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Conservation laws for collisional and turbulent transport processes
in toroidal plasmas with large mean flows
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A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian
variational principle to yield the governing equations for background and turbulent electromagnetic
fields and gyrocenter distribution functions, which can simultaneously describe classical,
neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the
order of the ion thermal velocity. Noether’s theorem modified for collisional systems and the
collision operator given in terms of Poisson brackets are applied to derivation of the particle,
energy, and toroidal momentum balance equations in the conservative forms, which are desirable
properties for long-time global transport simulation. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4975075]

Profiles of background E x B and toroidal flows are
regarded as key factors, which influence magnetic plasma
confinement although severe accuracy requirements for
theoretically predicting those flow profiles are sometimes
controversial among recent studies based on the low-flow
ordering'™ in which the background flow velocity V is
assumed to be of O(dvr;). Here, vy; is the ion thermal veloc-
ity and 0 ~ py;/L < 1 represents the ordering parameter
defined by the ratio of the ion thermal gyroradius p; to the
background gradient scale length L. On the other hand, under
the high-flow ordering Vo = O(vr;),"** the toroidal momen-
tum transport equation that determines the background radial
electric field profile can be derived with the same-order accu-
racy as the particle and energy transport equations. As a
modern theoretical technique, the Lagrangian variational
principle'®!"'>1® is used for deriving the gyrokinetic equa-
tion to investigate transport processes in magnetized plas-
mas. However, useful properties of this principle such as
Noether’s theorem are originally applied only to collisionless
systems'>™'7 although our previous work'® clarifies how
Noether’s theorem can be modified to evaluate collisional
effects on conservation laws. In this study, we present a
novel formulation of collisional and turbulent transport in
toroidal plasmas under the high-flow ordering by generaliz-
ing the previous study to derive governing equations for
background and turbulent electromagnetic fields and gyro-
center distribution functions, which satisfy conservation
laws for particles, energy, and toroidal momentum.

We here use the gyrocenter coordinates denoted by
Za = (Z;)izl,.._ﬁ = (Xda Uaa Has £Q)7 where Xm Uw Has and iu
represent the gyrocenter position, parallel velocity, magnetic
moment, and gyrophase angle, respectively. The single-
particle Lagrangian L, for species @ with the mass m, and
the charge e, is written as

LH:P;-X”?uaéa—Ha, )
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where - = d/dt represents the time derivative and H,, is the
single-particle Hamiltonian [see Eq. (2)]. The canonical
momentum is denoted by P, = (e,/c)A] and A is defined
by A’ = Ag + (mac/eq)(Usb + Vo), where Ay, b = By/By,
and Vo = V;V{ = V’e; are the vector potential for the equi-
librium magnetic field By = V x Ay, the unit vector parallel
to By, and the background toroidal flow, respectively, and
they are all regarded as functions of (X, #). The contravariant
basis vector in the toroidal direction is given by e; = R*V{
with the toroidal angle { and the major radius R = |V{| .
Under the high-flow ordering, we have Eg + Vo x By/c =0,
where the zeroth-order electric field E, is given by
E(=-V®, and the zeroth-order potential @ is a flux-surface
function.® Then, the component of V,, perpendicular to By is
written as (Vo), = Vgo = (c¢/By)(Eo x b), and we obtain V¢ =
—c0®y/ Oy, where y=—Ay; gives the poloidal flux of the
equilibrium field B, divided by 2.
The single-particle Hamiltonian H,, is written as

1
H, = e,y + 5ma|Ualo +Vol* + wBo + H', + eV, (2)

where e,y is the dominant term of (5 '), while
Img|Ugb + Vo|* and p,By are of O(6°). The toroidal flow V,
also induces the O(d) part of Hamiltonian defined by H,

= (myc/eq) i, |30+ (V x Vo) + VW], where W;=—(RBy) "'

(VR-Vz)+3bb-(Vxb) is included to take account of
Littlejohn’s gyro-gauge-dependent term'® and reproduce the
equations for the parallel acceleration dU,/dt and the change
rate of the kinetic energy correctly up to O(9). The turbulent
fields are included in ¥, which is defined in terms of the
first-order potential fields ¢, and A; as

€q 2 €y 0
A2, — Z
2m,c? (A4l >g" 2B

W= (), + ()., @

Published by AIP Publishing.
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where Y, = ¢y (X, + por1) — ¢ (Vo + V) - At (Xo + p,01)
and p, =b x v/, /Q,. The velocity v/ observed from the
rotating frame is written as v, = U,b — [2u,Bo/mq)"
[sin &, e; + cos &, e;], where the unit vectors (e;, €5, b) form
a right-handed orthogonal system at (X, #). The gyrophase-
average and gyrophase-dependent parts of an arbitrary peri-

odic function Q(¢,) are denoted by (Q). = $dE,0(&E,)/

(2n)and Q = Q — (Q).,, respectively.
Now, the Lagrangian for the whole system is given by

