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Parallel momentum input by tangential neutral beam injections

in stellarator and heliotron plasmas

S. Nishimura,"® Y. Nakamura,? and K. Nishioka?®
"National Institute for Fusion Science, Toki 509-5292, Japan

2Graduate School of Energy Science, Kyoto University, Uji 611-0011, Japan
(Received 20 January 2015; accepted 3 August 2015; published online 9 September 2015)

The configuration dependence of parallel momentum inputs to target plasma particle species by
tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model
magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of
the full Rosenbluth-MacDonald-Judd collision operator in thermal particles’ kinetic equations,
numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute
to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on
magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive
to the modulation. In future plasma flow studies requiring flow calculations of all particle species
in more general non-symmetric toroidal configurations, the eigenfunction method investigated here
will be useful. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929789]

I. INTRODUCTION

Recently, impurity flow velocities of NBI (neutral beam
injection) heated plasmas in Heliotron-J were successfully
explained by the neoclassical transport theory."> That study
applied a recently developed moment equation approach for
general non-symmetric toroidal plasmas, including the exter-
nal momentum input.” In the moment method, problems,
including the field particle portion Cgp(fom,fp) of the linear-
ized collision operator with the local Maxwellian distribution
fuam, are converted to generalized parallel force balance
expressed in an algebraic form. The recent study handled the
external parallel momentum 1nput b 1nclud1ng the parallel
friction collision moments vaL ) Cat(fam, ff)d v of
each target plasma species (denoted by the subscript “a”)
with the fast ions (“f”) in this simultaneous algebraic equa-
tion. Here, L]@ (K) = (XKK*/j")d/ (e KKI**) JdK' is the
Laguerre (Sonine) polynomial corresponding to the algebraic
expression of the energy space structure and x> = muv?/
(2(T,)). The fast ion birth profile was obtained by using the
HFREYA and MCNBI, which are parts of a widely used
NBI analysis code FIT3D.? Although the prompt orbit effect
in non-symmetric toroidal configurations just after the beam
ionization is taken into account in this method, a simple ana-
lytical formula of the fast ions’ slowing down velocity distri-
bution f(x,v) for uniform magnetic field strength
B - VB = 0 is used for these collision integrals. It means that
the fast ion trapping effect, which will be important for lower
energy regions of f;(x, v) broadened to full pitch angle range,
is neglected. Therefore, a more systematic method for the
friction collision moments in general non-symmetric toroidal
configurations is required for more quantitative understand-
ings of physical processes determining plasma flows.

5D-simulation methods*> also may be thought to be
applicable for investigating this kind of fast ion drift orbit
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effect in the slowing down process especially in cases of per-
pendicular injection of the beams.” In this type of injection,
generating the fast ions in the trapped pitch-angle range,
methods for handling the complicated bounce-center motion
of the trapped ions will be required. However, for the tangen-
tial NBI used in the studies to investigate its parallel flow
driving effect,' the beam ionization occurs at the circulating
pitch-angle range. The fast ion trapping discussed here is
that when these circulating fast ions enter into toroidally
trapped pitch-angle range as a result of the pitch-angle-scat-
tering (PAS) collision in the slowing down process, they do
not contribute to the parallel friction moments. This reduc-
tion of the friction between the fast ions and target plasma
species is analogous to the neoclassical parallel viscosity of
the thermalized particles, as discussed below. This type of
trapped fast ions should be excluded in these integrals. For
the studies of physics of target plasma species, this exclusion
is an important requirement and the behaviors of deeply
trapped fast ions are not the purpose. It corresponds also to a
basic idea of the moment method® that the field particle por-
tion Cyp(fam,f5) is an integral operator,” in which the higher
Legendre orders in f,(x,v) expressing its detailed pitch-
angle space structure are reduced. A more important require-
ment for the studies of multi-ion-species target plasmas is to
know momentum and energy transfer ratios to each target
plasma species and energy space structure of Cug(fim, ff ))
as the specific Legendre order /=1 in the collision with the
fast ion, which are governed by the slowing down and the
pitch-angle-scattering collision of the circulating fast ions. In
addition to the computational cost for handling the deeply
trapped fast ions, there is another problem. If the drift
approximation, including the perpendicular guiding center
motion, is applied to the unbalanced tangential injections,
the parallel force moment of the fast ions’ drift kinetic equa-
tion (DKE) cannot reproduce the force moment of the
Landau equation (Vlasov-Fokker-Planck equation) without
the gyro-phase-averaging. Therefore, here we shall apply the

© 2015 AIP Publishing LLC
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eigenfunction method, which is originally proposed for the
a-particle diffusion in axisymmetric tokamaks,’ for plasma
flow studies based on the parallel force balance, including
the neoclassical parallel viscosity of both of the fast ions and
target plasma species in non-symmetric stellarator/heliotron
configurations.

The rest of this work is organized as follows. In Sec. II,
the concept of flux-surface coordinates systems for NBI
heated plasmas is explained. In neoclassical theories for stel-
larator/heliotron plasmas,®™'® various integral theorems had
been used for handling the 2-D real space of poloidal and to-
roidal angles in the coordinates systems,11 such as Boozer
and Hamada coordinates. However, it has been clarified in
many experimental studies on the Shafranov shifts of the
NBI heated plasmaslz’13 including resultant changes of the
B-field strength modulation on the surfaces'*'> that a modi-
fication of the Pfirsch-Schliiter current due to the large radial
gradient of the fast ions’ parallel pressure dp¢/0s is not neg-
ligible. The validity of the previously used theorems in these
situations is explained in this section. The charge conserva-
tion V -J =0 in plasmas with the anisotropic pressure is
another important issue. The relation of these problems with
the recent analyses is discussed there. The drift kinetic equa-
tion for the fast ions is introduced in Sec. III. Since our pres-
ent study is focused on the friction collision integrals for the
target plasma species, specific approximations are used
there. The application of the eigenfunction method to non-
symmetric stellarator/heliotron configurations is explained in
Secs. IV and V with numerical examples. A summary is
given in Sec. VI. Since these issues are related to (1) radial
transport of general particle species, (2) analytical expres-
sions of the fast ion velocity distribution and its energy inte-
grals, and (3) jd3v integral formulas of the test particle
portion of the linearized collision operator Cu(f,frm), they
are described in Appendix. Formulas shown there hold also
for fast ions in NBI-heated or burning plasmas, and for the
anisotropic pressure equilibriums.

Il. FLUX-SURFACE COORDINATES SYSTEM FOR NBI
HEATED PLASMAS

When including the unbalanced tangential NBI in the
MHD equilibrium and transport calculation based on the
equilibrium, the following definition of perpendicular and
parallel pressures is useful:

2014 = my J v, — ULa|2f;ld3V =my, Jvif}ld% - namauia,
(D

Pla = My J vifud’v. 2)

Here, m,, n, = ffadSV, and n,u, = ijadSV are the mass,
density, and particle flux of the species number a, respec-
tively. Notations F| =b(b-F)=bF; and F, =F - F|
[b = B/B: the unit vector tangential to the magnetic field]
for the parallel and perpendicular components of arbitrary
vectors F(x) are used hereafter. The viscosity tensor also is
defined by
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T, = m, J{(V —u)(Vv—u,) —|v— uLa|ZI/3}fad3V, 3)

with the unit tensor I, and it is assumed that this tensor has
the symmetric CGL (Chew-Goldberger-Low) form
Tty = (P|la — PLa)(bb —1/3). Then parallel and perpendicu-
lar components of the force balance

V- (paI + Tta) +m,V - {na(uaua — llHall”a)}
u, x B
&

— eung <E + ) =F, +m, JVHS,,(X, v, & )d’v  (4)

as the jvd3v integral of the Landau equation using
d(nqu,)/0t =0 and p, = (2p1a +pja)/3 can be written
more explicitly by following formulas for the CGL tensor:'®

2
b-V ‘T :gb V(p”a _pJ_a)_ (pHa _pj_a)b -VInB

2 3/2 Plla = Pla
1 Plla —Pla
b-V-(pJ+m,) ——§b~ (V(pla +P1a) Byl e 7 ),

®)

1
(V-m), = gVL(Pla —Pla) — (PLa —Plla)b - Vb
~ B? Pla = Pla
3V

1 Pla — Pla
{V : (paI + na)}J_ = E(VL(pLa +p||a)+BZVLLT2|>-
(6)

Here, V, =V —b(b- V), the steady-state Ampere’s law
¢V x B =4nJ for J =" esnau, and a low-perpendicular-
beta approximation 8 >"_ p,,/B*> < 1 for the B-field curva-
ture b-Vb =V, InB+%J x B/B* =V, InB are used in
(V- m,),. The inertia force can be rewritten as V - {n,(u,u,
—uj )} = ng(ug - Vu, —uy, - Vuy,) +uy,V - (n,u1,) by
using the particle conservation V- (n,u,)=0. It is
neglected here since manauia, MaNaU gl < Pa for general
particle species. An assumption of manauﬁa < pa» Which
does not hold for the fast ions a = f in unbalanced tangential
NBI operations, is not required in this approximation.

The local parallel force balance and the local perpendicu-
lar current in the MHD equilibrium equation, which are given
by summation of the force balance equation of all particle spe-
cies with using the charge neutrality > e,n, = 0 and the mo-
mentum conservation . F, =0 of the friction integral
Fo =my [vY, Cap(farfr)d*v of the Coulomb collision op-
erator, are

b- (v S (Pla+pra) + BV Z‘%) =0,

and

N C 2 Pla = DPla
JL__ﬁ<vza:(pla+p|a)+sza: B2 )XBv

®)
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respectively. The parallel momentum input fV|‘Sud3V due to
the source term S,(x, v, £) [£ = v)/v: cosine of pitch-angle in
the spherical velocity coordinates], which exists only in the
fast ions’ kinetic equation @ = f in unbalanced tangential NBI
operations giving surface-averaged force > (B-V-m,)
= m¢(B [vSed’v), is neglected in this local parallel force
balance since it is a 1st order of (vbrs)_l, as explained in
Sec. III. We shall consider only the Oth order in constructing
the flux-surface coordinates. When

Pla —Pla
b-V (pla+pi)=0=b-VY 2 ()

can be assumed, ) (p|s + PLa) = const contour surfaces sat-
isfy also J- V> (P« +PLa) = 0. These kinds of surfaces
are usually called flux-surface,'’ and we shall use s as an arbi-
trary label for them. As in Refs. 8-10, this s can be arbitrary
surface-quantities in the following discussion, such as y, V,
and the minor radius r. However, it also should be noted that
Eq. (9) is not generally guaranteed, and thus effects of the
deviationb -V > ’J”B%m # 0 also should be investigated af-
ter the explanation of the “ideal” condition B-Vs
=J-Vs=0. In this ideal condition, J-V )  (pja +PLa)
=0=1J-V> ,(Pja — PLa)/B* and the formula

V- -(HVF xB)=VF xB-VH —-H(VF)-V xB

:VFXB~VH—H4—7TJ~VF (10)
c

for arbitrary scalar functions F(x), H(x), which is valid
when ¢V x B = 4nJ holds, give

c (0 1
V'JH :—V'JL:§<a2(pla+p|g)>VSXB-Vﬁ

(1)

for the parallel current J I Therefore, a basic characteristic of
the current in cases with the anisotropic heating can be
understood as a sum of that in isotropic pressure equilibrium
with the pressure ) (p14 + pjq)/2 and the second term in
Eq. (8) as a divergence free perpendicular component.

