; 171:12

e ¼ 0:50; jn ¼ 4:40302; 23:5697; 57:8728; 107:318; 171:905; 251:52

e ¼ 0:65; jn ¼ 6:86278; 36:2951; 88:9926; 165:015; 264:164; 386:30:

8>>>>>>>>>>><
>>>>>>>>>>>:

(48)

It also is known that the extremely small e limit is given by

jn! n 2n� 1ð Þ þ 4n� 1

3

2n� 1ð Þ!!
2n� 2ð Þ!!

 !2

1:47
ffiffi
e
p

for e! 0:

(49)

In these model configurations, a relation between the so-

called circulating particles’ fraction fc � 3
4
hB2iB�2

M

Ð 1

0

khð1� kB=BMÞ1=2i�1
dk, which routinely appears in the ba-

nana regime parallel viscosity in general toroidal configura-

tions,23,24 and the inverse aspect ratio e is given by a

polynomial fitting

ffiffi
e
p
¼ f 1� 3

4

ð1

0

kdk

h 1� kB=BMð Þ1=2i

 !

f xð Þ � x 0:685þ 0:735� x� 0:133� x2 þ 2:00� x3ð Þ:

8>>><
>>>:

(50)

When investigating general toroidal configurations, we can

know approximated values of jn by substituting their fc inte-

grals into Eq. (50) to convert them to e for the jnðeÞ interpo-

lation formulas of Eqs. (48) and (49) in the model tokamak

configurations equation (47). After this choice of the initial

guess values, only a few iterations of Eq. (46) will immedi-

ately find the exact KnðkÞ and jn satisfying the boundary

condition Knð1Þ ¼ 0 and, consequently, the orthogonal rela-

tion equation (41).

Although it is mathematically obvious in Eq. (39) that in

an extremely small B-field strength modulation limit

hð1� B=BMÞ1=2i ! 0, the eigenfunction becomes the usual

Legendre polynomial KnðkÞ ! P2n�1ðð1� kÞ1=2Þ, but the

numerical scheme in Eqs.(42)–(46) for finite modulation is

not suitable for this too simplified situation. If one wants to

consider hð1� B=BMÞ1=2i � 1 limits (for, e.g., e < 0:005 in

Eq. (50)), it is favorable to use an analytical theory for the

anmðeÞ in e� 1 limits of the model configurations, Eq. (47),

for avoiding physically meaningless numerical errors.

Reference 7 showed also this asymptotic limit theory, and

the essence of it is summarized by Eq. (49) and

anm eð Þ ¼ 4m� 1

3 n�mð Þ 2nþ 2m� 1ð Þ

� 2m� 1ð Þ!! 2n� 1ð Þ!!
2m� 2ð Þ!! 2n� 2ð Þ!! �1ð Þnþm

1:47
ffiffi
e
p

for m 6¼ n:

(51)

The non-diagonal coefficients anmðeÞ with m 6¼ n should be

obtained by interpolations of anmðeÞ=
ffiffi
e
p

as functions of
ffiffi
e
p

in this e� 1 limit and e 
 0:01, where the coefficients are

obtained by the numerical Legendre expansion. The diagonal

coefficient should be obtained by extrapolations of numeri-

cally obtained ðannðeÞ � 1Þ=
ffiffi
e
p

as functions of
ffiffi
e
p

in

0:01 
 e 
 0:65.

B. Energy space structure of each eigenvalue
numbers

By using Eq. (41), we shall define an orthogonal expan-

sion of arbitrary odd function Fðv; r; kÞ in 0 
 k 
 1 satisfy-

ing Fðv;�1; kÞ ¼ �Fðv; 1; kÞ and the boundary condition

Fðv; r; k ¼ 1Þ ¼ 0 as follows:

F v; r; kð Þ ¼ r
X

n

F n vð ÞKn kð Þ

F n vð Þ � r
ð1

0

KnF v; r; kð Þ @ 1� kB=BMð Þ1=2

@k
dk

* +

� ð1

0

K2
n

@ 1� kB=BMð Þ1=2

@k
dk

* +
: (52)

This pitch-angle integral
Ð 1

0
dk is performed for only one side

of r ¼ 61. We shall define also a function for each flux-

surfaces by

lnV vð Þ � 3v3
c

ð
dv

v v2vTe 3
ffiffiffi
p
p

=2
� �

G xeð Þ þ v3
c

n o

¼ ln
v3

v3 þ v3
ce

þ 4

3
ffiffiffi
p
p v3

ce

v3
Te

ln 1þ v3

v3
ce

 !

v3
ce � v3

c 1þ 4

3
ffiffiffi
p
p v3

c

v3
Te

 !�1

:

(53)

Here,

v3
c v2vTe

3
ffiffiffi
p
p

2
G xeð Þ þ v3

c

� 
�1

ffi v 3
ce

v3 þ v 3
ce

1þ 4

3
ffiffiffi
p
p x3

e

� �
(54)

given by GðxÞ ffi fð3
ffiffiffi
p
p

=2Þ=xþ 2x2g�1
is substituted to

derive the explicit expression using analytical integrals.
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Because of a relation v3
c=v

3
Te � me=mi � 1, this function is

VðvÞ ffi v3=ðv3 þ v3
cÞ as assumed in the previous stud-

ies7,19,20,29 even for the low-Te situations vb � vTe. By using

the orthogonal expansion of the odd source term

½Sxkðs; r; kÞ � Sxkðs;�r; kÞ�=2, Eq. (38) for �f
0 ðoddÞ
f ðv; r; kÞ ¼

r
P

n fnðvÞKnðkÞ can be rewritten as

d

dv
fn vð Þ v2vTe

3
ffiffiffi
p
p

2
G xeð Þ þ v3

c

� �
V vð Þ
V vbð Þ

( )�jnZ2=3
2
4

3
5

¼ �
sS

Ð 1

0
rKn Sxk s; r; kð Þ � Sxk s;�r; kð Þ½ � @ 1� kB=BMð Þ1=2=@k

n o
dk

	 


2
Ð 1

0
K2

n @ 1� kB=BMð Þ1=2=@k
n o

dk

	 
 d v� vbð Þ;

and its solution is given by

fn vð Þ ¼
sS

Ð 1

0
rKn Sxk s; r; kð Þ � Sxk s;�r; kð Þ½ � @ 1� kB=BMð Þ1=2=@k

n o
dk

	 


2
Ð 1

0
K2

n @ 1� kB=BMð Þ1=2=@k
n o

dk

	 


� v2vTe

3
ffiffiffi
p
p

2
G xeð Þ þ v3

c

� ��1 V vð Þ
V vbð Þ

( )jnZ2=3

U vb � vð Þ: (55)

Although our purpose is not �f
0 ðoddÞ
f ðv; r; kÞ itself but

calculating integrals in the form of hB
Ð

nFðvÞffd3vi as stated

previously, it should be noted that this solution with 1 
 n <
1 includes the result in Ref. 19 as a limit of

hð1� B=BMÞ1=2i � 1 and vb=vTe � 1. Due to the use of Eq.