L=>" Jd6Zo Dy(Zo,10)F(Z0, 10)Lalz, -7,z 1) + L @)
a

where [d°Zy = [d®Xo [ dUo [;° dug fozn dé, represents
the integral with respect to the initial gyrocenter coordinates,
F(Zy, ty) is the particle distribution function at the initial
time fo, and Ll _z (7, 18 given by Eq. (1) with
Z,=71.,Zy, to; t), which represents the gyrocenter phase
space trajectory at the time ¢ satisfying the initial condition,
Z,(Zy,to;t9) = Zo. The Jacobian is given by D, = BZH/ma,
where B =B, -band B, = V x A_. The Lagrangian asso-
ciated with electromagnetic fields is defined by L; = [ X
Ef with

1
Ly = 8—n[|V(‘Do + )P = |V x (Ao + Ay
A BV =V V) VA
4n 0 x 47c 0
+ VAL (5)
4me

1

The variational principle, 0Z = J;IZ Ldt = 0, yields the
gyrocenter motion equations and the equations for the back-
ground and turbulent electromagnetic fields. The Lagrangian
undetermined multipliers A, a, and A are introduced in Eq.
(5) to impose constraint conditions By =V x Ag =1IV{
+V{xVy, V-Ay=0, and V- A, =0, respectively. The
gyrokinetic Poisson equation is obtained from the condition
0T /o¢, = 0as'’

V- (Bp + 4nPP) = 47 Z e,n'&), (6)

where the longitudinal part of the electric field E = -V
(@ + ¢y) —c'O(Ag + Ay)/0t is denoted by E, = -V
(Do + ¢,) = Eo + Ey.; (the subscript L represents the longi-
tudinal part of the vector), the gyrocenter density is given by
n&)(X,1) = [d*v(&) F,(Z,1), and the polarization density is
written as'’

o o~ (1)
P2

a n=0

" (DaF3puPuiy * Paiy)
3 (gc) alVal ai; ai,
X Z Jd v X, 9%, )

i15eensin

Here, [d*v®®) = [dU [du [ dED,(Z,1) represents the inte-
gral over the gyrocenter velocity space, p, is the ith
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Cartesian component of p,, and F*=F,+ (eq,/Bo)
(0F,/0u). From 0Z/0®y =0, we obtain the surface-
averaged gyrokinetic Poisson equation

<V4 EL> _ Z €g<}’l£,gc) v/
s

a

b . e, OV
N @Pv®F, —x [ X, — V) — L1
“ ' {QX< ’ maavo)

2cp Vi
R > —
Tear” } IVl v

([ a3t o g,
([ 5t w)D, ®

where (---) represents the flux-surface average. Equations
(6) and (8) give two conditions to determine ¢; and @,.
Instead of Eq. (8), we can also use the toroidal momentum
balance given later in Eq. (21). The equations necessary for
determining the other fields Ay, Ay, I, ¥, A, o, and A are
derived from the conditions 6Z/5Ag = 0Z/0A, =0, 6Z /5l
=0Z/0y=0,V-Ag=V -A;=0,and By =V x Ay =1V(
+V x vy

The gyrocenter motion equations are derived from 0Z/
0Z, =0 as

dZ,
dt

e, OA),
= {Za;Ha} + {Zayxa} ? ot -

(€))

Here, nonvanishing Poisson brackets between the gyrocenter
coordinates are obtained from Eq. (1) as {X,,X,} = ¢ (b x

I)/(eaBZH), {Xa,Uat = BZ/(m,,BZ”) and  {&, 1.} = e/
(mgc). We now consider the gyrokinetic Boltzmann equation
for the distribution function F(Z, 1)

(g_;’_dza.i
ot dt 0L

)F“ = Z <Cab[Fava]>€“ +S5, = K:a, (10)

where C,,[F,, F)] represents the rate of change in F, due to
Coulomb collisions between particle species a and b and S,
is an external source term. Here, F', is assumed to be inde-
pendent of the gyrophase ¢. When K, = 0, Eq. (10) reduces
to the gyrokinetic Vlasov equation for which Noether’s theo-
rem can be applied to derive conservation laws of energy
and toroidal momentum from symmetry plroperties.17
However, even if K, # 0, we can still derive the energy and
toroidal momentum balance equations from Noether’s theo-
rem modified using the correspondence relation between
OFY /0t and OF,/0t — K,, where F" and F, represent the
solution of Eq. (10) for K, =0 and that for K, # 0,
respectively.'®