The straight field line (SFL) coordinates'" (s, 0,() [0, {:
the poloidal and toroidal angles, respectively] giving the
contravariant and covariant expressions

B =y/'Vs x VO + ¥V x Vs =B;Vs+ByV0+ BV,
(12)

and the Jacobian /g =[(Vsx V0)- (V)] = (¥/B; +
%'Bg)/B* can be constructed when only this V-B =V -]
=B.-Vs=J -Vs=0 is satisfied. Here volume integrals
x(s) = ﬁfv( -VO)d*x and y(s) = 4n2 J,(B- V() )d®x for
the volume V enclosed by the surface s = const correspond
to poloidal and toroidal magnetic fluxes, respectively, and
"=d/ds indicates radial gradients of them. A relation
between the volume and the Jacobian is V' = ¢ § ,/gd0d(.
For the flux-surface-average operation (-) = ¢ §-,/gd0d(/
$ § \/gd0d{, there are two important theorems for the parallel
and perpendicular gradients B-VF, VsxB-VF of
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arbitrary scalar quantity F(x). First, V=(1/y2)
(¥'0/00 +'0/d() of this contravariant expression of B
satisfies

(HB - VF) = —(FB - VH) (13)
for arbitrary F(x) and H(x). A frequently appearing formula
of the surface-averaged parallel force (B-V - (p,JI+m,))
=B -V -m,) = —((pla —P1a)B-VInB) for Eq. (5), in
which the scalar pressure moment p,, is eliminated, it is an
important example of consequences of Eq. (13). Next, when
the covariant expression B =B,Vs+ ByV0+ B/ V{ is
determined to satisfy ¢V x B = 4xJ, (6, () can be chosen in
a manner in which B; = const, B(; = const, and conse-
quently /g = (V/B: + )(/Bg) /B* = (B?)/B? on the surfa-
ces. This selection is called Boozer coordinates, and its

VsxB-V — 7(1/\/(g_3)(B£vBoozer)8/89B N BéBOOZSr)a/8CB)
indicates that
(HVs xB-VF) = —(FVs xB-VH).  (14)

For Eq. (11), the set of Egs. (13) and (14) gives —(V - J,) =
(V-Jy)=(B-V({J/B)) =0 as the solubility condition of
the charge conservation V - J = 0. This set of theorems does
not require the complete isotropic pressure ), pja = D, P1as
and thus we can use it for cases with the external anisotropic
heating.

In the “ideal” situations, (6, () can be chosen in another
manner in which not only the B-vector but also the J-vectors
are straight lines. Although this selection is known as Hamada
coordinates for the isotropic pressure equilibriums, here we
call it straight current line (SCL) coordinates. (“Hamada”
used below for coordinates giving the Jacobian /gy = 4n2,
which are constants on the surfaces.) The contravariant

J = \/gscL (U5 Vs x Vlscr +
T8 Visc x Vs) in this selection satisfies \/gsci/sc =
const and \/MJgCL = const on the surfaces, and thus we
know by J - V = J{ 8/00scr + J5o 0/ Oscr that

expression of  current

(HY - VF) = —(FJ - VH). (15)

However, actual situations are not “ideal” for guaranteeing
Eq. (15) as noted on Eq. (9). When reading Eq. (7) with an
approximation of B> ~ (B?), the equation indicates a charac-
teristic of the B-field lines that they are constrained to follow
the ), PJ« = const contour surfaces. When these surfaces are
closed ones surrounding the magnetic axis, it is reasonable to
assume s = const surfaces satisfying V-B =0=B - Vs. In
contrast to these B-field lines, J, vectors determined by Eq.
(8) are not constrained to the surfaces when Eq. (9) is not sat-
isfied. Even when the J | vectors deviate from the B-surfaces
(J - Vs # 0) due to the violation of Eq. (9), these vectors are
connected by the differential operation ¢V x B = 4n].
Therefore, Eqs. (13) and (14) as basic characteristics of
Eq. (12) are not easily broken. A violation of Eq. (15) is
more easily caused since the contravariant expression of J
does not exist when J - Vs # 0. Although most of the prob-
lems in heating and transport analyses require only Eqgs. (13)
and (14) and do not require Eq. (15), we shall consider how
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the charge conservation V-J=0 in the volume V is
retained and how the theorem (J - VF) = 0 is modified in
cases with the parallel force component
b-V za(plla _pLa)/Bz # 0.

By using Eqgs. (8) and (14), the surface-averaged radial
current is given by

Sf Vin B> (16)

(J-Vs) = C<Z(PLa +Plla) v

a

Because of the Gauss’ theorem'' fg(VF)dV:fOV(VFQ
dV=(F_-VV)=(F-VV) (.(V-F))=(B-V(F)/B))=0 due
to Eq. (13)) for arbitrary vector field F(x), the so-called ambi-
polar condition (J-Vs)=0 at all radial positions is (V-J)
=0 as the solubility condition of V-J=0. In configurations
with the stellarator symmetry B(s,—0,—()=B(s,0,{), for
example, Y (pL1a+p|,) also should basically be a symmetric
phase function F(s,—0,—{)=F(s,0,{) for retaining the local
charge conservation. Although there are no contradictions in
this determination of the geometrical shapes of the B-surfaces
by Eq. (7) and the charge conservation with Eq. (16) when the
external parallel force is f VHSdeVZO, it should be considered
that there is one constraint on the real space structure of this
force term when its finite values are added. The allowed force
that we noted previously as “Ist order of (vpts) ' is a
divergence-free vector [vSed’v = (B [vS;d*v)B/(B?).
Deviations from this form that can be written as parallel gra-
dients of scalar quantities will be problematic in the simultane-
ous retaining of the geometrical shape and the charge
conservation. When we define the scalar Ps(s,6,() by

B
b-VPs =m, J U\|Sfd3V — My <B Jqud3V> (B2)’ {Ps) =0,
(17)

the local parallel force balance Eq. (7) is modified to be

pa p a
< VZ (PllaPLa) + VZ L _VPS> =0.

Even in this case, we shall assume that the structure of the
B-field has the stellarator symmetry B(s,—0,—{)
= B(s,0,{) as in Eq. (16). Therefore, instead of the afore-
mentioned ), pj, = const contour surfaces, ), pj, — Ps
= const contour surfaces should be adjusted to this geometri-
cal shape of the B-field. However, this adding of b - VPg can
alter only b-V3 (pjs+pLs) without changing b-
V> (P — P1a)/B? since the anisotropy should be deter-
mined to satisfy the aforementioned surface-averaged force
balance — (3", (Pja — P.La)B - VInB) = m¢(B [ v|S;d’v) and
cannot be balanced with b - VPg. Therefore, when the exter-
nal parallel force term has forms giving anti-symmetric
phase functions Pg(s, —6,—() = —Ps(s,0,{) # 0, there is a
serious contradiction that the geometrical shape of the B-
field requires the anti-symmetric phase component in
> o(P|la + PLa), while the charge conservation with Eq. (16)
forbids that component in the pressure. For retaining geomet-
rical shapes of the B-surfaces following Eq. (7) and the
charge conservation V-J =0 with Eq. (16) in those
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configurations simultaneously, it is concluded that Eq. (17)
should vanish, and, in particular, the anti-symmetric phase
component Ps(s,—0,—() = —Ps(s,0,{) #0 is forbidden
when the B-field has the stellarator symmetry B(s, —6, —{)
= B(s,0,0).

Next, we shall show some practically usable formulas
for cases, including the parallel force component b -
V> .(Pla — P1a)/B* # 0 and resulting local radial current
J - Vs # 0. The parallel force balance for

Z(pHa + pLa)

a

ZpHu —Pla _ Z<pa Pla > Z 5]7\\(4 pJ_a
B2

a a

= Z(])Ha +pia)+ Z O(Plla + PLa)

18

(VZ& (Pla+D1a) +BZV25M> —0

p a p a
D 0(platpia) = —B Y 5 (18)

Substituting it into the current formula, Eq. (8), gives
¢
J. = _ﬁv;@la +p”a> x B
c Pla = Pla Pla = Da
- Ev@<T> " zza_> < B,

19)

This current results in

0 1
V’JH =-VJ, :g (aZ(]ﬂa +p|a>>VS x B - Vﬁ
(20)

by a low-beta approximation f=8n)_, p,/B* < 1 for
neglecting J - V in Eq. (10). This is also due to a relation
between radial gradient scale lengths |Z1n ", (p1a + pa)l
> |%1n(B~?)| in the approximation

V- <V Za:(pla + Pjla) X B/Bz>
- (%Eajm+p|a>>w BV
(§9< 1 >>st B-Y Y (P +pie)

for retaining the solubility condition (V - J,) = 0. As long
as the ambipolar condition (J-Vs) =0 is satisfied, the
divergence V -J = —V -], is insensitive to the parallel
force perturbation. We shall define a function U by®

B.v%:mxvs)-vi

7 BU)=0 (@D
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for handling this type of parallel flow divergences. Explicit expressions of this function for the B-field with the stellarator sym-
metry B(s, —0, —() = B(s, 0, () are given in following Fourier series forms with the symmetric phase:

(Boozer) (Boozer)
~ B B: m+B n
G By BB ot~y
(B?) (mn)(0,0) Km=yn
(Boozer) (Boozer)
1 B: m+ B N Hamade
=3 o™ cos(mb — ny),
manFo0) KM
1 21 21 Bz
65:3noozer) = ﬁj dog J dCB <<Bz> — l)cos(mHB — HCB),
0 0
(Hamada) _— 1 o o BZ
s = 2 [ o | "t (1= s oot — ) )

As noted previously, the Boozer coordinates (s, 0g, () and
the Hamada coordinates (s, 0y, (;) are defined here as sys-
tems that have \/gg = 155 (B%)/B* and /gy = %, respec-
tively. A relation between these coordinates is shown in
Refs. 8 and 17. Equation (21) combined with Eqgs. (13) and
(14) implies

(B ) (e

v
B

_ <FB v > = —(Ub-VF). (23)

By using it and (Ub-V 3, (p|s +P1a)) = —(UB*b-V Y,
(P« — PLa)/B?). Eq. (16) can be rewritten as another expres-

sion that agrees with > e, (n,u, - Vs) given in Appendix A.
In addition to this,

VsxB -
( 7 + Ub> -V
1 (Boozer) 1o} (Boozer) 0 )
=——— | B, ——B Y
V8u(B?) ( ; I Ol

given by a procedure in Refs. 8 and 17 indicates also that

VsxB - VsxB -
<F( B +Ub)-VH>:—<H(T+Ub>-VF>

(24)

for arbitrary F(x) and H(x). Equation (24) corresponds to
(HJ - VF) = —(FJ - VH) in isotropic pressure equilibriums
with the pressure of ) (p14 + p|a)/2. The Gauss’ theorem
gives another important formula

(V- (HVF x B)) :%(HVF x B-VV)

o
=~ (HVV x B VF)

= % (FVV x B - VH). 25)

In addition to Eqgs. (13) and (14), Egs.(23)—(25) also had
played important roles in the moment equation approach
(Refs. 8—10 and references cited therein).

Then, by assuming this form of the parallel current

(J-B)B

c ~ 0
J| :Wiil]a;@“’ +Pa)s (26)

we shall derive (J-VF) for arbitrary scalar F(x) except
surface-quantities, such as s,y,\, and V. (When F is a
surface-quantity, (J-VF) should be calculated by (J-
Vs)OF /0s with Eq. (16) or the formula in Appendix A with-
out the |e,,| < 1 approximation in Egs. (18) and (19) for J |
and without following § < 1 approximation in Eq. (10). The
result will vanish by the ambipolar constraint.) By using
(VF xB-VH) = (V- (HVF x B)) as a § < | approxima-
tion, neglecting J - V in Eq. (10) for Eq. (25),

0
(VF x B-VH) = — = (HVV x B.- VF)

)
=S/ (FYV xB-VH) (< 1) @27)

for arbitrary scalars F(x) and H(x) is given. By combining
Eqs. (13), (14), (19), (23), (27),

0 Pla = Dlla

- —ca%<za:1%vv <B- VF> 28)
is obtained. In configurations with the stellarator symmetry,
the ambipolar condition with Eq. (16) does not have any lim-
itations on Y, (pLra — pa)/B* — 2o {(Pra — Pa)/B?) with
the symmetric phase F(s,—0,—() = F(s,0,{), which is
caused by various mechanisms, such as the collisionless
detrapping v regime ripple diffusions of light low-Z spe-
cies,'® the resonant viscosity of heavy impurity ions,'® and a
characteristic of fast ions velocity distribution discussed in
Sec. III. When J - Vs # 0 by these reasons, Eq. (28) is a
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main deviation from the usual SCL coordinates system giv-
ing Eq. (15).