(32) instead of Eq. (31), these results do not include

exp ð�mfv2=2TiÞ at mfv2=2 � Ti. This energy space structure

is the definition of �f fðx; v; r; kÞ that is stated at the beginning

of Sec. III. The omission of the f-e collision in CPAS
f in Eq.

(32) is justified by the fact indicated by this resulting v-space

structure that CPAS
f is substantially effective only in a small

velocity range v � vc where ne ½UðxeÞ �GðxeÞ� =
P

b 6¼e;f nbZ2
b

½UðxbÞ � GðxbÞ�� 4ðvc=vTeÞ=ð3
ffiffiffi
p
p

ZeffÞ. Since we retained

the collisional momentum exchange rate of Eq. (C3) approx-

imately, this small underestimation of the PAS rate is com-

pensated by the use of CES
f for @�f

0 ðoddÞ
f =@v > 0 in v � vc,

especially when this solution is used for calculating the mo-

mentum transfer to target plasma species. The integrals are

obtained as follows by truncating the expansion of the source

term to include only 1 
 n 
 6:

B

ð
nF vð Þffd

3v

	 

¼ p
hB2i
BM

sS

ðvb

0

F vð Þv2

v2vTe 3
ffiffiffi
p
p

=2
� �

G xeð Þ þ v3
c

�
X6

n¼1

Ð 1

0
rKn Sxk rð Þ � Sxk �rð Þ½ � @ 1� kB=BMð Þ1=2=@k

n o
dk

	 
Ð 1

0
Kndk

Ð 1

0
K2

n @ 1� kB=BMð Þ1=2=@k
n o

dk

	 
 V vð Þ
V vbð Þ

( )jnZ2=3

2
6664

3
7775dv: (56)

In Section V, we apply this formula for mahB
Ð

vnCaf

ðfaM; ffÞd3vi ¼ �mfhB
Ð

vnCfaðff ; faMÞd3vi given by Eq. (C3)

in cases of tangential NB injections into non-axisymmetric

stellarator/heliotron configurations. It also should be noted

that the definition of VðvÞ in Eq. (53) gives

ðvb

0

1þ Z2v3
c

nþ 1
v2vTe

3
ffiffiffi
p
p

2
G xeð Þ þ v3

c

� 
�1
" #

� V vð Þ
V vbð Þ

( )Z2=3

vndv ¼ vnþ1
b

nþ 1
(57)

for arbitrary integers n 
 0 by integration by parts, which

will appear there for the hð1� B=BMÞ1=2i � 1 limit giving

j1 ¼ 1.

V. MOMENTUM INPUT CALCULATION FOR
TANGENTIAL NB INJECTIONS

The MCNBI (Ref. 3) results for the experiments

reported in Ref. 1 indicate that the initial pitch-angle of the

fast ions is hv2
?i=hv2

ki ’ 0:2 at radial positions of r=a � 0:5.

Since it means a localizing of Sxkðs; r; kÞ at k� 1 in typical

tangential NBI operations, we calculate the orthogonal
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expansion of the odd source term in Eq. (56) and the total

momentum input of NB injectors hB
Ð

vnSfd
3vi by using a

delta function approximation

Sxk s; r ¼ 1; kð Þ / 2h 1� kbB=BMð Þ1=2id k� kbð Þ

¼ B

BM

h 1� kbB=BMð Þ1=2i
1� kbB=BMð Þ1=2

d n� 1� kbB=BMð Þ1=2
h i

Sxk s; r ¼ �1; kð Þ ¼ 0 (58)

with a fixed value kb ¼ 0:17. (In other words, when the total

momentum and energy inputs mfhB
Ð

vnSfd
3vi=hBi and

ðmf=2Þh
Ð

v2Sfd
3vi by NB injectors at jv� vbj=vb � 1 are

given by these kinds of Monte Carlo codes for other experi-

mental conditions, we determine this substantial ionization

pitch-angle kb by the relation h
Ð

v2Sfd
3 vi=hB

Ð
vnSfd

3vi
¼ �2vbðBM=hB2iÞ@hð1� kbB=BMÞ1=2i=@kb.)

As the assumption regarding the magnetic configurations

for calculating Eq. (56), we need only Bðs; h; fÞ=B0 given in

the Boozer or the Hamada coordinates. The parameters

v0;w0;Bf, and Bh in Eq. (12) are not required, even though the

existence of Eq. (12) and its consequences, such as Eq. (13)

are implicitly included in the derivation. However, it should

be noted that Eq. (56) is applicable only for toroidal configu-

rations with finite rotational transforms v0=w0 6¼ 0. Here, we

use a stellarator/heliotron magnetic field model

B=B0 ¼ 1� etðsÞ cos hB

þ etðsÞf1� rDðsÞ cos hBg cos ðLhB � NfBÞ (59)

with 0:01 
 etðsÞ 
 0:2. The poloidal and toroidal period

numbers are chosen to be L¼ 1 and N¼ 4 corresponding to

the Heliotron-J device.1 It is known as “sigma-opti-

mization,”30 rDðsÞ ¼ 1 is a good drift optimization for the

ripple-trapped particles in j2 < 1. Inward shifted configura-

tions in the Large Helical Device (LHD)31 and high-c (high-

bumpy) configurations in the Heliotron-J (Ref. 32) are often

used by aiming this optimization. In these non-axisymmetric

devices, the integral
Ð 1

0
khð1� kB=BMÞ1=2i�1

dk in Eq. (50)

governing the trapping effect does not correspond to the geo-

metrical inverse aspect ratio r/R but to this kind of ripple

structure. It also should be noted that a modulation amplitude

ðBM � BminÞ=ðBM þ BminÞ ¼ 2et=ð1þ etrDÞ for Eq. (59) also

is not a good measure for the trapping effect in drift-

optimized stellarator/heliotron configurations. This modula-

tion amplitude ðBM � BminÞ=B0 is independent of the optimi-

zation parameter rD, and the normalized amplitude

ðBM � BminÞ=ðBM þ BminÞ is reduced by its positive values

rD > 0. However, the increase in rD results in an increase in

e in Eq. (50) and the eigenvalues jn as shown in following

numerical examples. We investigate the dependence on

et; rD for (1) reductions of the ratio of the momentum input

to the target plasmas due to the friction collision and the total

momentum input of the NB injectors

1þ
hBFkf1i

mfhB
Ð

vnSfd
3vi
� 1þ

B
Ð

vn
X
a 6¼f

Cfa ff ; faMð Þd3v

* +

hB
Ð

vnSfd
3vi

;