In Ref. 18, a gyrokinetic collision operator is con-
structed under the low-flow ordering such that collisional
terms in the particle, energy, and momentum equations are
represented by the divergences of the classical transport
fluxes. To obtain similar representations for the high-flow
case, we here follow Burby ez al.*® and use Poisson brackets
to write the collision operator as
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Cab[Fath

= —Uab Z{xalvyl (1)

where o, = 27re e}%ln/\ and InA is the Coulomb logarithm.
Here, x,,; and yI are the ith Cartesian components of the par-
ticle position vector x, = X, + p, and the vector y**, respec-
tively, the latter of which is defined by

‘yah(Za) = Jd6ZbDb(Zh)5[Xa(Za) — Xh(Zb)}U(llab) . Aab7
(12)

with ua;, = {x,,H,} — {xp,Hp}, U(u) = (4’1 — uu)/u? and
Aa;, = ( ){X},,F},(Zh)} F],(Z},){Xa, a( )} Then, we
can show that the integral of the collision operator with
respect to the gyrocenter velocity variables (U, p,, &,) at the
fixed gyrocenter position X, =X does not vanish, but it is
given in the divergence form as

Jd%ég” Cab[Fa, Fy] = =V - TG, (X), (13)
where V = 9/0X and
Loy = ~%b Jd%ég“{xa,xa} Ly (14)

represents the classical particle flux due to finite gyroradii
and collisions between the species a and b.'® In addition, Eq.
(11) can be used to derive the integral formulas representing
the divergences of energy, toroidal momentum, and entropy
fluxes at the gyrocenter position X, =X, =X as

[0t Contt | 4 Crutth =~ Q5+ Q5.
Jd3 08 CpPS, + Jd3 0 CpaPlyy = =V - (MG, + 105,

—Jd3u§,g°> Cap(logF, +1) — Jd3< Cpa(logFp + 1)
= gy — V- (I + T500)- (15)

Here, the energy flux st is defined by

ng = —Ugp “

X

n

H X Xa - y”"—&-z

n+1

([ v - '{Xa;Ha}):|.

6 all'

Pui, PV
-0X,i,

[T

(16)

The toroidal momentum flux th: and the entropy flux Jgab
are defined by the right-hand side of Eq. (16) with H,
replaced by P, and f(logF + 1), respectively, and the
entropy productlon rate 65 o 18 given by

afb(X) = oty JdéZa Jd(’ZaDané(xa —x5)0(x, — X)

X (FaF3) "' Agp - U(ugp) - Agp. (17)

Phys. Plasmas 24, 020701 (2017)

With the formula a-U(u)-a=u3[a*?® — (a-u)’] >0, Eq.
(17) proves ag,, >0, which represents the second law of
thermodynamics.

Now, using Egs. (10) and (13), we obtain the particle
balance equation

(e
6’;"[ +v- (9 +re) = Jd3u(g°> Se (8)

&) = pleu(e) = [@oled) F vl vie) = X, /dr

and TS = 3, TS, . Flux-surface-averaging Eq. (18) gives
9 (1] (&) 9 (i) | e
S (v () + (v(r +1¢ = nfu) - vs))

_ v’< Jd3u(g°> sa>, (19)

where s is an arbitrary label of a flux surface, V' = 9V (s, 1)/ Os,
V(s, ) is the volume enclosed by the flux surface, and u, is
defined by u; = 9X(s, 6, {, 1) /Ot with the flux coordinates (s, 6,
{). In the same manner as in Ref. 18, we use the modified
Noether’s theorem and the collision term in Eq. (11) to derive
the energy and toroidal momentum balance equations written as

where

D ronieny 4 9 (o .
S(V(E) + 5 (VU@ — €' - V)

=V Z < Jd3v<gc) Su(H, — eaCDO)> (20)

a

and

9 (v 1 (ol EL> ,
8I<V<PVQ+C<PL Jr47r Vi

9 X s Cx)S 1
+&[V/{ ve Mg + (M) =~ (41:(V x By) - Vs)
1 . 1 Joh
4E<EL1CEL1+BIC31>+47TC<8CA1>

la}{(s, I) (pol) EL
o P+ ta) V)~ (Pt - V)]

c

:V’Z<Jd3v(g°> Sama(UbC+Vg)>, 21)

a

respectively. In the particle, energy, and toroidal momentum
balance equations given by Egs. (19)—(21), effects of the
time-evolving background magnetic field are included
through u; - Vs, which represents the radial motion velocity
of the flux surface. The energy density £ and the toroidal
momentum density Py are defined by