One conclusion of this section on a consistency of the
B,J vector fields is that when the B-field has the stellarator
symmetry B(s, —0,—{) = B(s, 0,{), the local parallel and
radial currents J and J- Vs should be functions with a
symmetric phase F(s,—0,—{) = F(s,0,{) and an anti-
symmetric phase F(s,—0,—() = —F(s,0,{), respectively.
Although it is a rigorous constraint for the symmetric config-
urations where ¢0B/00 4 ¢,0B/9{ =0 holds,® non-
axisymmetric Fourier components of sin(mf — n{) in
> o(Pla +Pia) and Y, (pja — pLa) can actually exist in non-
symmetric stellarator/heliotron configurations. This is an
essential difference between these configurations and is
clarified especially when investigating the ambipolar condi-
tion (J - Vs) = 0 in cases with the external momentum input

BJ‘UHStd v) # 0 as analyzed in Appendix A. For this rea-
son, the NBI heated stellarator/heliotron plasmas' could be
analyzed by the pure neoclassical procedure®'® without any
phenomenological momentum dissipation terms, such as that
in Sec. 8 in Ref. 6.

lll. DRIFT KINETIC EQUATION FOR UNBALANCED
TANGENTIAL NBI

Hereafter, a set of ¢ = v /|vj| = =1 and 2 = uBm/w =
(Bm/B)v? /v* with the maximum magnetic field strength By
on each flux-surfaces is used mainly as the pitch-angle space
parameter, rather than ¢ = v /v = a(1 — /“LB/BM)I/2 in Eq.
(4) and some references, such as Refs. 8 and 19. A range 0 <
A <1 corresponds to the circulating pitch-angle in the full
range 0 < A < By/B. Various pitch-angle integrals for
moment equations in the moment method should be
obtained by [ d& = — >, [*E{o(1 — iB/Bw)"? )92} d.
Fast ions’ gyro-phase-averaged velocity distribution
f1(x,v,0,2) discussed here is defined as a part of velocity dis-
tribution of a specific ion species, such as proton and deute-
rium in NBI heated plasmas and helium in burning plasmas.
This part does not include the exponential factor
exp (—m,v?/2T,) with the temperature T, = p,/n, as shown
in following discussions, and is categorized to be one particle
species a = f. The remaining component, including the expo-
nential factor, corresponds to the thermalized ions that are
categorized to be another particle species a # e,f [e:electron].
It should be handled by usual neoclassical procedures, in
which the self-adjoint property of the Coulomb collision is
fully  utilized,*'® and energy scattering/exchange

collision effects for the lower Legendre orders /=0, 1 are
1 (+172)

included in Braginskii’s matrix elements® [v'P;(¢)L i
L(l+1/2)

() Car (PUOLL T (2o )y, [VPIEL

(x2)Cab (farn, V'P1(E)L (r+1/2) (x2)fsm)d*v. The fast ions’ pres-
sure 3ps = mfj 2ffd vV — nfmfuif and particle flux nuy =
fvffd3v as a component of J in the MHD equilibrium are not
negligible as observed in experiments and as discussed in Sec.
II. For thermalized particle species a # f, [vECqt(fu,fr)dv

and [ v?Cot(fy, fr)d’v are important input of parallel momen-
tum and energy, respectively. Since these integrals are non-
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negligible only due to the fast ions’ large initial velocity of
mva /2> T, Ti (T, =3, vefPal YaserNa) and the heavy
mass my > m,, the density moment ny = f ffd3v can be
assumed to be

Z2ng < e, ZegiMe. (29)

Hereafter, following previous works related to fast
jons,”'??° charge number Z, = e, /e also is used to express
various collision parameters and Z.¢ = Za Lot Zﬁna /ne. One
reason of Eq. (29) is given in Appendix B.

In this section, we shall consider a determination proce-
dure of this f;(x, v, 0, 1) by the drift approximation. Firstly,
we should note that the fast ions DKE for the parallel mo-
mentum input in the unbalanced tangential NBI opera-
tions'?° should exclude the perpendicular guiding center
drift velocity var = (c/er)(msv}/B + )b x VInB. The equa-
tion for the steady-states is given by

yb - Vf; = Zcfh(f_fvfb) + Si(x, 0,0, 4). (30)
b

Here, b - V is a differential keeping constant (v, 0, 1), i.e.,
opb - V = 0¢b - Vi o)cons — 5 (1 = &) (b VInB)9/0¢. By
excluding the perpendicular drift term v4¢ - V from Eq. (30),
the fv§d3v moment of this equation agrees with the parallel
component of Eq. (4) with ¢ = f and with neglecting
mgngud ¢, mengupupe < pg in that VB™2 x B - Vuy; of the
parallel velocity moments of the f;(x,v,0,4) does not
appear there. Here, this fv§d3v integral will be obtained by
using the formula

UHb : V{P[(f)F(X, U)}

! F
_ (l+1)/2 .
= UT[ T 1P1_1(5)B b v<3(1+1)/2)
I+1 1 "
+02]+1P,+1(5)mb-V(FB )

that is applicable for pitch-angle integrals LllPl(C)(va-
Vf,)dé with general Legendre polynomials P;(&). The per-

pendicular drift term will be important when calculating
ff = [fr(x,0,0,2) +fr(x,0,

ponent of v in f Fe(x,0,0,4), since g - Vf, E-even) corresponds
to (1) generation of the Pfirsch-Schliter current in Eq. (26),
(2) the bounce-center motion of trapped particles® especially
in the ripple-trapped pitch-angle range 0 < k> < 1 of x?> =
{w—uBo(1 +er —en)}/(2uBoen) in stellarator/heliotron
magnetic fields B/By = 1 + er(s, 0) + eu(s, 0) cos[LO — N{
+7(s, 0)], where By is the volume averaged field strength,
and (3) radial particle and energy transport.” However,
IU 6 L (3/2) 2
target plasma species® and/or (Bnguyr) =
parallel (J-B) are
= [fi(x,v,0,2) = fi(x,v,~0, 2)]/2. This £
handled by Eq. (30) excluding vy - VF\°*

even) —a,A)]/2 as the even com-

() Cat (fam, f f)d v required for studying physws of
(B [v&fd?v) in
of ffodd
should be

since this drift

current®’ contributions
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term generates a deviation from Eq. (4) especially in
the unbalanced NB injections, which is a main purpose of the
present work. It also should be noted that E - 9f;/0v in the
Landau equation as well as the resultant E x B motion is not
taken into account in Eq. (30) since

(1) Because of the low density equation (29), this exclusion
(corresponding to egngE = 0 in Eq. (4)) is not a serious
inconsistency from the view of the MHD equilibrium.

(2) At present, stellarator/heliotron experiments are con-
ducted without inductive electric fields E®) = —¢~19A
/Ot = 0. Only one purpose for retaining (B - E(A)> in stel-
larator/heliotron theories is to confirm the Onsagar sym-
metric relation between bootstrap currents and Ware
pinches in the full neoclassical transport matrix.'” The
electric field is substantially that due to the ambipolar
electrostatic potential E = —V®. Since this ambipolar
potential is order of |[V®| ~ |(Vp,)/(eana)| (@ # f), it is
negligible for the drift motions of fast ions with
mfvﬁ /2 > T.,T;, while it is non-negligible for thermal-
ized particles with m,v* /2 ~ Te, T;.

Secondly, the collision operator ), Cy(f;,f;) in Eq.
(30) is simplified in contrast with that in thermalized par-
ticles’ kinetic equations.**'° The Coulomb collision opera-
tor for the colliding particle species pair a-b is basically
used in the linearized form Cu(fy,fs) = Cap(fur,fom) +
Cab(fam, fo1) for fu = fam +fa1. When we linearize the ki-
netic equations for these thermal particles velocity distribu-
tions, f,m is the Maxwellian velocity distribution defined by
the surface-averaged density and pressure moments that van-
ish in b-Vf, Vsxb-Vf,, and without the velocity
moment fvfaMd3V = 0, while f,; is the poloidally and toroi-
dally varying deviation from f,»v (.e., b-Vf,; #0 or
Vs x b-Vf, #0). In theories for thermal particles,>* '
this Cup(fam, fp1) is retained to include field particles’ flows.
In other words, Cup(fu,fp) = Cap(fu,fom(v —up)), where
Jfom(V —u,) is the shifted Maxwellian velocity distribution
of the thermal particle species b. These flow velocities of
thermal particle species are often comparable [uja] ~ [up|
., and therefore f fj Ef1déE of all spe-
cies are regarded to be comparable there because of the
Galilean invariant property of the Coulomb collision. In Eq.
(30) for fast ions, however, these flow velocities of
target thermal particles being |uy| ~ |up| ~ |uc| ~ ... <
vy (a,b,c,.. #f) can be neglected and thus C(f;,fs) =
Cep(ft,fom) for b # £ (test particle portion only). Because of
an extreme difference between the velocity moments in the
tangential NBI, we do not need to retain the Galilean invari-
ant property so rigorously in this Cg,(ft,f5). In this approxi-
mation, for retaining the conservation of momentum and
energy, collisions of thermalized particles (a) with the fast
ions (f) should be calculated by Cu(fy,fr) =2 Cut(fum,fr)
(field particle portion only).2 When Eq. (29) is satisfied,
Cut(far,fr) is negligibly smaller than Zh# Cap(fa1,fom)-
Furthermore, in Eq. (30), because of this low density of the
fast ions themselves and the momentum/energy conservation
of like-particle collisions [VC,(fu,f2)dv =0 = [1’Cyy
(fu,f.)d?v, the non-linear collision term C(f;,f;) can be

|LtHC‘ ~ ..
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omitted. An explicit expression of the exact test particle por-
tion in the spherical velocity coordinates is given by?!

Cap(farfom) = 47mb< oy > In Agp [%G(Xh) Lfa
w5 { o ("Z"*i)faﬂ

1 <8 _ 52 1 o )

2 1- 204

_Bufyu 0 mé 1 &
B( vl v o T 2agr) Gl

In Eq. (30) determining the gyro-phase-averaged distribu-
tion, the gyro-angle differential 82/8(;52 is not used. The
error and the Chandrasekhar functions are defined by

2 " 2 & (-1)"
1) = Vdy = — 2n+1
S ﬁjoe Y n;(Zn—&- 1)n!
and
_0() —x0(x) 2 & (=1 2n+1
G(x) = 22 nnz:; (271 + 3)1’1' )

respectively, and x, = /my0v?/(2T},). Connection formulas
of their x < 1 and x > 1 asymptotic limits

(e}
<¥ + 2x2) :

also will be useful. The Coulomb logarithm InA,, = InA,, for
the colliding species pair a-b is a constant being independent
of (6,{,v), on each flux-surfaces. Not only the omission of
d?/0¢?, a straightforward use of Eq. (31) for > o
Ce(fr,fom) in Eq. (30) is inadequate and thus other minor
modifications are required because of the following reason.
The straightforward use in this equation with the source term
will result in a time evolution of a velocity distribution compo-
nent, including exp (—mv?/2T;) at mev* ~ 2T; following the
H-theorem. A strongly peaking structure at mev> ~ T; shown
in Fig. 2 in Ref. 5 is an example. Note that this structure indi-
cates only a qualitative characteristic of the velocity distribu-
tion since it corresponds to Maxwellian of protons for which a
prior existence in the source and collision terms is assumed. It
also should be noted that this energy region m;v*> ~ T; in Ref.
5 could not contribute to the substantial heating power™ due to
a well-known relation Cp,(fom, fom) o (T, /Ty — 1). When we
choose a method preventing this formation of the exponential
structure, the approximation should be optimized for mgv? >
2T; and simultaneously the particle conservation [,
Ce(ft, f;,M)d3V = 0 should be artificially broken at mv?> ~ 2T;
to make the collision operator sink low energy particles.
Although our present approximation method for this purpose is
basically identical to that in previous tokamak studies related

&
=
|
Q
=
I

Q
Na)
IR
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to fast ions,”'**° we shall summarize the approximation here.
Although the collisions with electrons Cg (ft,fem) and those
with thermal ions Crp(fr,fom) (b # e,f) use different approxi-
mations, a common modification to optimize them for mev? >
2T; is (meo/Ty + 0/0v)fy = mevf;/Ty. The energy transfer
rates of the standard RMJ (Rosenbluth-MacDonald-Judd) oper-
ator are retained within accuracies neglecting 3T, /my < v}
for f-e collisions and 27T;/m; < vﬁ for f-i collisions.
(Comparisons of the momentum/energy transfer rates with
those of the standard RMJ operator are shown in Appendix C.)
In Cg(ft,fem), the pitch- and gyro-angle scattering function
Lf should be simultaneously omitted for retaining the f-e, e-f
momentum transfer rate of the standard RMJ within an
accuracy neglecting only m. << my. This approximation
corresponds to a neglect of the second term in the Cartesian

coordinates  expression  Cre(fr,fom) = 15" >, 0/0v,{v, +
|
> Conlfinfy) =Y Conlfiofom)
b bAL

£\ btef
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(Te/mg)0/Ov,)fe for a velocity range v < (3y/7/4)"?
\/2T./m, to optimize it for m¢v* > 2T,. The Lf; operator in
Cr(fr,fem) 1is only a minor component of that in
> ” Crp(fr,fom) With Zgr > 1 in general v-space regions,
especially in v < (3//4)\/2T./m.. In the collision with
thermal ions Cry(f;, fom) (b # e.f), the standard form Eq. (31)
is used in its Ti/mf— 0 limit and consequently
G(xp)v(mev/ Ty, + 0/00)fy = (mg/my)fs. This replacement in
the energy scattering term is not only for the optimization for
mev? > 2T, but also the artificial break of the particle conser-
vation ij;,(ff,th)d3 v = 0 for obtaining the steady-state so-
lution of Eq. (30). In this use in the T;/m; — O limit, the
momentum transfer rate of the standard RM]J is retained within
an accuracy neglecting 27, /n; < v%. Now it is concluded for
Eq. (30) that