(60)

and (2) reductions of the momentum transfer to each target

plasma particle species in multi-ion-species plasmas

1� hB
Ð
vnCaf faM;ffð Þd3vi

hB
Ð
vnCaf faM;f

e¼0
f

� �
d3vi
¼1� hB

Ð
vnCfa ff ;faMð Þd3vi

hB
Ð
vnCfa f e¼0

f ;faM

� �
d3vi

:

(61)

Here, f e¼0
f is the fast ions’ velocity distribution for

hð1� B=BMÞ1=2i ¼ 0 given by KnðkÞ ¼ P2n�1ðð1� kÞ1=2Þ;
jn ¼ nð2n� 1Þ, and Sxkðs; r ¼ 1; kÞ ¼ d½n� ð1� kbÞ1=2�.
Before explaining the numerical results for Eq. (60), its

2Ti=mi � v2
b limit in Eq. (C3) giving GðxaÞ ffi ð2x2

aÞ
�1

for

a 6¼ e,f and consequently

�

X
a 6¼f

ma

	
B

ð
vnCaf faM; ffð Þd3v




mfhB
Ð

vnSfd
3vi

¼

	
B
Ð

vn
X
a 6¼f

Cfa ff ; faMð Þd3v




hB
Ð

vnSfd
3vi

ffi 1

2vb

	
B

BM 1� kbB=BMð Þ1=2


ðvb

0

v2vTe 3
ffiffiffi
p
p

=2
� �

G xeð Þ þ v3
c 1þ Z2ð Þ

v2vTe 3
ffiffiffi
p
p

=2
� �

G xeð Þ þ v3
c

�
X6

n¼1

KnðkbÞ
Ð 1

0
Kndk

h
Ð 1

0
K2

nf@ 1� kB=BMð Þ1=2=@kgdki
V vð Þ
V vbð Þ

( )jnZ2=3
2
4

3
5dv

should be considered. In the hð1� B=BMÞ1=2i � 1 limit giv-

ing
Ð 1

0
K1dk=

Ð 1

0
K2

1f@ð1� kB=BMÞ1=2=@kgdk ¼ �2, this ra-

tio is �1 because of Eq. (57). A physical meaning of the

deviation Eq. (60) is the parallel viscosity force of fast ions

themselves in hB � r � pfi ¼ hB � Ff1i þ mfhB �
Ð

vSfd
3vi as

the surface-averaging of Eq. (4).

The other required assumptions for investigating the

parallel momentum exchange by using Eq. (C3) are target

plasma parameters na; Ta, and the beam injection energy.

These are also chosen to be almost equivalent to those at the

radial position r=a ¼ 0:5 in the experimental conditions in

Ref. 1. It is reported that the charge exchange spectroscopic
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measurements were done for e� þ Dþ þ C6þ multi-ion-spe-

cies plasmas with ne ¼ 1:1� 1019m�3; Te ¼ 230eV;
Ti ¼ 110eV, and Zeff ¼ 1:9 (at r=a ¼ 0:5). A hydrogen

beam with injection energy of mfv2
b=2 ¼ 27keV sustained

these plasmas. For simplicity in this paper, here we neglect

low energy components of 13.5 keV and 9 keV that are pro-

duced in the positive ion source injector. The critical velocity

and the PAS parameters in Eq. (32) for this condition are

vc ¼ 680km=s and Z2 ¼ 3:69, respectively. The mean free

path of the PAS collision at this critical velocity determined

by the slowing down time sS ¼ 10:2ms is vcsS=Z2 ¼ 1:88km,

and it corresponds to the banana regime �a
D=v < 10�1m�1 of

the viscosity coefficient M� (parallel viscosity force against

parallel flows defined in Ref. 8) in the Heliotron-J configura-

tion.32 The procedure for �f
0ðoddÞ
f in Sec. IV is applicable for

these long mean free path conditions.

Figure 1 shows e obtained by Eq. (50) for the stellarator

model equation (59). The reduction of the total friction equa-

tion (60) and that of the momentum transfer equation (61) for

electron in these configurations are shown in Figs. 2 and 3,

respectively. In the typical injection conditions with vb > vc

and kb � 0:1, the high-energy region v > vc of �f fðx; v; r; kÞ is

localizing at k < 1 of r ¼ 1. It is determined mainly by the

slowing down collision CES
f , and is almost irrelative to

the fact that �f
0ðoddÞ
f in Eq. (33) vanishes in the trapped pitch-

angle range and the jn expressing the surface-averaged

PAS collision rate is increased by the B-field strength

modulation hð1� B=BMÞ1=2i 6¼ 0. Its integrals hB
Ð vb

vc
FðvÞ

ð
Ð 1

�1
nffdnÞv2dvi are insensitive to these configuration effects.

The total momentum loss of the fast ions (total momentum

input to the target plasma species) �hBFkf1i and the momen-

tum exchange between fast ions and electrons

�mfhB
Ð

vnCfeðff ; feMÞd3vi ¼ mehB
Ð

vnCefðfeM; ffÞd3vi are

determined by the full energy range 0 
 v 
 vb of �f
0ðoddÞ
f .

We can see in Figs. 2 and 3 that these friction moments are

insensitive to the B-field strength modulation. The total mo-

mentum loss is reduced only by a factor of 1�
ffiffi
e
p
=2. This

reduction is smaller than that of momentum exchange

between fast and thermal ions discussed below. The e-f, f-e

momentum exchange is more insensitive. In spite of the mod-

ulations of
ffiffi
e
p

< 0:7 in Fig. 1, the reduction of the momen-

tum exchange is only a few percent or 10%. This

characteristic of �f fðx; v; r; kÞ in k < 1 of v > vc is essentially

different from the reduction of the neoclassical parallel con-

ductivity in the banana regime that occurs for nearly isotropic

velocity distributions of thermal particles. This result on the e-

f, f-e momentum exchange by Eq. (C3) for an initial velocity

condition of vc < vb < ð3
ffiffiffi
p
p

=4Þ1=3vTe means that beam parti-

cle flux hBnfukfi � hB
Ð

vn�f fd
3vi, which was discussed in

Ref. 20 and references cited therein, also is insensitive to the

B-field strength modulation in cases with sufficiently large

injection velocities vb > vc and sources localizing at k < 1.

The beam driven parallel particle and heat fluxes of electrons

hBneubeam
ke i; hBqbeam

ke i will be easily estimated by a 13 M

approximation (Eq. (C4) in Ref. 8) neglecting the beam driven

FIG. 1. The B-field strength modulation amplitude e1=2 that is determined by

Eq. (50) for the model field equation (59).

FIG. 2. The reduction of the total friction equation (60) due to the finite B-

field strength modulation hð1� B=BMÞ1=2i 6¼ 0.