2
Vo+v, - +Hy,

& = ZJd%ﬂge) F<%

a

A
2B, O

.24, m) " G

1
8_(|V((1>0+¢1)| Jr|BOJFBI| )5 (22)
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and Py =3, [d*v&) Fm,(Ub; + V;), respectively. In
Eq. 2D, IT,, =3 ( [ @0 Fym,(Uby + Vi )v(e) - Vs)
represents the radial flux of the toroidal momentum due to
gyrocenter motion and contains both collisional and turbu-
lent effects, while the residual turbulent and collisional
fluxes of the toroidal momentum are denoted by Ily, and

(TT®*)’, respectively, which are both caused by finite gyrora-
dii.'® In Eq. (20), Q contains collisional and turbulent energy
transport fluxes and the Poynting energy flux. The classical
energy flux Q" included in Q and the radial flux (IT*)* of
the toroidal momentum are written as Q“* = >°_(QS — ¢,
CDOFS) and (HC*)S = ZA[H% + (e,,/c)xl“g] - Vs), respec-
tively, where Q¢ = 3, Q5 and I, = 3°, TIS,.. Equations
(19), (20), and (21) have the external source terms on the
right-hand sides and take the conservative forms on the left-
hand sides where collisional effects are included.

To compare the present results with those from the con-
ventional recursive and WKB techniques,®®'? we represent
an arbitrary physical variable Q by the sum of the average
and fluctuation parts, Q = (Q),.. + Q, where (- --),, repre-
sents the ensemble average. We here write Ag = (A),,, A1

= A, ®) = (D), and ¢, = (¢).. + ¢. The lowest-order

distribution function is given by fyo ENu(ma/ZnTu)3/ 2

exp(—e¢/T,), where N, and T, are flux-surface functions and
€ =1mU? + By + eo(p—(}))ens — Sm,V2.°™® The fluctua-
tion part of F, is written as F, = _faO€a<l]ja>é/Ta + h,.
Then, the fluctuation part of Eq. (10) is found to agree, to
O(d), with the gyrokinetic equation for h, obtained from
using the WKB representation,'? while the linearized drift
kinetic equation for the neoclassical transport theory®™® can
be derived from the average part of Eq. (10).

The ensemble-averaged particle, energy, and toroidal
momentum balance equations derived from Egs. (19), (20),
and (21) are all consistent with the results from the conven-
tional recursive formulations.'? As an example, the ensemble
average of Eq. (21) is written as

%(V’<pm<l +lf'4;) V;>>
aﬁ Z{Ha<pm(l+%>vg(us.vs)>}

[(E)en (E)ens + ELE + BB

+(V x B)A] .eg>>D

=V < Jd308ama(Ubg + v¢)>, (23)

a

where p,, = > naom, =y, mq jd3vfa0, vpa = R7YVy|/
(47rpm)l/ 2 and ((---)) represents a double average over the
flux surface and the ensemble. The transport ordering
0/0t = O(8%) and S, = O(5?) are used in Eq. (23) where all
terms are of ((6°) and other higher-order terms are
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neglected. The momentum flux I, including collisional and
turbulent effects is written as

_ Ma (4) _Ma | 3 2
Ha_ X’ <—I’laV(EZ —2—%Jd UCavg

Y
+Jd3vvg<ha (;pg' >ens>, (24)

where EEA) = —c1(0Ao/0t) - e;, Ca =, Cop and v = e;
(Vo + V). The toroidal momentum balance given by Egs.
(23) with (24), which describes the evolutions of the toroidal
flow and background radial electric field profiles, agrees
with the result from the recursive method in Ref. 12 except
that, in Ref. 12, the background field B is assumed to be sta-
tionary and uy does not appear.

In summary, the Lagrangian variational principle and
the collision operator represented in terms of Poisson brack-
ets are combined for presenting the new gyrokinetic formula-
tion to derive governing equations of background and
turbulent electromagnetic fields and gyrocenter distribution
functions for toroidally rotating plasmas. They satisfy the
particle, energy, and toroidal momentum balance equations,
which, except for the external source terms, are written in
the conservative forms suitable for long-time global trans-
port simulation®'* to pursue evolutions of the background
density, temperature, and flow profiles. These balance equa-
tions contain all classical, neoclassical, and turbulent trans-
port fluxes, which, in the scale-separation limit, coincide
with those derived from conventional recursive formulations.
Especially, in the present high-flow case, the background
radial electric field can be determined from the toroidal
momentum balance equation of the second order, which is in
contrast with the low-flow axisymmetric case where higher-
order accuracy is required to determine the radial electric
field.

This work was supported in part by the Japanese Ministry
of Education, Culture, Sports, Science, and Technology
(16K06941, 26820398, and 26820401) and in part by the
NIFS Collaborative Research Programs (NIFS16KNTTO035
and NIFS16KNST096).
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