= CPf + CFfr

PAS 642? 2 -3 Z “g
Cf ff = 47‘57 (Z <nb>Zb In /\fb> Eff __3£ﬁ

C]fisff =

€4Zf2 ) 0 I’lh Z lnAfb
4 7r v % <}’le>ll'l Afe e ; mp, ff

1 ,0 3/n

A

Here, the following parameters and/or variables are used:
Z (na>Z3 In Ag,
3Vr _ 4me*Z2 (ne)InAg | -
vre = \/2(Te)/Me,  Xe = U/ VUre, = , I =— ’ ,
! Te)/ /vr 4z MmUY, mg Z (na)Z21n Agy/my,
a#e,f
= 3T . me (na)Z21n Ay, .
¢ 4 7 (ne)ln A oot My

A possibility of x> ~ 3y/7/4 in CES at low-T, regions is allowed in following calculations. The approximation of CFAS is justi-

fied later also by the resulting v-space structure of f;(x, v, &, ). Since this velocity distribution in NBI-heated or burning plas-
mas is generated as a response to the source term being the delta function in the energy space S¢(x,v, 0, 1) o< 8(v — vp) /02, it
includes the unit step function in the energy space’'*?° U (vp — v). Actually, it is not a rigorous step function but is a continu-

ous function having an exponential decay structure

1 forv < vy
Uc(vp —v) =

exp[—Cp(v — vy) /vy forv > vy

me > (na)Z2 10 Aga/mq + me (0}/(Te)) (ne)In AreG vy /v1e)

a#f.e

CDE

a#fe

that satisfies (9/0v){>_,(ns)e exInAgp G (xp ) v(mev/(Tp) +

d/0v)f;} =0 for the full part of the energy scattering
term in Eq. (31) at an energy space region of
0 < (v—uvp)/vp ~ Te/(msv}), Ti/(mv}) < 1. In spite of
this, the solution in v < v, should be obtained by using

(T3)/v2) Z (n)Z>1n Aga/my + (ne)In AgG(vy/ v7e )

Eq. (32) when investigating the steady-states. Both substi-
tuting U(vy, — v) into CES and substituting U (v, — v) into
the full energy scattering operator result in the same delta
function at the initial velocity that is balanced with the
source by
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2 0 miv 0
CPSU(vy —v) = 4 2z 2InAg,G 2 Uy —
(vp — V) n(mf> v % ;<nh>eb nAgG(xp)v T, + Eh (b — V)
1 3/n v o(vy, — v
= —{vﬁvTeiG(—b) + vé}% at|v — vp| /vy < 1.
Ts UTe v

Since this high-energy tail region 0 < (v—uvp)/vp < 1
does not have any essential roles in practically important in-
tegral formulas, such as ij(l/Z) (2)Cat (fum, fr) &V, fVL}3/2>
(2)Cut(fum,fr)d>v  of the field particle portion,”
[v*Ce (fi, fom) ddv . v Co(f, fim)d*v of the test particle
portion (Appendix C), and/or nyus = fvffd3v of the velocity
distribution,”® we assume f; oc U(vy, — v) at |v — vp|/vp < 1
for the Oth order of p, /L, [pp: typical poloidal gyro-radius,
L,: typical radial gradient scale length] in discussions below.

Thirdly, there is a constraint on the real space structure
Sx.(x,0,2) in the source term S¢(x,v,0,1) = Sx;i(X,0,1)
0(v — vp) /v%. The constraint is due to fast ions initial parallel
drift motions just after the beam ionization (or the nuclear
reaction generating the a-particles) which conserve the mag-
netic moment u = m¢v? /2B. The resultant real space struc-
ture should be Sy, (x,0,1) = Sx;(s,0,4) especially in the
circulating pitch-angle range 0 < 4 < 1, and consequently
IUHU”Sfd3V o B(0,{) on each flux-surfaces for arbitrary inte-
ger n ~ 1. We already discussed in Sec. II this characteristic
of the source term from the viewpoint of the B,J vector fields
determination in the MHD equilibrium. Here, we explain it
in another viewpoint of the fast ions drift motion and their
collision equation (32). The solution method for Eq. (30)
explains this reason. A typical collision time tg in Eq. (32)
corresponds to the longest time scale in various Braginskii’s
collision times, which express the time scale of collisions
between thermalized particles. Because of this collision
time scale and the fast initial velocity mfv% /2> T,,T,
the method is an asymptotic expansion that uses the inverse
mean free path v/v as the expansion parameter.”*°
This method is analogous to the banana regime expansion
for thermalized particles’ energy regions of v/v
< (6B/B)*? /L., where 1/L. ~ b - VInB is the characteris-
tic length along the B-field line.> > In Eq. (30), the Oth
order of v/v should satisfy b - fo =0 and thus ff (odd)
existsonlyin0 < A< 1,i.e.,

odd = [f_(f)(x v,0,) — f(f)(x7 v,—a,2)]/2
= (%, 0,0, 2) — Fo(x, 0, —0, D]U(1 — 2)/2
:f(f) (o0 (S, U’O-J*) (33)
and f f (0dd) ( 1) = 0. As mentioned in the introduction,

this is the fast ion trapping effect, in which the trapped pitch-
angle range cannot contribute to integrals in a form of

(B [ EF(v)fid*v), such as (B [viL; B () Cor (furmto fr) V).
Then the 1st order of v/v is governed by va~fo

= (CPAS + CES)f} + S¢(x,v,0,2). The solubility condition
of this 1st order equationin0 < A < landv < vy is

<Bvﬁl (CPAS 4 CES)fY > = (34)
because of Eq. (13). This condition determines the v-space
structure of f; in 0 < A <1 as investigated in Section IV.
Note that this (-) also is a surface-average keeping constant
(v,0,4).

For Egs. (4) and (30) handling the Jf,/0t = 0 steady-
states, the source term S¢(x,v,0,1) = Sxi(x,0,4)0(v —
up)/v* in them does not correspond to the number of beam
ionization event at each real space position x (so-called birth
of fast ions), but is defined for a short (but finite) time scale
of 2nR /v, < t < 15 just after the ionization by taking into
account the initial drift motions in this time scale. Therefore,
the balance of the DKE terms at the initial energy is given
by

Se(x,v,0,7) = —CESFY at v — v /vy < 1. (35)
In the recent study' applying the FIT3D code,? for example,
results of a Monte Carlo code MCNBI in it, which calculate
the initial drift orbit trace in 27R /vy, < t <K 7g after the beam
ionization handled by HFREYA, are used as the source. The
PAS operator in Eq. (32) satisfying f (CPASF)dE = 0 does
not have any essential roles in this partlcle/energy balance at
the energy region of |v — vp|/vp < 1. Since (as long as afore-
mentloned var - VI £ as the Ist order of p, /L, is excluded)
ff in k2 > 1 is a function of (s, v, s, 1) only, the source term
in Eq. (35) should be Sy,(x,0,4) = Sx,(s,0,4) except the
deeply trapped pitch-angle range x> < 1 that we do not need
to consider for the tangential NBI operations. This (x,v) space
structure of Sy; (s, 0, 4) includes also an implicit assumption
bV e—constft =0 in Ref. 19 as the b- VB — 0 limit.
Following this conclusion that the generation of f'; FO) should
be calculated by using Sx;(x,0,4) = Sx,(s,0,4) at least in
0 < 2 < 1, the adjoint equation in Ref. 20 for allowing arbi-
trary function forms of Sy, (x, g, 1) is not used in this present
study. Instead of that, we directly solve Eq. (30) for 0 < A <
1 in Section I'V.

The [',-dé= -3, [™/* {0(1 — iB/Bw)"/02}d2
integral of Eq. (35) with Eq. (33) indicates that
Jvju"Sed®v = (B [vv"Sed’v)B/(B*) on each flux-surface in
Eq. (4) and a fvvzd‘ v moment of the Landau equation (AS5).
By Eq. (21), this constraint leads also to

<(7Jv|v”Sfd3V> =0.

even

(36)

Even when the vg¢ - V/f; as the st order of p, /L, gener-
ating poloidal and toroidal variations of f;’ ¢ corresponding
to the Pfirsch-Schliiter current in Eq. (26) is included as in
Ref. 7, this Ist order variation cannot affect Eq. (35), and
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consequently Eq. (36). When the Oth order of p, /L, inf feve"
is obtained by the above procedure, f;, as the 1st order of
pp/L, will be determined by (yjb-V —CP* —CP¥)fy
= —vg - Vf feven) Although details of this equation and its
solution will depend on configurations and the injection con-
ditions S¢(s,v,0,4), for a consistency with Eq. (26), the
1 . . .
Ll d¢ integral of this equation in v < v, would commonly

be
1 -
B. V<j éfﬂdé/3>
-1
_cmgo a /(" N =
*;TV x B - VBZB<J (1+é )ffd§>’
giving

I I B
|| nae <BL 3 fl“@@

emp 0 /(! N =
= ef4Uas<Jl(1 +¢ )ffdé> 37)

by Eq. (21). Here, the energy scattering collision Lll
(CESfe)d¢ is neglected by vyts > L., and LII(C?ASJF“)
dé = 0 vanishes for general gyro-phase-averaged velocity
distributions. Equation (37) as the Ist order of p, /L, is the
contribution of fast ions in Eq. (26), on which it is reported
in various experiments that this poloidal variation of £, ;11:”
has a non-negligible effect in determining the Shafranov
shift. In spite of the fact that this 1st order also may be f; o
U(v, — v) at [v — vp|/vy < 1 when the Oth order component
is f Eeven) oc U(vp, — v) there, fg, cannot be included in Eq.
(35) because of a constraint in Sec. II that Eq. (17) should
vanish. This kind of perpendicular gradient effects b x
Vf; of the fast ions at |v — vp|/vp < 1 in NBI heated
and/or burning plasmas cannot be investigated only by the

drift approximation for describing the gyro-phase-averaged
velocity distribution functions. When the perpendicular gra-

CVCH

M1(

dient exists, o5V

the gyro-phase-dependent part ff

(b x VFf. Eeven ) exists and it is a cause of vq4¢ - Vf fe ) in the
gyro-phase-averaged equation. The collision against this
component C]fisf ¢ (i.e., the collision against the gyro-motion)
also diverges as the delta function at |v— vp|/vp < 1
(Generations of the classical diffusions I'{' and Q§' defined
in Appendix A have a peaking contribution at this initial ve-
locity in the v-space.), and thus the concept of the collision-
less perpendicular guiding center drift velocity vy for
erc'B/m; > 1/15 is violated there. We investigated the
constraint on Eq. (35) in the viewpoint of the consistency of
the B.J vector fields for this reason. When the poloidally and
toroidally varying parallel flow Eq. (37) as the Ist order of
Pp /L, is included in Eq. (35) as a definition of the fast ion
source, it corresponds to Ps(s,—0,—() = —Ps(s,0,{) #0
that is forbidden in Sec. II. Therefore, f; at [v — vp|/vp < 1
cannot be o< U(vy, — v) nor o< Uc(vp, — v), but is a function
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with a continuous derivative df;,/Ov that is determined by
Eq. (31). These approximated expressions for f'f and/or f—.§11:1)
that are caused by b x Vf| E # 0 can be used only for the
aforementioned integrals [ vL; B/2) (¢ DCot (fam, fr)d v, [ vo"
> bt Con (e, fm)d>v and/or npue = [vfid®v. (Differential
operations dfy, /v, 0*f;/Ov* will have large uncertainty.)
Generations of (I'tS - Vs), (Q}® - Vs), and modifications of
(FPS Vs), (QS - Vs) (a #f) in Appendix A due to this

f £l ) are future themes. It also should be noted that this dis-

even)

cussion on ijv”Sfd3V assumes the core regions where initial

drift orbits crossing the last closed flux surface (LCFS) do
not exist.