FIG. 3. The reduction of the momentum input equation (61) for electrons

due to hð1� B=BMÞ1=2i 6¼ 0.
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particle fluxes of thermal ions hBnaubeam
ka i � hBneubeam

ke i
(a 6¼ e; f), which are an order of33 ðme=maÞ1=2

, and using a

relation2
Ð

vnL
ð3=2Þ
1 x2

e

� �
Cef feM; ffð Þd3v ffi 3

2

Ð
vnCef feM; ffð Þd3v.

The configuration effect is more important for the mo-

mentum input to thermal ions. The momentum exchange

between the fast and thermal ions mahB
Ð

vnCafðfaM; ffÞd3vi
¼ �mfhB

Ð
vnCfaðff ; faMÞd3vi (a 6¼ e,f), which is required for

calculating the ion flows, is determined only by the fast ions

in a low-energy range of v�vc following Eqs. (B1) and (C3).

In this energy range, the velocity distribution �f fðx; v; r; kÞ is

broadened for the full pitch-angle range �1 
 n 
 1 due to

the PAS collision. In this energy range, hB
Ð vc

0
FðvÞ

ð
Ð 1

�1
nffdnÞv2dvi is reduced by a factor of about 1�ffiffi

e
p

for e � 0:2 as shown in Fig. 4. It is analogous to the

reduction of the banana regime neoclassical parallel conduc-

tivity. In the neoclassical calculation in Ref. 1, as shown in

its Figs. 4(c) and 4(d), the used momentum input was that

given by the FIT3D code3 without taking this configuration

effect into account. For approximating the momentum

exchange between the fast ions and the target plasma ions, a

phenomenological reducing factor 1�
ffiffi
e
p

was multiplied to

the fast ions friction moment hBFkf1i there. However, this

method in Ref. 1 is not a systematic method that is applica-

ble to general multi-ion-species plasmas in general toroidal

configurations. In particular, e ¼ ðBM � BminÞ=ðBM þ BminÞ
used there is not a good measure as the substantial modu-

lation amplitude for Eq. (39). For the drift-optimized stel-

larator/heliotron magnetic configurations that are modeled

by Eq. (59), the qualitative coincidence of Figs. 1 and 4

is obtained when using Eq. (50) as the substantial

amplitude.

VI. SUMMARY

As pointed out in many experimental12,13 and theoreti-

cal34 studies on NBI heated plasmas, situations of recent

experiments with the external anisotropic heating are differ-

ent from those assumed in the conventional MHD equilib-

rium theories16 and the concept of the flux-surface

coordinates11 based on them using the isotropic pressure. In

spite of this fact, previously established methodology for the

neoclassical transport is still applicable as long as the contra-

variant and the covariant expressions of the B-field in Eq.

(12) exist and their parameters v0;w0;Bf;Bh, and the field

strength Bðs; h; fÞ are appropriately given. This kind of

expression of J-vector fields and theorems based on the

expression, such as Eq. (15), are not used there.8,9 It is sug-

gested for practical purposes that isotropic pressure equili-

briums reproducing experimentally observed Shafranov

shifts, in which the usual scalar pressure moment
P

a pa is

replaced by
P

aðpka þ p?aÞ=2, would give the parameters

and the field strength in Eq. (12).13 Therefore, recent NBI

heating experiments in Heliotron-J1 were analyzed by using

thermal particles’ DKEs (a 6¼ f) with an extension to include

a collision term Cafðfa; ffÞ ffi CafðfaM; ffÞ, which gives friction

(momentum exchange) collision between the species a and

the fast ions’ slowing down velocity distribution function

ffðx; vÞ.2 Following a standard procedure in the moment

method shown in Refs. 8–10, this kinetic problem was con-

verted to simultaneous algebraic equations by taking

hB
Ð

vnL
ð3=2Þ
j ðx2

aÞd3vi integrals of the DKEs. Since the non-

diagonal coupling terms between the thermal species

CabðfaM; f
ðl¼1Þ
b Þ are fully included by the Braginskii’s matrix

elements hna=sabiNjk
ab �

Ð
vnL

ð3=2Þ
j ðx2

aÞCab½faM; ðmb=hTbiÞ
vnL

ð3=2Þ
k ðx2

bÞfbM�d3v, the relation
P

ahB � r � pai ¼ mf

hB
Ð

vkSfd
3vi due to the momentum conservation

P
a Fa1 ¼

0 is satisfied. However, it should be noted that the charge

conservation r � J ¼ 0 in this situation is retained due to a

break of the symmetry of the B-field strength8

c1@B=@hþ c2@B=@f 6¼ 0. These aspects of stellarator/helio-

tron plasmas with external momentum sources were investi-

gated in Sec. II and Appendix A. Only one inappropriate

shortcut in Ref. 1 was a phenomenological reducing factor

1�
ffiffi
e
p

for the fast ions’ friction hBFkf1i based on an analogy

of the banana regime neoclassical parallel conductivity.

The v-space structure of �f fðx; v; r; kÞ in situations of
FIG. 4. The reduction of the momentum input equation (61) for the ions due

to hð1� B=BMÞ1=2i 6¼ 0. (a) Dþ and (b) C6þ.
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hð1� B=BMÞ1=2i 6¼ 0 is not correctly taken into account

there. However, our purpose is not the fast ions’ velocity dis-

tribution itself but the parallel friction moments

hB
Ð

vnL
ð3=2Þ
j ðx2

aÞCafðfaM; ffÞd3vi required in studies on

physics of target plasma species. When handling the fast

ions’ velocity distribution function, this RMJ operator can be

calculated by a spherical coordinate expression method for

the general Rosenbluth potentials shown in Ref. 35, and then

integrations by parts for the energy space give theÐ
vnL

ð3=2Þ
j ðx2

aÞCafðfaM; ffÞd3v integrals in a common formÐ
nFðvÞffd

3v, such as Eq. (C3). After explaining the drift ki-

netic equation for this purpose in Sec. III, we applied an idea

of eigenfunctions in Ref. 7 for excluding the trapped fast

ions from the friction moments in Secs. IV and V. The de-

pendence of these types of integrals having the common

form hB
Ð

nFðvÞffd
3vi on the ripple amplitude and the drift

optimization parameter in Eq. (59), which reduce the fraction

of the circulating particles fc � 3
4
hB2iB�2

M

Ð 1

0
khð1� kB

=BMÞ1=2i�1
dk in Eq. (50), was investigated. It is found that

the momentum input to target ions is strongly affected by

this configuration effect. As a characteristic of Eqs. (B1) and

(C3), these sensitive friction moments are determined only

by the lower energy range v�vc of the fast ion distribution

that is strongly affected by the PAS collision. Analogous to

the banana regime neoclassical conductivity of thermal par-

ticles, this configuration effect is roughly expressed by a

reducing factor 1�
ffiffi
e
p

for e � 0:2 that is the typical ripple

amplitude in the experiments reported in Ref. 1. Although

this reducing factor was already included in the theoretical

calculation in Ref. 1 and the results well explained the exper-

imentally measured ion flow velocity, the method used there

was inappropriate in two viewpoints. One is the use of

e ¼ ðBM � BminÞ=ðBM þ BminÞ, which is not a good measure

for the B-field strength modulation determining the eigen-

function and the eigenvalues in general toroidal configura-

tions, including drift optimized stellarator/heliotron devices.