IV. EIGENFUNCTION METHOD

A. Definition and obtaining method of the
eigenfunction

In the circulating pitch-angle 0 < A < 1, instead of the
local balance of source and collision in uniform magnetic
field” b-VB = 0, this balance now becomes a surface-
averaged balance

2{(1 = AB /By )1/2>8ff o((1 —)vB/BM)1/2>072

ol ol
(v vTe —— G (Xe) +v§)ff}
((1- w/BM>‘/2>

o

in which B-V is eliminated by Eq. (13). Here,
((B/Bw)(1 — AB/By) "% = —20((1 — JB/By)"*)0). is
used. For solving this equation, the following eigenfunctions
A, (A) with the eigenvalues k, (numbered as n=1,2,3,.) are
required in describing the pitch-angle (1) space, instead of
the usual Legendre polynomial P;(&):

3
7‘3
3

5

5 _
tsSx (5. 0, z)%, (38)

9
oA
in0<A<1,

_ 12
H(1-78/8w) ) 0 HUEB B T

A(0)=1, A,(1)=0. (39)

This type of eigenfunction is often required when handling
the pitch-angle-scattering collision in the toroidal plasmas.
Theoretical study on electron cyclotron current drive*®>® is
another application area in addition to the o-particle diffusion’

and the NB-driven effects.”® We shall consider here only a

determination method for f?(Odd) in Eq. (33), and therefore
A, (1) =0 as the boundary condition at the circulating/
trapped boundary 1 = 1 corresponding to a fact f(f) <°dd>(2 =

1) = 0 is used in this definition. Although the even compo-
nent f requires a different boundary condition and a
handling of the trapped pitch-angle range /. > 1 by bounce-
integrals instead of the surface-averaging,”® a practically im-
portant component (""" o [1?v1e(3v/7/2)G (x,) + v3] !
U(v, — v) (the surface-averaged lowest Legendre order / = 0)

even

in f? (©ven) i not affected by the B-field strength modulation
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along the field line as discussed in Appendix B. A collision in-
tegral  m, [ Cot(fam. fi)d*v = —mg [ 0*Cro(fr, fn)dv  in
Appendix C for power deposition analyses requires only this
(ff(lzo)). A main purpose of the present study is f? 49 deter-
mining aforementioned integrals in the common form of
(B [ EF (v)fid’v). There is a self-adjoint property of this
surface-averaged PAS operator for arbitrary functions satisty-
ing this boundary condition F(1 =1) =G(A=1) =0:

: 0 /2, 0F(2)
L G(3) 5341~ 18 By)" ) 2 0
B b .0 , / 9G(2)

By using this property and the definition Eq. (39), we can im-
mediately find the following orthogonal relation between
eigenvalue numbers m, n:

1 _ 1/2
<J A,,7A,,Wdi>:0 form # n. (41)
0

(In non-symmetric toroidal configurations, this type of three
dimensional definite integrals in a form of fol (YA = <f01 -dA)
is often numerically calculated by surface-averaging the pitch-
angle integrals, such as fol AnAn{O(1 — /IB/BM)I/Z/a/I}dZ as
function of B, especially when AB(6,{)/By = 1 is a singular
point in the 3D space® (0,{, 1).) Equation (41) will be used
later for orthogonal expanded expressions of Eq. (33) and the
source term.

It also should be noted that when our purpose is limited
to the integrals in the form of (B [ ¢F(v)f;d’v), a complete
expression for the full energy range 0 <v < v, is not
required. Not only the usual Legendre expansion'® for b -
VB = 0 but also the present orthogonal expansion by A, (1)
for b - VB # 0 will require an infinite number of expansion
terms (0 </ < oo or 1 <n < oo) at high energy regions
v > v, or v & v, when the Sy, (s, 0, 1) in the fast ion source
term is a strongly localized function in the pitch-angle (1)
space. However, these higher order (/> 1 or n > 1) pitch-
angle space structures will vanish in the integrals
(B [ EF (v)fid’v). The focusing on these types of integrals
rather than f; itself is motivated especially by the applica-
tion to the field particle portion Cu(fom,f;) in thermalized
particles kinetic equation. This portion is an integral opera-

new)
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tor reducing the higher Legendre orders / > 1 especially
when T;/m, < (ps/ng)/mg < Te/me (a # e,f).2% Therefore,
1 <n <6 of Eq. (39) is used here. These eigenfunctions of
finite » numbers can be obtained by a numerical shooting
method, in which

on, 11,
oL i
oM, _ Oln{(1 = 28/Bw)'") (42)
o 04 e !
is integrated using an initial condition of
/(B A(B
An(lao):l—fgkn 1+*Q(1—K”)
2 By 8 Bum
. (B) . (B) )
A A
Hnﬂ—> :__—nl __1_”
i v < T 4By K)>

with a guess value of x,. When the solution satisfying
A, (1) = 0 is found, the exact eigenvalue k,, is determined by

oy = — J; 2 = BBy (%Ydi/

1 _ 1/2
X<J 2 2= B/Bw) dz>, (44)
0 8A

which is obtained by multiplying A,(4) to Eq. (39). A
Legendre polynomial expansion

1/2 9
(1 — )V) ZanmPZrnfl ((1 - 1)1/2)7

A, (4) =
()<u—wwwmmﬂ

(45)

in which the last term m =9 is determined by the boundary
condition A, (0) = 1 as a9 = — 3.0 _| dun + 1 is convenient
for this kind of pitch-angle integrals, including the
(B [ &F (v)fpd’v) formula derived below.

To execute this procedure effectively for arbitrary non-
symmetric stellarator/heliotron configurations, it is conven-
ient to use results for axisymmetric tokamaks with concen-
tric circular flux geometries’ as the initial guess x, value in
an iterative calculation of Eqgs.(42) and (43) (A,(1) =0 is
not guaranteed)

K,

o Jo A= 7B/Bn)") (07 04)di— (1~ B/Br)")[ArDA/ 07y
' Jy 2((1 = 2B/Bw) ") (9A,/D2)*dJ. '

(46)

In this previous tokamak calculation, the flux-surface coordinates system with the Jacobian and the magnetic field strength of

g=-—(1+¢cosh), B

Vl
4m2

By

1 + ecos 0 @7

was used. The obtained eigenvalues with 1 < n < 6 were (The result in Ref. 7 is extended to include n =6 and ¢ = 0.65.)
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It also is known that the extremely small ¢ limit is given by

2
dn—1((Q2n—-1)N
K, —n(2n—1) + n3 (EZZ—Z;!!) 1.47y/e for &¢— 0.

(49)
In these model configurations, a relation between the so-
called circulating particles’ fraction f, =3 (B?)By{ fol

2{(1—/B /BM)I/ y7'd2, which routinely appears in the ba-
nana regime parallel viscosity in general toroidal configura-
tions,”>** and the inverse aspect ratio ¢ is given by a
polynomial fitting

3 (! AdA
Ve _f<l - ZJO (- )B/BM)1/2>>

f(x) = x(0.685 +0.735 x x — 0.133 x x? 4+ 2.00 x ).
(50)

When investigating general toroidal configurations, we can
know approximated values of k, by substituting their f; inte-
grals into Eq. (50) to convert them to ¢ for the x,(¢) interpo-
lation formulas of Eqs. (48) and (49) in the model tokamak
configurations equation (47). After this choice of the initial
guess values, only a few iterations of Eq. (46) will immedi-
ately find the exact A,(Z) and «, satisfying the boundary
condition A, (1) = 0 and, consequently, the orthogonal rela-
tion equation (41).

Although it is mathematically obvious in Eq. (39) that in
an extremely small B-field strength modulation limit
(1= B/BM)1/2> — 0, the eigenfunction becomes the usual
Legendre polynomial A, (%) — Pa,_i((1 —2)"/?), but the
numerical scheme in Eqs.(42)—(46) for finite modulation is
not suitable for this too simplified situation. If one wants to
consider ((1 — B/By)"?) < 1 limits (for, e.g., ¢ < 0.005 in
Eq. (50)), it is favorable to use an analytical theory for the
aym(€) in & < 1 limits of the model configurations, Eq. (47),
for avoiding physically meaningless numerical errors.
Reference 7 showed also this asymptotic limit theory, and
the essence of it is summarized by Eq. (49) and

4m — 1
3(n—m)(2n+2m—1)
2m—1)N2n— 1
“m—2)(2n = 2)1!

aum(€) =

(D

(=1)""1.47\/& for m +# n.
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¢ =0.01; k, = 1.16127, 6.84497, 17.0693,31.8307, 51.1263, 75.581
¢ = 0.04; Kk, = 1.36030,7.88083,19.5941,36.4914, 58.5683, 85.809
¢ =0.09; K, = 1.61375,9.19224,22.7862, 42.3856, 67.9864, 99.559
¢ =1/6; K, = 198220, 11.0918,27.4123,50.9352, 81.6583, 119.53 (48)
e =1/3; K, = 2.93115,15.9782, 39.3295,72.9835, 116.940, 171.12
¢ = 0.50; K, = 4.40302,23.5697,57.8728, 107.318, 171.905,251.52
¢ = 0.65; Kk, = 6.86278,36.2951,88.9926, 165.015, 264.164, 386.30.

The non-diagonal coefficients a,,,(¢) with m # n should be
obtained by interpolations of a,,(¢)/+/¢ as functions of /¢
in this ¢ < 1 limit and ¢ > 0.01, where the coefficients are
obtained by the numerical Legendre expansion. The diagonal
coefficient should be obtained by extrapolations of numeri-
cally obtained (a,,(¢) —1)/+/¢ as functions of /¢ in
0.01 <¢<0.65.

B. Energy space structure of each eigenvalue
numbers

By using Eq. (41), we shall define an orthogonal expan-
sion of arbitrary odd function F(v,0,1) in 0 < 1 < 1 satisfy-
ing F(v,—1,1) = —F(v,1,4) and the boundary condition
F(v,0,4=1) =0 as follows:

F(v,0,4) =0  Fu(v)A(2)

1 1/
Falv) = 0<J A,lf(v,a,)b)a(l*)v/&w)zdi>

0

', 8(1 - B/By)"?
2
/<L,\n—a/1 dz ). (52)

This pitch-angle integral jol d/ is performed for only one side
of ¢ = £1. We shall define also a function for each flux-
surfaces by

InV(v) = 31)3 J dv
U{vsze(?a\/E/Z)G(xe) + vg}
v 4 ¢ v
=In——F+-—+-LIn| 1 +— (53)
S R VAN < v?ze)
-1
4 3
vze = vi 1 —i——UTC .
3Ty,
Here,
3 o, 3Ym 3 B Vo 4 3
v, UUTETG(xe)—i—v‘C gv3—|—v3 1—i—3\/ﬁx‘e
ce

(54)

given by G(x) = {(3y/7n/2)/x+2x2}"" is substituted to
derive the explicit expression using analytical integrals.
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Because of a relation v /v3, ~ m./m; < 1, this function is

V(v) 2 v*/(v® +v}) as assumed in the previous stud-
ies”1920-29 even for the low-T, situations Up ~ Ure. By using

A

V(v)
V(Ub)

3
c

d 3
e fn(v) (uzuTegG(xe) +v

}

TS< i oAn[Sui5. 0, 2) = Swils, —a. 21{ 01 — 2B /Bw) "2 /8i}d/1>
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the orthogonal expansion of the odd source term

[Sxi(s, 0, ) — Sy (s, —, 2)]/2, Eq. (38) for f{ Y (v,0,2) =
oY, Jn(v)A,(4) can be rewritten as

K,,Zz/3

2<J"01 a2{o(1 - AB/BM)I/Z/m}dz>

and its solution is given by

TS<I01 oA, [le(sa g, Z) - ng(S,

o(v — ),

—e. {01 - /IB/BM)I/Z/(%}dA>

fn(U) 2<f01 Ai{a(l B

2 3\/EG(xe) + vg)_ {

<

Although our purpose is not f_? (Odd>(v, a,/) itself but
calculating integrals in the form of (B [ ¢F(v)fid®v) as stated
previously, it should be noted that this solution with 1 < n <
oo includes the result in Ref. 19 as a limit of
(1 - B/BM)1/2> < 1 and vy /vre < 1. Due to the use of Eq.
(32) instead of Eq. (31), these results do not include
exp (—mgv? /2T;) at mev® /2 ~ T;. This energy space structure
is the definition of f;(x, v, 7, A) that is stated at the beginning
of Sec. III. The omission of the f-e collision in CfAS in Eq.
(32) is justified by the fact indicated by this resulting v-space

v UTCT

F(v)v?