Another is multiplying the factor 1�
ffiffi
e
p

to the full compo-

nent of �hBFkf1i ¼
P

a6¼f mahB
Ð

vnCafðfaM; ffÞd3vi. Since

the momentum exchange between the electrons and the fast

ions �mfhB
Ð

vnCfeðff ; feMÞd3vi ¼ mehB
Ð

vnCefðfeM; ffÞd3vi
is insensitive to the configuration effects in typical tangential

NBI operations, the method in Ref. 1 was not appropriate for

calculating the beam driven electron flows corresponding to

the so-called shielding current in the Ohkawa current. This

insensitivity is also due to a characteristic of Eq. (C3) for the

fast ion velocity range 0 
 v 
 vb. In future studies on

plasma flows and/or current requiring flow calculations of all

particle species in more general non-symmetric toroidal con-

figurations, the eigenfunctions investigated in the present

work will be useful.

ACKNOWLEDGMENTS

The authors thank Professor F. Sano for the continuous

encouragement. Useful discussions with S. Murakami, K. Y.

Watanabe, H. Funaba, A. Matsuyama, and the NBI teams in

the LHD and the Heliotron-J experiment groups also are

acknowledged. This work is supported by

NIFS10KUHL038, NIFS14KUHL065, NIFS10KNXN202,

and NIFS13KNXN269.

APPENDIX A: RADIAL TRANSPORT FLUXES OF
GENERAL PARTICLE SPECIES

Also in this Appendix for radial particle and energy

transport fluxes hCa � rsi � hnaua � rsi; hQa � rsi of indi-

vidual particle species, the symmetric CGL form pa ¼
ðpka � p?aÞðbb� I=3Þ of the viscous tensor in Eq. (4) is

assumed. The inertia force is neglected since

manau2
?a;manau?auka � pa. In addition to them, ra �raI ¼

ðrka � r?aÞ bb� I=3ð Þ for ra � ma

2

Ð
v2vvfad3v; ra � Tr rað Þ=3;

r?a � ma

2

Ð
v2 v2

?
2

fad3v, and rka � ma

2

Ð
v2v2
kfad3v also is

assumed because of this small perpendicular Mach number.

The curvature force in a direction of rs�B is calculated by

an approximation of

rs� B � b � rbð Þ ¼ rs� B � r ln Bþ 4p
c

J � rs

ffi rs� B � r ln B *B � rs ¼ 0ð Þ

even when b � r
P

a
pka�p?a

B2 6¼ 0 and consequently J � rs 6¼ 0

as discussed in Sec. II. This is a part of the 8p
P

a p?a=B2

� 1 approximation in Eq. (6). Therefore,

rs� B � rpa ¼
B3

3
rs� B � r

p?a � pka
B3

;

b � r � pa ¼
2

3
B3=2b � r

pka � p?a

B3=2

(A1)

and

rs� B � r � ra � raIð Þ ¼ B3

3
rs� B � r

r?a � rka
B3

;

b � r � ra � raIð Þ ¼ 2

3
B3=2b � r

rka � r?a

B3=2
(A2)

are used. By using Eqs. (4), (A1), and (14),

hCa � rsi � hnau?a � rsi ¼ c

ea

rs� B

B2
� rpa

	 


� 1

3

c

ea
p?a � pkað Þ

rs� B

B2
� r ln B

	 


�c

	
na
rs� B

B2
� E


þ c

ea

Fa1 � B

B2
� rs

	 


is obtained. This first term can be rewritten by using Eq. (23)

and the parallel (b�) component of Eq. (4) as in the

following:

rs�B

B2
�rpa

	 

¼�h ~Ub �rpai

¼�
	

pka�p?að Þ
4

3

rs�B

B2
þ ~Ub

� �
�rlnB



�h ~UFka1i�eahna

~Ub �Ei:
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Here, h ~Ub � rðpka � p?aÞi was rewritten again by using Eq.

(23). The parallel momentum input term
Ð

vkSfd
3v is omitted

following the conclusions in Secs. II and III expressed in Eq.

(36). Substituting it into hCa � rsi results in

hCa � rsi ¼ hCbn
a � rsi þ hCPS

a � rsi þ hCcl
a � rsi

� c

	
na
rs� B

B2
þ ~Ub

� �
� E



(A3)

with

hCbn
a � rsi � � c

ea
pka � p?að Þ

rs� B

B2
þ ~Ub

� �
� rlnB

	 


hCPS
a � rsi � � c

ea
h ~UFka1i

Ccl
a �

c

ea

Fa1 � B

B2
:

The first term hCbn
a � rsi is the particle flux due to the neo-

classical viscosity pa investigated in Refs. 8–10, and the sec-

ond and third terms hCPS
a � rsi; Ccl

a are the Pfirsch-Schl€uter

and the classical particle fluxes, respectively. The electric

field in the fourth term should be separated into electrostatic

and inductive fields as

E ¼ �rU� 1

c

@A

@t
� �rUþ E Að Þ: (A4)

As already noted also on Eq. (30), EðAÞ � 0 in present stella-

rator/heliotron experiments, and the only purpose for retaining

it is to confirm the Onsager symmetry between the bootstrap

current and the Ware pinch.10 Therefore, a least function

naEðAÞ ¼ hnaihB � EðAÞiB=hB2i as the divergence-free vector

field is assumed, and it vanishes by rs� B � B ¼ 0

and h ~UBi ¼ 0 in Eq. (21). In the contribution of the electro-

static field (so-called electrostatic trapping effect6) hnaðrs�
B =B2 þ ~UbÞ � rUi ¼ �hUðrs� B=B2 þ ~UbÞ � rnai, only

poloidal and toroidal variations of the density dna �
na � hnai can remain following Eq. (24). Although the varia-

tion of the potential rs� B � rU; B � rU may need to be

taken into account in calculating an extreme collisional limit

of the Pfirsch-Schl€uter diffusions,36 we shall neglect it in the

present study.

Analogously, by using a
Ð

vv2d3v moment of the steady-

state Landau equation16

r � ra �
ea

ma
E � 5

2
paIþ pa þ manaO u2

a

� �� �
þQa � B

c

� �

¼ Ga þ
ma

2

ð
vkv

2Sa x; v; nð Þd3v (A5)

with Qa � ðma=2Þ
Ð

vv2fad3v; Ga � ðma=2Þ
Ð

vv2
P

b Cab

ðfa; fbÞd3v, and aforementioned tensor ra in a combination

with Eqs. (14), (23), (A2), the radial energy transport flux is

obtained as follows:

hQa � rsi ¼ hQbn
a � rsi þ hQPS

a � rsi þ hQcl
a � rsi

� 5

2
c pa

rs� B

B2
þ ~Ub

� �
� E

	 


� c

3
p?a � pkað Þ

rs� B

B2
� 2 ~Ub

� �
� E

	 

:

(A6)

Here, the first three terms are defined by

hQbn
a � rsi � �mac

ea
rka � r?að Þ

rs� B

B2
þ ~Ub

� �
� rlnB

	 


hQPS
a � rsi � �mac

ea
h ~UGkai

Qcl
a �

mac

ea

Ga � B

B2
:

These terms are the viscosity-driven neoclassical flux, the

Pfirsch-Schl€uter flux, and the classical flux, respectively. The

contribution of the fast ion source term
Ð

vkv2Sfd
3v vanishes

following Eq. (36). When the inductive field is 5
2

�
pa þ 2

3
pkað

�p?aÞgEðAÞk ¼ h52 pa þ 2
3
ðpka � p?aÞihB � EðAÞiB=hB2i and

E
ðAÞ
? ¼ 0 (a least function as the divergence-free vector field

for the confirmation of the Onsager symmetry), the electric

field driven terms are h paðrs� B= B2 þ ~U bÞ � Ei ¼ �hpa

ðrs� B=B2 þ ~UbÞ � rUi ¼ hUðrs� B=B2 þ ~UbÞ � rpai,
in which only dpa � pa � hpai can remain, and hðp?a � pkaÞ
ðrs� B=B2 � 2 ~UbÞ � Ei ¼ �hðp?a � pkaÞ ðrs� B=B2

�2 ~UbÞ � rUi. These effects of rs� B � rU; B � rU also

are neglected in recent our studies. For the thermalized par-

ticles, the radial heat flux can be defined by hqa � rsi �
hQa � rsi � 5

2
hTaihnaua � rsi and is expressed by using ha �

maðra � raIÞ=hTai � 5
2
pa for hqbn

a � rsi; Fka2 � maGka=hTai
� 5

2
Fka1 for hqPS

a � rsi, and F?a2 � maG?a=Ta � 5
2

F?a1

for hqcl
a � rsi. Although this hqa � rsi is often used for the

Onsager symmetric transport matrix,8–10 it cannot be consid-

ered for the fast ions since their velocity distribution does

not include the exponential factor exp ð�mav2=2TaÞ (does

not have the concept of the temperature), and therefore the

self-adjoint property of the collision as a basis of the

Onsager symmetry does not exist there.

As noted in Sec. II, it is important in the viewpoint of a

consistency of the B, J vector fields to investigate how the

ambipolar condition hJ � rsi ¼ 0 is satisfied. This issue is

irrelative to how we treat the electric field term

ðrs� B=B2 þ ~UbÞ � E. By summing Eq. (A3) for all parti-

cle species with using the charge neutrality
P

a eana ¼ 0 and

the momentum conservation
P

a Fa1 ¼ 0,

hJ � rsi �
X

a

eahCa � rsi

¼ �c
X

a

pka � p?að Þ
rs� B

B2
þ ~Ub

� �
� rlnB

* +
;

(A7)

which is equivalent to Eq. (16) as noted on Eq. (23), is

obtained. The disappeared flux component hCPS
a � rsi þ

hCcl
a � rsi � chnaðrs� B=B2 þ ~UbÞ � Ei in Eq. (A3) is
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called “intrinsically ambipolar” flux. There is an important

difference between symmetric configurations, where

c1@B=@hþ c2@B=@f ¼ 0 holds,8 and non-symmetric config-

urations, where c1@B=@hþ c2@B=@f 6¼ 0. Hereafter, Bf ¼
B
ðBoozerÞ
f and Bh ¼ B

ðBoozerÞ
h are used. In the symmetric config-

urations,
BfmþBhn

v0m�w0n ¼ �
c1Bhþc2Bf

c1w
0�c2v0

¼ const for all Fourier modes

ðm; nÞ in Fourier expansions by sinðmh� nfÞ; cosðmh� nfÞ
of arbitrary functions. Therefore, a relation between ðrs

�B=B2 þ ~UbÞ � rlnB and B � rlnB is

rs� B

B2
þ ~Ub

� �
� rlnB

¼ � 1ffiffiffiffiffiffi
gH
p hB2i Bf

@

@hH

� Bh
@

@fH

� �
lnB

¼ c1Bh þ c2Bf

c1w
0 � c2v0

1ffiffiffiffiffiffi
gH
p hB2i v0

@

@hH

þ w0
@

@fH

� �
lnB

¼ c1Bh þ c2Bf

c1w
0 � c2v0

B � rlnB

hB2i symmetric casesð Þ: (A8)

The radial current Eq. (A7) in this situation has the following

relation with the parallel viscous force:

X
a

pka � p?að Þ
rs� B

B2
þ ~Ub

� �
� rlnB

* +

¼ c1Bh þ c2Bf

c1w
0 � c2v0

1

hB2i
X

a

pka � p?að ÞB � rlnB

* +

¼ � c1Bh þ c2Bf

c1w
0 � c2v0

1

hB2i
X

a

hB � r � pai symmetric casesð Þ:

(A9)

In such symmetric configurations, the existence of the exter-

nal parallel momentum input in Eqs. (4) and (30) directly

means a following break of the charge neutrality:

hJ � rsi=c ¼ c1Bh þ c2Bf

c1w
0 � c2v0

1

hB2i
X

a

hB � r � pai

¼ c1Bh þ c2Bf

c1w
0 � c2v0

mf

hB2i B

ð
vkSfd

3v

	 

6¼ 0

ðsymmetric casesÞ: (A10)

This problem is caused by a limitation on phases of the local

parallel and radial currents Jk and J � rs that is noted in the

end of Sec. II. (This contradiction cannot be removed if Eq.

(37) is included in Eq. (35) for generating h ~U
Ð

vkSfd
3vi 6¼ 0,

since Eq. (37) is only the 1st order of qp=Lr as discussed in

Sec. III and thus its contribution is negligibly small in Eq.

(A10) determined by the 0th order of qp=Lr.)