<BZ> Jwb
0 V3Ure (3\/E/2)G(xe) + vl

<B J 5F(u)ﬁd3v> =mp s

140}

J[8(0) = Sy (~a){ (1 - /lB/BM)l/2/8}v}di> I Adi

w/BM)‘/Z/az}dz>

KnZa/3
} U(vp —v). (55)

V(vp)

structure that CFAS is substantially effective only in a small
velocity range v < v. where ne [@(xe) —G(¥e)] /D ) et nZ2
[©(xp) — G(xp)] < 4(ve/vre)/(3v/TZess). Since we retained
the collisional momentum exchange rate of Eq. (C3) approx-
imately, this small underestimation of the PAS rate is com-
pensated by the use of CES for 8f_'? (cdd) /Ov >0 in v=<uv,,
especially when this solution is used for calculating the mo-
mentum transfer to target plasma species. The integrals are
obtained as follows by truncating the expansion of the source
term to include only 1 < n < 6:

V(v)

In Section V, we apply this formula for m,(B [vEC,
(fam, 1)) = —mg(B [ 0ECra(fr, fum)dv) given by Eq. (C3)
in cases of tangential NB injections into non-axisymmetric
stellarator/heliotron configurations. It also should be noted
that the definition of V(v) in Eq. (53) gives

3

[l

3
Zzl)c

n+1

2

1+ U UTe

v 3
> G(xe) + v,

/3 n+1
N LG G 57)
V(o) nt 1

<J& Ao - ﬂvB/BM)l/z/az}dQ

K,,Zz /3
} dv.  (56)

{

for arbitrary integers n > 0 by integration by parts, which
will appear there for the ((1 — B/By)'"/?) <1 limit giving
K1 = 1.

V(Ub)

V. MOMENTUM INPUT CALCULATION FOR
TANGENTIAL NB INJECTIONS

The MCNBI (Ref. 3) results for the experiments
reported in Ref. 1 indicate that the initial pitch-angle of the
fast ions is (vf_)/(vﬁ) ~ (0.2 at radial positions of r/a ~ 0.5.
Since it means a localizing of Sy, (s, 0, 1) at A < 1 in typical
tangential NBI operations, we calculate the orthogonal
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expansion of the odd source term in Eq. (56) and the total
momentum input of NB injectors (B [vESed’v) by using a
delta function approximation
Sei(s,0=1,2) o< 2((1 — 2B /By)"/*)5(3. — Iy

B ((1 - /B/Bw)"?

:_<( Ab / M)1/2>5|:6_(1_ibB/BM)1/2:|

By (1 — JwB/By)

Sxi(s,0=—1,2)=0

(58)

with a fixed value A, = 0.17. (In other words, when the total
momentum and energy inputs m¢(B [vES¢d®v)/(B) and
(me/2)([ v’ Sedv) by NB injectors at |v— vp|/vp, < 1 are
given by these kinds of Monte Carlo codes for other experi-
mental conditions, we determine this substantial ionization
pitch-angle 4, by the relation ([v>Sed® v)/(B [vESed®v)
= —20,(By/(B2)O((1 — JB/Bm)"?) ) 0.)

As the assumption regarding the magnetic configurations
for calculating Eq. (56), we need only B(s, 6, ()/By given in
the Boozer or the Hamada coordinates. The parameters
7', Bg, and By in Eq. (12) are not required, even though the
existence of Eq. (12) and its consequences, such as Eq. (13)
are implicitly included in the derivation. However, it should
be noted that Eq. (56) is applicable only for toroidal configu-
rations with finite rotational transforms y’/y/ # 0. Here, we
use a stellarator/heliotron magnetic field model

B/By =1 — &(s) cos O

+ &(s){1 — op(s)cos O} cos (LOg — N(g) (59)
with 0.01 < g(s) < 0.2. The poloidal and toroidal period
numbers are chosen to be L=1 and N =4 corresponding to
the Heliotron-J device." It is known as “sigma-opti-
mization,”® op(s) = 1 is a good drift optimization for the
ripple-trapped particles in k> < 1. Inward shifted configura-
tions in the Large Helical Device (LHD)*' and high-y (high-
bumpy) configurations in the Heliotron-J (Ref. 32) are often

_ a#f a#f
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used by aiming this optimization. In these non-axisymmetric
devices, the integral f()l A((1 = 2B/By)"*)"'dJ in Eq. (50)
governing the trapping effect does not correspond to the geo-
metrical inverse aspect ratio r/R but to this kind of ripple
structure. It also should be noted that a modulation amplitude
(Bm — Bmin)/(Bm 4 Bmin) = 2¢&/(1 + &op) for Eq. (59) also
is not a good measure for the trapping effect in drift-
optimized stellarator/heliotron configurations. This modula-
tion amplitude (By — Bmin)/Bo is independent of the optimi-
zation parameter op, and the normalized amplitude
(BM — Bmin)/(Bm + Bmin) is reduced by its positive values
op > 0. However, the increase in op results in an increase in
¢ in Eq. (50) and the eigenvalues x,, as shown in following
numerical examples. We investigate the dependence on
&, op for (1) reductions of the ratio of the momentum input
to the target plasmas due to the friction collision and the total
momentum input of the NB injectors

<B fvéZcfam,faM>d3v>

a#f
(B [vESpd v)

(BF 1)

1
+ m¢(B fvéSfd3V)

(60)

and (2) reductions of the momentum transfer to each target
plasma particle species in multi-ion-species plasmas

_ <BJ‘U€Caf(faM1ff)d3V> 1 <vafoa(ff,ng)d3V>
(B [0EC it (funf=0) V) (B [0&Cra (f=° furmt) )
61)

Here, fi=° is the fast ions’ velocity distribution for
((1—B/Bw)'?) =0 given by A,(4) = Py_1((1— 1)),
Kkn=n(n—1), and Sg(s,0=1,2) = 5[é — (1 — &) "?].
Before explaining the numerical results for Eq. (60), its
2T;/m; < v} limit in Eq. (C3) giving G(x,) = (2)(5)71 for
a # e,f and consequently

(B [seCalimdv) (B 2E X Culffi)d'y)

me(B [ vESrd’y)

(B [ vESed?v)

u1<
200 \ By(1 —

6

JuB /By

> J“‘) V2 UTe (3ﬁ/2)G(x€) + vz(l +7,)
0 vsze(?)\/ﬁ/Z)G(xp) + vl

D

should be considered. In the ((1 — B BM)1/2> < 1 limit giv-
ing [ Ayd2/ [ A2{O(1 — iB/Bw)"/?/02}di = —2, this ra-
tio is —1 because of Eq. (57). A physical meaning of the
deviation Eq. (60) is the parallel viscosity force of fast ions
themselves in (B-V - n) = (B-Fp) +me(B - [vSid’v) as
the surface-averaging of Eq. (4).

= (Jy A2{0(1 — 2B/Bw)"/? j02}d))

ST MON R
V(wo)

The other required assumptions for investigating the
parallel momentum exchange by using Eq. (C3) are target
plasma parameters n,,T,, and the beam injection energy.
These are also chosen to be almost equivalent to those at the
radial position r/a = 0.5 in the experimental conditions in
Ref. 1. It is reported that the charge exchange spectroscopic
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measurements were done for e~ + D' 4 C®" multi-ion-spe-
cies plasmas with 75, = 1.1 x 10”m=3 T, = 230eV,
T; = 110eV, and Zgr =19 (at r/a=0.5). A hydrogen
beam with injection energy of mfvﬁ /2 =27keV sustained
these plasmas. For simplicity in this paper, here we neglect
low energy components of 13.5keV and 9keV that are pro-
duced in the positive ion source injector. The critical velocity
and the PAS parameters in Eq. (32) for this condition are
v, = 680km/sand Z, = 3.69, respectively. The mean free
path of the PAS collision at this critical velocity determined
by the slowing down time ts = 10.2ms is v.ts/Z, = 1.88km,
and it corresponds to the banana regime 1 /v < 107'm~! of
the viscosity coefficient M* (parallel viscosity force against
parallel flows defined in Ref 8) in the Heliotron-J configura-
tion.*> The procedure for f p in Sec. IV is applicable for
these long mean free path conditions.

Figure 1 shows ¢ obtained by Eq. (50) for the stellarator
model equation (59). The reduction of the total friction equa-
tion (60) and that of the momentum transfer equation (61) for
electron in these configurations are shown in Figs. 2 and 3,
respectively. In the typical injection conditions with v, > v,
and Jy, ~ 0.1, the high-energy region v > v, of f;(x, v, 0, 1) is
localizing at 4 < 1of ¢ = 1. It is determined mainly by the
slowing down collision CES, and is almost irrelative to
the fact that f FOCAD 4 Eq. (33) vanishes in the trapped pitch-
angle range and the K, expressing the surface-averaged
PAS collision rate is increased by the B-field strength
modulat1on (1 —=B/By)"?) #0. Tts integrals Bf F(v
(f EfrdE)v*du) are insensitive to these configuration effects
The total momentum loss of the fast ions (total momentum
input to the target plasma species) —(BF ;) and the momen-
tum exchange between fast ions and electrons

—mg(B [ 0ECk(fr, fom)d?V) = me (B [0ECet (fomr, fr)d V) are
determined by the full energy range 0 < v < v}, of f?wdd),
We can see in Figs. 2 and 3 that these friction moments are
insensitive to the B-field strength modulation. The total mo-
mentum loss is reduced only by a factor of 1 — /¢/2. This

reduction is smaller than that of momentum exchange

0.7 . . | |
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FIG. 1. The B-field strength modulation amplitude &'/? that is determined by
Eq. (50) for the model field equation (59).
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FIG. 2. The reduction of the total fr1ct10n equation (60) due to the finite B-
field strength modulation (1 — B/By)"/?) # 0.

between fast and thermal ions discussed below. The e-f, f-e
momentum exchange is more insensitive. In spite of the mod-
ulations of /¢ < 0.7 in Fig. 1, the reduction of the momen-
tum exchange is only a few percent or 10%. This
characteristic of f¢(x,v,0,4)in 4 < 1of v > v, is essentially
different from the reduction of the neoclassical parallel con-
ductivity in the banana regime that occurs for nearly isotropic
velocity distributions of thermal particles. This result on the e-
f, f-e momentum exchange by Eq. (C3) for an initial velocity
condition of v, < vy, < (3y/7/ 4) vre means that beam parti-
cle flux (Bnsuys) = vaéf .d*v), which was discussed in
Ref. 20 and references cited therem also is insensitive to the
B-field strength modulation in cases with sufficiently large
injection velocities v, > v, and sources localizing at 4 < 1.
The beam driven parallel particle and heat fluxes of electrons
(Bneuﬁgam> (Bgh=*™) will be easily estimated by a 13M

[le

approximation (Eq. (C4) in Ref. 8) neglecting the beam driven
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FIG. 3. The reduction of the momentum input equation (61) for electrons
due to (1 — B/By)'"?) #0.
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particle fluxes of thermal ions (Bnauﬁzam> < (Bneuﬁzam)
(a # e,f), which are an order of>> (m./m,)"?, and using a
relation® fvéL(f/z) (2) Cet (fom, fr) v 2 2 VEC et (fon, fr) V.
The configuration effect is more important for the mo-
mentum input to thermal ions. The momentum exchange
between the fast and thermal ions 1, (B [ vECar(fam, ff)d3v>
= —m¢(B [vECt,(fr, fam)d*V) (a # e,f), which is required for
calculating the ion flows, is determined only by the fast ions
in a low-energy range of v<sv, following Egs. (B1) and (C3).
In this energy range, the velocity distribution f(x, v, g, 2) is
broadened for the full pitch-angle range —1 < & < 1 due to
the PAS collision. In this energy range, (B [)*F(v)
(ﬁl &frdé)v*dv) is reduced by a factor of about 1 —
Vefore ~ 0.2 as shown in Fig. 4. It is analogous to the
reduction of the banana regime neoclassical parallel conduc-
tivity. In the neoclassical calculation in Ref. 1, as shown in
its Figs. 4(c) and 4(d), the used momentum input was that
given by the FIT3D code® without taking this configuration
effect into account. For approximating the momentum
exchange between the fast ions and the target plasma ions, a
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FIG. 4. The reduction of the momentum input equation (61) for the ions due
to (1 — B/Bu)"?) #0. (a) DT and (b) C.
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phenomenological reducing factor 1 — /¢ was multiplied to
the fast ions friction moment (BF ;) there. However, this
method in Ref. 1 is not a systematic method that is applica-
ble to general multi-ion-species plasmas in general toroidal
configurations. In particular, ¢ = (Bm — Bmin)/(Bm + Bmin)
used there is not a good measure as the substantial modu-
lation amplitude for Eq. (39). For the drift-optimized stel-
larator/heliotron magnetic configurations that are modeled
by Eq. (59), the qualitative coincidence of Figs. 1 and 4
is obtained when using Eq. (50) as the substantial
amplitude.