However, in non-symmetric stellarator/heliotron config-

urations, this momentum input is not a serious contradiction

to the charge neutrality. In their typical B-field strength

B=B0 ¼ 1þ eTðs; hÞ þ eHðs; hÞ cos ½Lh� Nfþ cðs; hÞ� with

jv0Lj � jw0Nj; jBfj 	 jBhNj, the suppression of the radial

current Eq. (A7) is suppressing mainly axisymmetric Fourier

modes sinðmhÞ in
P

aðpka � p?aÞ. The pressure perturbation

of /
Ð l ~Udl, for which we concluded in Secs. II and III that it

should vanish in Eq. (17), also has a nearly axisymmetric

structure since the modes n 6¼ 0 are strongly suppressed in

ðl
~Udl ¼ V0

4p2

X
mn

Bfmþ Bhn

v0m� w0n
� �2

eðBoozerÞ
mn sin mhB � nfBð Þ

¼ V0

4p2

X
mn

Bfmþ Bhn

v0m� w0n
� �2

eðHamadaÞ
mn sin mhH � nfHð Þ

due to relations of jv0j � jw0Nj; jBfj 	 jBhNj. On the other

hand, the surface-averaged parallel force
P

ahB � r � pai
B=hB2i is formed by the non-axisymmetric modes sinðmh�
nfÞwith n 6¼ 0 in the anisotropy. Even when only this paral-

lel force component as a divergence free vector remains in

the MHD equilibrium, a consistency of the B, J vector fields

in Sec. II is retained in a ripple-period averaging.

APPENDIX B: THE LOWEST LEGENDRE ORDER OF
FAST ION VELOCITY DISTRIBUTION

We discussed in Secs. III–V that the usual Legendre

polynomial expansion for the pitch-angle space19 is not a

reasonable expression when the finite b � rB is included.

However, this finite modulation effect is not important in

determining hf ðl¼0Þ
f i as the surface-averaged lowest Legendre

order ðl ¼ 0Þ component f
ðl¼0Þ
f � 1

2

Ð 1

�1
ffdn. Since vkb � r in

Sec. III satisfies h
Ð 1

�1
ðvkb � rfaÞdni ¼ 0 for arbitrary velocity

distribution functions even when b � rB 6¼ 0,

X
b 6¼f

Cfb hf l¼0ð Þ
f i; fbM

� �
¼ � 1

2

ð1

�1

Sf x; v; r; kð Þdn

	 


is obtained by taking h
Ð 1

�1
dni integral of Eq. (30). The radial

gradient @
@s h
Ð 1

�1
1þ n2
� �

�f fdni in Eq. (37) also vanishes by

Eq. (14). From the viewpoint of the Landau equation’sÐ
v2d3v moment without the drift approximation, this is a

neglect of the left hand side (LHS) of

@

@V
hQf � rVi þ efhnfuf � rVi @U

@V

¼ mf

2

ð
v2
X
b 6¼f

Cfb hf l¼0ð Þ
f i; fbM

� �
d3vþ mf

2

ð
v2Sfd

3v

	 

;

given by the Gauss’ theorem. This LHS being Oððqp=LrÞ2Þ
also is given by formulas in Appendix A. This determination

of hf ðl¼0Þ
f i by a balance of its collision and the surface-

averaged l ¼ 0 source only is identical to that in cases of

b � rB ¼ 0.19 Since the dependence of eigenvalues jn on fi-

nite b � rB 6¼ 0 discussed in Sec. IV is caused by the CPAS
f

operator in solving Eq. (34) or corresponding equation (38),

the lowest Legendre order l ¼ 0 resulting CPAS
f hf ðl¼0Þ

f i ¼ 0 is

irrelative to the B-field strength modulation handled in these

equations. When this steady-state solution hf ðl¼0Þ
f i /

½v2vTeð3
ffiffiffi
p
p

=2ÞGðxeÞ þ v3
c �
�1Uðvb � vÞ is substituted in the

standard RMJ operator Eq. (31),
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X
b6¼f

Cfb hf l¼0ð Þ
f i; fbM

� �

ffi hf l¼0ð Þ
f i8

ffiffiffi
p
p e2

f

mf

X
b6¼e;f

nbe2
blnKfb

Tb

mb

2Tb

� �1=2

exp �x2
b

� �

is obtained at the thermal velocity range mfv2 � Ti, and it

satisfies
Ð

mfv2�Ti

P
b 6¼f Cfbðhf ðl¼0Þ

f i; fbMÞd3v ¼ h
Ð

Sfd
3vi. It

corresponds to a particle sink term required for the steady-

state solution that is mentioned in Sec. III.

Integrals h
Ð

vnffd
3vi with n 
 �2 and/or Rosenbluth

potentials2 @nHðhf ðl¼0Þ
f iÞ=@vn; @nGðhf ðl¼0Þ

f iÞ=@vn for this

hf ðl¼0Þ
f i can be calculated by Eq. (54) and following indefi-

nite integrals or connection formulas of their v2=v2
c � 1 and

v2=v2
c 	 1 asymptotic limit values:

ðv

0

dv

v3 þ v3
c

ffi 1

v2
c

vc

v

� �5=2

þ 3
ffiffiffi
3
p

2p

� �5=2
( )�2=5

; (B1)

ðv

0

vdv

v3 þ v3
c

ffi 1

2vc

v2
c

v2
þ 3

ffiffiffi
3
p

4p

� ��1

; (B2)

ðv

0

v2dv

v3 þ v3
c

¼ 1

3
ln 1þ v3

v3
c

 !
; (B3)

ðv

0

v3dv

v3 þ v3
c

ffi v
4v3

c

v3

� �2=3

þ 1

( )�3=2

; (B4)

ðv

0

v4dv

v3 þ v3
c

ffi v2

2

5v3
c

2v3

� �3=4

þ 1

( )�4=3

; (B5)

ðv

0

v5dv

v3 þ v3
c

¼ v3

3
� v3

c

3
ln 1þ v3

v3
c

 !
; (B6)

ðv

0

vndv

v3 þ v3
c

ffi vn�2

n� 2

nþ 1

n� 2

v3
c

v3
þ 1

� ��1

for n 
 6: (B7)

Except
Ð v

0
v2dv

v3þv3
c
, numerical calculations of a slow velocity

range v2=v2
c � 1 of mathematically exact integral formulas

often cause numerical errors violating an obvious fact

0 <
Ð v

0
vndv

v3þv3
c
<

vnþ1=v3
c

nþ1
. To avoid these errors, they should be

replaced by connection formulas as listed here.

Since the second term in Eq. (54) is not important as

long as v2
b < ð3

ffiffiffi
p
p

=4Þ2=3
2Te=me, here we regard Eqs.

(B1)–(B5) as basic characteristics of
Ð v

0
vnhf ðl¼0Þ

f idv. While

we included fast ions’ pressures p?f ; pkf in the MHD equilib-

rium in Sec. II motivated by experimental results suggesting

their effects,12,13 we simultaneously assumed in Sec. III that

the density nf is negligible in other summations, such asP
a eana and

P
b Cfbðff ; fbÞ. This assumption is partly based

on a characteristic of h
Ð

vnffd
3vi integrals, in which fast ions

in a high-energy range v > vc do not effectively contribute to

them when their n values are small (n 
 0). The Rosenbluth

potentials given by these indefinite integrals will be useful

for checking whether Cafðfa1; hf ðl¼0Þ
f iÞ is negligibly smaller

than
P

b 6¼f Cabðfa1; fbMÞ in thermal particles’ kinetic

equations a 6¼ f. Although formulas in Secs. III–V allow a

possibility of v2
b � ð3

ffiffiffi
p
p

=4Þ2=3
2Te=me, the averaged fast ion

energy given by Eqs. (B3) and (B5) is hpfi=hnfi=mf �
Te=me in many practical cases. As long as 3hpfi=hnfi=mf <
ð2=cÞTe=me [ln c ¼ 0:57722: Euler’s constant], the Coulomb

logarithm ln Kfe ¼ ln Kef is that for usual electron-ion tem-

perature relaxation where jv� v0j2 ¼ ð2=cÞhTei=me is used

in the logarithm (Eq. (6.4) in Ref. 37). For collisions between

thermal and fast ions, jv� v0j2 ¼ min½3hpfi=hnfi=mf ; v2
c � is

used in the logarithm ln Kfa ¼ ln Kaf ða 6¼ eÞ. This maximum

value limit is due to the fact that the high energy range v >
vc does not contribute to Eqs. (C2) and (C3) of the f-i, i-f

collisions because of Eqs. (B1) and (B2). It is also a reason

for this ln Kfa ¼ ln Kaf that hf ðl¼0Þ
f i and �f

0 ðoddÞ
f in v > vc

are insensitive to v3
c and Z2. This characteristic of Eqs. (B1)

and (C3) explains also why the momentum input to target

ions is sensitive to the finite hð1� B=BMÞ1=2i 6¼ 0, while the

input to electrons is insensitive, as shown in Sec. V.

APPENDIX C: INTEGRAL FORMULAS FOR THE TEST
PARTICLE PORTION

Firstly, a partial integral formula for the energy scatter-

ing term in Eq. (31) is shown. An integration by parts givesð1
0

vn @

@v
G xbð Þv

mav

Tb
þ @

@v

� �
fa

� 

dv

¼ vnG xbð Þ
mav2

Tb
� nþ v

@

@v

� �
fa

� �1
0

þn

ð1
0

vn U xbð Þ � G xbð Þ
v3

þ n� 1ð ÞG xbð Þ
v3

�

� 1þ ma

mb

� �
mb

Tb

G xbð Þ
v

)
fav

2dv: (C1)

When a low energy limit of faðv; n;/Þ has a form in which

the v! 0 limit of Legendre order l is ! vlPm
l ðnÞ; faðv! 0Þ

in this first term vanishes for energy space weighting of

n 
 �l. For example, when n ¼ �1 is chosen for calculating

the lowest Legendre order l ¼ 0,

G xbð Þ
v

mav2

Tb
þ 1þ v

@

@v

� �
f l¼0ð Þ
a

� �1
0

¼ 2

3
ffiffiffi
p
p

vTb
f l¼0ð Þ
a v ¼ 0ð Þ

remains. This kind of energy space weighting should be

avoided since velocity distribution functions handled in neo-

classical theories are approximated functions in which only

a limited number of
Ð

vlPlðnÞLðlþ1=2Þ
j ðx2

aÞCabðfa; fbÞd3v andÐ
vlPlðnÞLðlþ1=2Þ

j ðx2
aÞfad3v integrals are valid. Accuracies of

local values in the energy space are not guaranteed.

Therefore, Eq. (C1) should be used with the energy space

weighting of n 
 �l (Only the second term is used.).

General
Ð

vnPlðnÞCabðfa; fbMÞd3v integrals are obtained by

using Eq. (C1) and a relation LPlðnÞ ¼ �lðlþ 1ÞPlðnÞ=2.

For example, together with the partial integral procedure for

the field particle portion CabðfaM; fbÞ shown in Ref. 2,

energy/momentum exchange formulas are obtained as

follows:
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ma

ð
v2Cab faM; fbð Þd3v ¼ �mb

ð
v2Cba fb; faMð Þd3v

¼ 32p2
na eaebð Þ2lnKab

ma

ma

2Ta

� �1=2 ð1
0

xaG xað Þ �
ma

mb

1ffiffiffi
p
p exp �x2

a

� �� 
 ð1

�1

�f bdn

 !
v2dv; (C2)

ma

ð
vnCab faM; fbð Þd3v ¼ �mb

ð
vnCba fb; faMð Þd3v

¼ 8p2
na eaebð Þ2lnKab

Ta
1þ ma

mb

� �ð1
0

G xað Þ
ð1

�1

n�f bdn

 !
v2dv: (C3)

Here, �f b � 1
2p

Ð p
�p fbd/ is the gyro-phase-averaged velocity

distribution function. More general ma

Ð
vnL

ð3=2Þ
j ðx2

aÞ
CabðfaM; fbÞd3v integral formulas for the Legendre order l ¼ 1

are listed in Ref. 2.

Next, approximation methods in Eq. (32) for the f-e, f-i

collisions are compared with the standard RMJ results Eqs.

(C2) and (C3). The approximations give

mf

ð
v2Cfe ff ; feMð Þd3v

¼ �16p2
ne eefð Þ2lnKfe

Te

ð1
0

G xeð Þ
ð1

�1

�f fdn

 !
v3dv;

mf

ð
vnCfe ff ; feMð Þd3v

¼ �8p2
ne eefð Þ2lnKfe

Te

ð1
0

G xeð Þ
ð1

�1

n�f fdn

 !
v2dv

for f-e collision, and

mf

ð
v2Cfa ff ; faMð Þd3v

¼ �16p2
na eaefð Þ2lnKfa

ma

ð1
0

ð1

�1

�f fdn

 !
vdv;

mf

ð
vnCfa ff ; faMð Þd3v

¼ �8p2
na eaefð Þ2lnKfa

ma
1þ ma

mf

� �ð1
0

ð1

�1

n�f fdn

 !
dv;

corresponding to GðxÞ ffi ð2x2Þ�1
, for f-i collisions (a 6¼ e,f).

It should be noted that these approximations of Cfaðff ; faMÞ
(a 6¼ f) in Eq. (32) are only methods to obtain the steady-

state solution by Eq. (30) with the external source term Sf , as

discussed in Sec. III. Since the actual momentum/energy

transfer is governed by the standard RMJ formulas (the

ff at mfv2=2 � Te; Ti has only a function as a particle source

to the thermalized ion species with ma ¼ mf ; ea ¼ ef), it

should be calculated by substituting the obtained steady-state

solution into Eqs. (C2) and (C3).
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