Vi. SUMMARY

As pointed out in many experimental'>'? and theoreti-

cal®* studies on NBI heated plasmas, situations of recent
experiments with the external anisotropic heating are differ-
ent from those assumed in the conventional MHD equilib-
rium theories'® and the concept of the flux-surface
coordinates'' based on them using the isotropic pressure. In
spite of this fact, previously established methodology for the
neoclassical transport is still applicable as long as the contra-
variant and the covariant expressions of the B-field in Eq.
(12) exist and their parameters y’ ,1//,Bg,B9, and the field
strength B(s,0,() are appropriately given. This kind of
expression of J-vector fields and theorems based on the
expression, such as Eq. (15), are not used there.® It is sug-
gested for practical purposes that isotropic pressure equili-
briums reproducing experimentally observed Shafranov
shifts, in which the usual scalar pressure moment »__p, is
replaced by > (pj, +pLa)/2, would give the parameters
and the field strength in Eq. (12)."° Therefore, recent NBI
heating experiments in Heliotron-J' were analyzed by using
thermal particles” DKEs (a # f) with an extension to include
a collision term Cu(fy,ft) = Cut(fum,/fr), which gives friction
(momentum exchange) collision between the species a and
the fast ions’ slowing down velocity distribution function
fi(x,v).? Following a standard procedure in the moment
method shown in Refs. 8-10, this kinetic problem was con-
verted to simultaneous algebraic equations by taking

<ijg’LJ(3/ 2) (x2)d*v) integrals of the DKEs. Since the non-
diagonal coupling terms between the thermal species
Cab (fam, fb(lzl)) are fully included by the Braginskii’s matrix
elements  (n,/tu)N%, = [VEL™P (2)Caplfnt, (i) (T))

el (2 fim)dy,  the (B -V m,) = m
<ij“Sfd3V> due to the momentum conservation y  F,; =
0 is satisfied. However, it should be noted that the charge
conservation V - J = 0 in this situation is retained due to a
break of the symmetry of the B-field strength®
c10B/00 + ¢20B /¢ # 0. These aspects of stellarator/helio-
tron plasmas with external momentum sources were investi-
gated in Sec. II and Appendix A. Only one inappropriate
shortcut in Ref. 1 was a phenomenological reducing factor
1 — /& for the fast ions’ friction (BF ;) based on an analogy
of the banana regime neoclassical parallel conductivity.
The v-space structure of f(x,v,0,4) in situations of

relation
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(1 =B/By)"?) #0 is not correctly taken into account
there. However, our purpose is not the fast ions’ velocity dis-
tribution itself but the parallel friction moments
(B fvéL}y 2) (2)Cat (fuma, fr)dv) required in studies on
physics of target plasma species. When handling the fast
ions’ velocity distribution function, this RMJ operator can be
calculated by a spherical coordinate expression method for
the general Rosenbluth potentials shown in Ref. 35, and then
integrations by parts for the energy space give the

J"vaj(?/ 2)(x5)Caf M,fi)d°v integrals in a common form

[ EF (v)fid®v, such as Eq. (C3). After explaining the drift ki-
netic equation for this purpose in Sec. III, we applied an idea
of eigenfunctions in Ref. 7 for excluding the trapped fast
ions from the friction moments in Secs. IV and V. The de-
pendence of these types of integrals having the common
form (B [ £F(v)f:d*v) on the ripple amplitude and the drift
optimization parameter in Eq. (59), which reduce the fraction

of the circulating particles f. =3 (B*)By/ [01 (1 — 2B

/Bum)"?)"'dZ in Eq. (50), was investigated. It is found that
the momentum input to target ions is strongly affected by
this configuration effect. As a characteristic of Eqs. (B1) and
(C3), these sensitive friction moments are determined only
by the lower energy range v=<v. of the fast ion distribution
that is strongly affected by the PAS collision. Analogous to
the banana regime neoclassical conductivity of thermal par-
ticles, this configuration effect is roughly expressed by a
reducing factor 1 — /¢ for & ~ 0.2 that is the typical ripple
amplitude in the experiments reported in Ref. 1. Although
this reducing factor was already included in the theoretical
calculation in Ref. 1 and the results well explained the exper-
imentally measured ion flow velocity, the method used there
was inappropriate in two viewpoints. One is the use of
¢ = (Bm — Bmin)/(Bm + Bmin), Which is not a good measure
for the B-field strength modulation determining the eigen-
function and the eigenvalues in general toroidal configura-
tions, including drift optimized stellarator/heliotron devices.
Another is multiplying the factor 1 — /¢ to the full compo-
nent of —(BF|) =), My (B [0ECut (fam, fr)d*v). Since
the momentum exchange between the electrons and the fast
ions  —m¢(B [ 0ECr (fr. fom)d®V) = me(B [vECet (fom, fr)d?V)
is insensitive to the configuration effects in typical tangential
NBI operations, the method in Ref. 1 was not appropriate for
calculating the beam driven electron flows corresponding to
the so-called shielding current in the Ohkawa current. This
insensitivity is also due to a characteristic of Eq. (C3) for the
fast ion velocity range 0 < v < v,. In future studies on
plasma flows and/or current requiring flow calculations of all
particle species in more general non-symmetric toroidal con-
figurations, the eigenfunctions investigated in the present
work will be useful.
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APPENDIX A: RADIAL TRANSPORT FLUXES OF
GENERAL PARTICLE SPECIES

Also in this Appendix for radial particle and energy
transport fluxes (I, - Vs) = (nqu, - Vs), (Q, - Vs) of indi-
vidual particle species, the symmetric CGL form =, =
(Pja — PLa)(bb —1/3) of the viscous tensor in Eq. (4) is
assumed. The neglected
manauia,manaumu”a & pg. In addition to them, r, —r,I =
(e = 71a)(bb —1/3) forr, = % [ vvf,dy, ry = Tr(r,) /3,
rig=%[v %fad%, and 1|, =% [ vzvﬁfad% also is
assumed because of this small perpendicular Mach number.
The curvature force in a direction of Vs x B is calculated by
an approximation of

inertia  force is since

4
stB~(b~Vb):stB-VlnB+7nJ~Vs
~2VsxB-VInB(."B-Vs=0)

even when b - V Za% # 0 and consequently J - Vs # 0
as discussed in Sec. II. This is a part of the 87, p../B>
< 1 approximation in Eq. (6). Therefore,

3

B a a
stB~Vna:—Vs><B'Vu,
23 ) pB3 (Al)
U.g — 2R3} . e — Pla
b-V.m, =B Vs
and
B3 Tia = Va
VsxB-V-(r, —rJ) = Vs x BV,
2 Fla — Tla
b'V'(r,,—raI):§B3/2b-V”B37/2 (A2)

are used. By using Eqgs. (4), (A1), and (14),

B
(Ty-Vs) = (nuy, - Vs) = < <Vs B Vpa>

eq B2

lc Vs x B
T 3e, (PLa=Pla) g2

Vs x B c /Fyu xB
C<ngT'E> +a< B . VS>
is obtained. This first term can be rewritten by using Eq. (23)

and the parallel (b-) component of Eq. (4) as in the
following:

<VS . B-Vpa> ——(Ub-p,)

B2
4VsxB -
=— P\ =——— -VInB
<(P|a PL)<3 B +Ub> \% >

— <ljFHal> fea(nan~E>.

-VlnB>
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Here, (Ub - V(pja — PLa)) Was rewritten again by using Eq.
(23). The parallel momentum input term JV“Sfd v is omitted
following the conclusions in Secs. II and III expressed in Eq.
(36). Substituting it into (I', - Vs) results in

(Ty - Vs) = (T . Vs) + (IS . Vs) + (I - Vs)
- c<na (VsBj B, l7b> : E> (A3)
with
(T Vs) = — ei <(Pa —DPla) <vs B Ub) : v1nB>

c o~
(TS . Vs) = T (UF|a1)

CFa1XB

rd=—
¢ e, B2

The first term (I - Vs) is the particle flux due to the neo-
classical viscosity m, investigated in Refs. 8-10, and the sec-
ond and third terms (I'*S . Vs), I'! are the Pfirsch-Schliiter
and the classical particle fluxes, respectively. The electric
field in the fourth term should be separated into electrostatic
and inductive fields as

10A
E—-vo_l9A_ goigWw,
c ot

(A4)
As already noted also on Eq. (30), E® ~0in present stella-
rator/heliotron experiments, and the only purpose for retaining
it is to confirm the Onsager symmetry between the bootstrap
current and the Ware pinch.'® Therefore, a least function
nE®) = (n,)(B-E*)B/(B?) as the divergence-free vector
field is assumed, and it vanishes by VsxB-B =0
and <UB> =0 in Eq. (21). In the contribution of the electro-
static field (so-called electrostatic trapping effect®) (n,(Vs x
B /B> + Ub) - V®) = —(®(Vs x B/B> +-Ub) - Vn,), only
poloidal and toroidal variations of the density dn, =
ng — (n,) can remain following Eq. (24). Although the varia-
tion of the potential Vs x B-V®, B - V® may need to be
taken into account in calculating an extreme collisional limit
of the Pfirsch-Schliiter diffusions,36 we shall neglect it in the
present study.

Analogously, by using a [ vi?d’
state Landau equation

v moment of the steady-

a 5 B
Vor, - [E : <—paI + .+ manao(u§)> +Q"7X]
My 2 c
— G+ %Jvﬂzﬂsa(x, v, E)d’y (A5)

with  Q, = (my/2) [vi*fud®v, Go = (my/2) [vi* 3, Cap
(fa, f»)d?v, and aforementioned tensor r, in a combination
with Eqgs. (14), (23), (A2), the radial energy transport flux is
obtained as follows:
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(Q, - Vs) = (Q"- Vs) + (Q}S - Vs) + (Q - Vs)
§C<Pa (LSBf B, Ub) . E>
Vs x B
- % <(P¢a —Dla) (% - 2Ub> >

(A6)

Here, the first three terms are defined by

‘ VsxB -
Q- Vs) = —me—; <(r|a - ua)( SBf + Ub) ~VlnB>

myC , ~
<QaPS . VS> = — <UGHa>
o _ macG X B
Q a B2

These terms are the viscosity-driven neoclassical flux, the
Pfirsch-Schliiter flux, and the classical flux, respectively. The
contribution of the fast ion source term [ vjvSrd’v vanishes
followmg Eq (36). When the inductive ﬁeld is { %(Pua

Pm)}EH = 3Pa+%(Pja—pia)(B-EX >B/<B2> and
E(L =0 (a least functlon as the divergence-free vector field
for the confirmation of the Onsager symmetry), the electric
field driven terms are ( p,(Vs x B/ B2+ U b)-E) = —(p,
(Vs x B/B2 + Ub) - V®) = (O(Vs x B/B> +Ub) - Vp,),
in which only dp, = p, — (p,) can remain, and ((p14 — p|ja)
(Vs x B/B* —=2Ub) -E) = —((p1a — Pja) (Vs x B/B?
—2Ub) - V®). These effects of Vs x B- V®, B- VO also
are neglected in recent our studies. For the thermalized par-
ticles, the radial heat flux can be defined by {(q, - Vs)
(Q, - Vs) —3(T. }(naua Vs) and is expressed by using 0, =
mq(Fq — uI)/<Ta> 3 for () - Vs), Flao = mGja/(Ta)
—3F ), for (g - VS> and Fip=m,G1./T, —3Fia
for (q<! - Vs). Although this (q, - Vs) is often used for the
Onsager symmetric transport matrix,®'® it cannot be consid-
ered for the fast ions since their velocity distribution does
not include the exponential factor exp (—m,v?/2T,) (does
not have the concept of the temperature), and therefore the
self-adjoint property of the collision as a basis of the
Onsager symmetry does not exist there.

As noted in Sec. II, it is important in the viewpoint of a
consistency of the B, J vector fields to investigate how the
ambipolar condition (J-Vs) =0 is satisfied. This issue is
irrelative to how we treat the electric field term
(Vs x B/B* + Ub) - E. By summing Eq. (A3) for all parti-
cle species with using the charge neutrality » " e,n, = 0 and
the momentum conservation ), F,; =0,

(J-Vs)=> eul-Vs)

i —c<Z(P|a o <VSB>< B, Ub) : V1n3>,

a

(AT)

which is equivalent to Eq. (16) as noted on Eq. (23), is
obtained. The disappeared flux component (FSS - Vs) +
(T Vs) — c(ny(Vs x B/B>+Ub) -E) in Eq. (A3) is
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called “intrinsically ambipolar” flux. There is an important
difference between symmetric configurations, where
c10B /90 + c,0B/d¢ = 0 holds,® and non-symmetric config-

urations, where ¢;0B/00 + ¢,0B/0( # 0. Hereafter, B; =

Boozer Boozer .
BE ) and By = BE, “") are used. In the symmetric config-
. Bum+B \Bo+2B; .
urations, 2200 — _ ABetaBe _ oongt for all Fourier modes
7m=y'n ' —eay

(m,n) in Fourier expansions by sin(mf — n{), cos(m0 — n{)
of arbitrary functions. Therefore, a relation between (Vs
xB/B? 4 Ub) - VInB and B - VInB is

(VS B, Ub> - VInB

1 0 0
=———— (B~ —By—— |InB
¢g—H<BZ>< © 90y GacH>

c1Bg + B¢ 1 ( , 0 , 0 )
- 2y 2 B
e —cry vanB \L ooy TV o,

- c1By + CzBC B - VInB
Yy — ey (B?)

The radial current Eq. (A7) in this situation has the following
relation with the parallel viscous force:

<Z(Pna ~Pla) (VSBX 4 Ub) : V1n3>

a

By + By 1
N Cclu; = (B2 @(pa ~pia)B- v1n3>

(symmetric cases). (A8)

C2X
ciBg+ By 1 .
= B - V - r,) (symmetric cases).
Voo T 2 ) (sy )

(A9)

In such symmetric configurations, the existence of the exter-
nal parallel momentum input in Egs. (4) and (30) directly
means a following break of the charge neutrality:

ciBg+ By 1
I ; B2 Z<
ey’ — cay’ (B?) p

1B 0B
ol el (8 [usa) 20
) — ey (B?)

(symmetric cases).

(J-Vs)/c= B-V-m,)

(A10)

This problem is caused by a limitation on phases of the local
parallel and radial currents J and J - Vs that is noted in the
end of Sec. II. (This contradiction cannot be removed if Eq.
(37) is included in Eq. (35) for generating (U [ UHSfd3V> # 0,
since Eq. (37) is only the 1st order of p, /L, as discussed in
Sec. III and thus its contribution is negligibly small in Eq.
(A10) determined by the Oth order of p,, /L,.)

However, in non-symmetric stellarator/heliotron config-
urations, this momentum input is not a serious contradiction
to the charge neutrality. In their typical B-field strength
B/By =1+ er(s,0) + eu(s, 0) cos [LO — N{ + y(s,0)] with
|7'L| < [W'N|, |B¢| > |ByN|, the suppression of the radial
current Eq. (A7) is suppressing mainly axisymmetric Fourier
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modes sin(m0)in (|« — P1a)- The pressure perturbation
of o<J" Udl, for which we concluded in Secs. II and III that it
should vanish in Eq. (17), also has a nearly axisymmetric
structure since the modes n # 0 are strongly suppressed in

B:m + Byn .
J Udl = Z eBoozen) gin(mlg — nly)
A2 2 mn
4n mn Xm lﬁ )
Bim + Bgn amada) -
“i Z 5 ™) sin(mOy — ny)
,{ m— )

due to relations of |y/| < [W/N|, |B¢| > |BgN|. On the other
hand, the surface-averaged parallel force ) (B-V -m,)
B/(B?) is formed by the non-axisymmetric modes sin(m0 —
n{) withn # 0 in the anisotropy. Even when only this paral-
lel force component as a divergence free vector remains in
the MHD equilibrium, a consistency of the B, J vector fields
in Sec. Il is retained in a ripple-period averaging.

APPENDIX B: THE LOWEST LEGENDRE ORDER OF
FAST ION VELOCITY DISTRIBUTION

We discussed in Secs. III-V that the usual Legendre
polynomial expansion for the pitch-angle space'® is not a
reasonable expression when the finite b- VB is included.
However, this ﬁmte modulation effect is not important in
determining (ff )) as the surface averaged lowest Legendre
order (I =0) componentft f fid&. Since vyb -V in
Sec. III satisfies (f (yyb - Vf,,)dé) = 0 for arbitrary velocity
distribution functlons even when b - VB # 0,

Zcfb<<ff fbM) = —%<Jllsf(X,U,0;i)d5>

b#t
is obtained by taking ( jl d¢) integral of Eq. (30). The radial
gradient 3 2 (j (1+ E)fdé) in Eq. (37) also vanishes by
Eq. (14). From the viewpoint of the Landau equation’s

fvzd3v moment without the drift approximation, this is a
neglect of the left hand side (LHS) of

(9 oD
<Qf VV> + 6f<l’lfllf VV> o

J ZC ((ff f,,M)d3v+ 5 <Ju25fd3v>,

given by the Gauss’ theorem. This LHS being O((p, /L, )
also is given by formulas in Appendix A. This determination

of (ff[ 0>> by a balance of its collision and the surface-
averaged / = 0 source only is identical to that in cases of
b - VB = 0." Since the dependence of eigenvalues K, on fi-
nite b - VB # 0 discussed in Sec. IV is caused by the CFAS
operator in solving Eq. (34) or corresponding equatlon (38),
the lowest Legendre order / = 0 resulting CPAS (£/=%) = 0 is
irrelative to the B-field strength modulation handled i 1n these
equations. When this steady-state solution (ff 0y o
[0*v1e (3v/7/2)G(xe) + )] 'U(vy — v) is substituted in the
standard RMJ operator Eq. (31),
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= (=08, /z 5L

is obtained at the thermal Velocny range m;v® ~ Tj, and it
satisfies [, o 7 D pus Ctb((}‘fl N fm)dv = ([ Sed®v). Tt
corresponds to a particle sink term required for the steady-
state solution that is mentioned in Sec. III.

Integrals (J "ﬁd3 } with n > —2 and/or Rosenbluth
potennals O"H ((ffl 0 )) Jou", 9"G ((ff(l:o)>) Jou" for this
(ff ) can be calculated by Eq (54) and following indefi-
nite integrals or connection formulas of their v /v? < 1 and
v?/v? > 1 asymptotic limit values:

voq 1 2\ 7
v Ve
J 5.3 2 < ) (B1)
oU” v Ug
v oud 1 (02 3V3)
J;%g—(%%i), (B2)
ot +vl  2u. \v T
v prdo 1 v
——=-In[1+— B3
JOU3+U§ 3n< +v§>’ (B3)

4p3 2/3 o
(USC> +1 , (B4)
503 A h
@)

o+ 0l
v pdo v vg v
T T S48 B6
Lzﬁ—l—vg’ 3 3" +vg ’ (B6)
v v"do "2 <n—|—lvg )1
= —+1 f > 6. B7
Llﬁ-l—l)g n—2 n—2v3+ o = B7)
v*dv

Except lo e numerical calculations of a slow velocity
range v° / v> < 1 of mathematically exact integral formulas
often cause nlnlrpencal errors violating an obvious fact
0< [y Lﬁndlﬂ <= +/1"‘ To avoid these errors, they should be
replaced by connection formulas as listed here.

Since the second term in Eq. (54) is not important as
long as v} < (3\/_/4)2 32T./me, here we regard Egs.
(B1)—~(B5) as basic characteristics of f ”(f (=0 >dv While
we included fast ions’ pressures p. ¢, p|r in the MHD equilib-
rium in Sec. II motivated by experimental results suggesting
their effects,'*!* we simultaneously assumed in Sec. III that
the density n¢ is negligible in other summations, such as
> seangand >, Crp(f,fp). This assumption is partly based
on a characteristic of (| v"f;d>v) integrals, in which fast ions
in a high-energy range v > v, do not effectively contribute to
them when their n values are small (n < 0). The Rosenbluth
potentials given by these 1ndeﬁn1te 1ntegrals will be useful
for checking whether Cu¢(fa1, <fr >) is negligibly smaller
than )", 2t Cab (fa1,fom) in  thermal particles’ kinetic
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equations a # f Although formulas in Secs. III-V allow a
possibility of v2 ~ (3v/7/ 4)2/ 32T, /m., the averaged fast ion
energy given by Egs. (B3) and (B5) is (pf)/{(ng)/ms <
T./m. in many practical cases. As long as 3(ps)/(ng)/my <
(2/y)Te/me [Iny = 0.57722: Euler’s constant], the Coulomb
logarithm In Ag. = In A¢¢ is that for usual electron-ion tem-
perature relaxation where |v — v/|* = (2/7)(Te)/me is used
in the logarithm (Eq. (6.4) in Ref. 37). For collisions between
thermal and fast ions, |v — v'|* = min[3(p¢)/(ns) /mg, v?] is
used in the logarithm In Ag, = In Ay (@ # €). This maximum
value limit is due to the fact that the high energy range v >
v. does not contribute to Egs. (C2) and (C3) of the f-i, i-f
collisions because of Egs. (B1) and B2) Iti 1s also a reason
for this InAf, = InAg that (ff ) nd f inv > v
are insensitive to v and Z,. This characteristic of Egs. (B1)
and (C3) explains also why the momentum input to target
ions is sensitive to the finite ((1 — B /BM)l/ %) # 0, while the
input to electrons is insensitive, as shown in Sec. V.

APPENDIX C: INTEGRAL FORMULAS FOR THE TEST
PARTICLE PORTION

Firstly, a partial integral formula for the energy scatter-
ing term in Eq. (31) is shown. An integration by parts gives

< 0 mgv 0O
L v %{G(xh)v<T—b+%>fa}dv

= o) (" n s 02 )]
—l—nJoo UH{M—F (n— 1)G(x;,)

0 v

_<1 _|_m> mbG(U )}fa Zdl) (C1)

T

When a low energy limit of f,(v, &, ¢) has a form in which
the v — 0 limit of Legendre order /is — v/P7"(¢), fu(v — 0)
in this first term vanishes for energy space weighting of
n > —I. For example, when n = —1 is chosen for calculating
the lowest Legendre order / = 0,

G(xp) (mav2 8) (10)]00_ 2 o).
|: v T}, ‘l‘l‘l‘vav fa 0_3\/EUbea (U_O)

remains. This kind of energy space weighting should be
avoided since velocity distribution functions handled in neo-
classical theories are approximated functions in which only
a limited number of fv]Pl(é)Lj(lH/z)( ) Cap (furfy)d>v and
[v'P(&
local values in the energy space are not guaranteed.
Therefore, Eq. (C1) should be used with the energy space
weighting of n > —[ (Only the second term is used.).
General fv"P[(é)Ca;, . f;,M)d3V integrals are obtained by
using Eq. (C1) and a relation LP;(&) = —I(I+ 1)P;(&)/2.
For example, together with the partial integral procedure for
the field particle portion Cu(fum,fs) shown in Ref. 2,
energy/momentum exchange formulas are obtained as
follows:

oL (1+1/2) (x2)f.d’v integrals are valid. Accuracies of
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my J CCou (fart, f3)dV = —my J P Cralfos fam)d’v

my 2T,

— 3272 Na(€ah)’ InAg <ma ) ‘/ZJ

00

Phys. Plasmas 22, 092505 (2015)

1
{xaG(xa)—an:—exp(—xi)} ,[,lf"di vidv, (C2)

my J Uécab (faMafb)dSV = —myp J Uﬁcba (fbafaM)dSV

T,

Here, f, =5 [" f,d¢ is the gyro-phase-averaged velocity
distribution  function. More general m, fvéL/@/ 2 (x2)
Cap(fum, fh)d3v integral formulas for the Legendre order / = 1
are listed in Ref. 2.

Next, approximation methods in Eq. (32) for the f-e, f-i
collisions are compared with the standard RMJ results Eqgs.
(C2) and (C3). The approximations give

mg J VCre(fr, fom)dv

21 A 00 L
nZWJ G(Xe) J ffdé U3dl),
e 0 -1

=—16

mfjvécfem,feM)dSv

N 21 A 00 1 B
:_8nzwj G(x) J Efdé | v*do
T, 0 -1

for f-e collision, and

my J V*Cra(fr, fam)dv
ng(eqee)InAg, [ 1 -
:—16HZMJ J fedé | vdv,
Mg 0 —1
my J UéCfa (ﬂ‘,f;lM)d3V
> 21 Aa 00 1 _
:_SnzM(H@) J J &F ¢ | do,
ny myg 0 —1

corresponding to G(x) 2 (2x%) ™", for f-i collisions (a # e.f).
It should be noted that these approximations of Cg,(ft,fum)
(a # f) in Eq. (32) are only methods to obtain the steady-
state solution by Eq. (30) with the external source term S, as
discussed in Sec. III. Since the actual momentum/energy
transfer is governed by the standard RMJ formulas (the
fi at mpp? /2 ~ T,, T has only a function as a particle source
to the thermalized ion species with m, = mys, e, = ef), it
should be calculated by substituting the obtained steady-state
solution into Egs. (C2) and (C3).

8 ngy (eaeb)zlnAab

00 1
<1+@>J G(x,) J &f yde | vPdv. (©3)
—1

my 0
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