
Conservation laws for collisional and turbulent
transport processes in toroidal plasmas with large
mean flows

言語: eng

出版者: 

公開日: 2021-07-28

キーワード (Ja): 

キーワード (En): 

作成者: SUGAMA,  Hideo, NUNAMI,  Masanori, Nakata,

Motoki, Watanabe,  T.-H.

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10655/00012613URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Phys. Plasmas 24, 020701 (2017); https://doi.org/10.1063/1.4975075 24, 020701

© 2017 Author(s).

Conservation laws for collisional and
turbulent transport processes in toroidal
plasmas with large mean flows
Cite as: Phys. Plasmas 24, 020701 (2017); https://doi.org/10.1063/1.4975075
Submitted: 25 October 2016 • Accepted: 12 January 2017 • Published Online: 01 February 2017

H. Sugama, M. Nunami, M. Nakata, et al.

ARTICLES YOU MAY BE INTERESTED IN

Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows
Physics of Plasmas 5, 2560 (1998); https://doi.org/10.1063/1.872941

Eulerian variational formulations and momentum conservation laws for kinetic plasma
systems
Physics of Plasmas 25, 102506 (2018); https://doi.org/10.1063/1.5031155

Improved linearized model collision operator for the highly collisional regime
Physics of Plasmas 26, 102108 (2019); https://doi.org/10.1063/1.5115440

https://images.scitation.org/redirect.spark?MID=176720&plid=1650557&setID=377252&channelID=0&CID=601062&banID=520541066&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=dbfa8be07b118451e51be8792a6c6154e48e7ddf&location=
https://doi.org/10.1063/1.4975075
https://doi.org/10.1063/1.4975075
https://aip.scitation.org/author/Sugama%2C+H
https://aip.scitation.org/author/Nunami%2C+M
https://aip.scitation.org/author/Nakata%2C+M
https://doi.org/10.1063/1.4975075
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4975075
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4975075&domain=aip.scitation.org&date_stamp=2017-02-01
https://aip.scitation.org/doi/10.1063/1.872941
https://doi.org/10.1063/1.872941
https://aip.scitation.org/doi/10.1063/1.5031155
https://aip.scitation.org/doi/10.1063/1.5031155
https://doi.org/10.1063/1.5031155
https://aip.scitation.org/doi/10.1063/1.5115440
https://doi.org/10.1063/1.5115440


Conservation laws for collisional and turbulent transport processes
in toroidal plasmas with large mean flows

H. Sugama,1,2 M. Nunami,1,2 M. Nakata,1,2 and T.-H. Watanabe3

1National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
2Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292,
Japan
3Department of Physics, Nagoya University, Nagoya 464-8602, Japan

(Received 25 October 2016; accepted 12 January 2017; published online 1 February 2017)

A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian

variational principle to yield the governing equations for background and turbulent electromagnetic

fields and gyrocenter distribution functions, which can simultaneously describe classical,

neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the

order of the ion thermal velocity. Noether’s theorem modified for collisional systems and the

collision operator given in terms of Poisson brackets are applied to derivation of the particle,

energy, and toroidal momentum balance equations in the conservative forms, which are desirable

properties for long-time global transport simulation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975075]

Profiles of background E�B and toroidal flows are

regarded as key factors, which influence magnetic plasma

confinement although severe accuracy requirements for

theoretically predicting those flow profiles are sometimes

controversial among recent studies based on the low-flow

ordering1–5 in which the background flow velocity V0 is

assumed to be of OðdvTiÞ. Here, vTi is the ion thermal veloc-

ity and d � qTi=L� 1 represents the ordering parameter

defined by the ratio of the ion thermal gyroradius qTi to the

background gradient scale length L. On the other hand, under

the high-flow ordering V0 ¼ OðvTiÞ,6–14 the toroidal momen-

tum transport equation that determines the background radial

electric field profile can be derived with the same-order accu-

racy as the particle and energy transport equations. As a

modern theoretical technique, the Lagrangian variational

principle10,11,15,16 is used for deriving the gyrokinetic equa-

tion to investigate transport processes in magnetized plas-

mas. However, useful properties of this principle such as

Noether’s theorem are originally applied only to collisionless

systems15–17 although our previous work18 clarifies how

Noether’s theorem can be modified to evaluate collisional

effects on conservation laws. In this study, we present a

novel formulation of collisional and turbulent transport in

toroidal plasmas under the high-flow ordering by generaliz-

ing the previous study to derive governing equations for

background and turbulent electromagnetic fields and gyro-

center distribution functions, which satisfy conservation

laws for particles, energy, and toroidal momentum.

We here use the gyrocenter coordinates denoted by

Za ¼ ðZi
aÞi¼1;…;6 ¼ ðXa;Ua; la; naÞ, where Xa, Ua, la, and na

represent the gyrocenter position, parallel velocity, magnetic

moment, and gyrophase angle, respectively. The single-

particle Lagrangian La for species a with the mass ma and

the charge ea is written as

La ¼ Pc
a � _Xa þ

mac

ea
la

_na � Ha; (1)

where : � d=dt represents the time derivative and Ha is the

single-particle Hamiltonian [see Eq. (2)]. The canonical

momentum is denoted by Pc
a � ðea=cÞA�a and A�a is defined

by A�a � A0 þ ðmac=eaÞðUabþ V0Þ, where A0; b � B0=B0,

and V0 � Vfrf � Vfef are the vector potential for the equi-

librium magnetic field B0 ¼ r� A0, the unit vector parallel

to B0, and the background toroidal flow, respectively, and

they are all regarded as functions of (Xa, t). The contravariant

basis vector in the toroidal direction is given by ef � R2rf

with the toroidal angle f and the major radius R ¼ jrfj�1
.

Under the high-flow ordering, we have E0 þ V0 � B0=c ¼ 0,

where the zeroth-order electric field E0 is given by

E0¼ –rU0 and the zeroth-order potential U0 is a flux-surface

function.6 Then, the component of V0 perpendicular to B0 is

written as ðV0Þ? ¼VE0�ðc=B0ÞðE0�bÞ, and we obtain Vf¼
�c@U0= @v, where v¼�A0f gives the poloidal flux of the

equilibrium field B0 divided by 2p.

The single-particle Hamiltonian Ha is written as

Ha ¼ eaU0 þ
1

2
majUabþ V0j2 þ laB0 þ HV

a1 þ eaWa; (2)

where eaU0 is the dominant term of Oðd�1Þ, while
1
2

majUabþ V0j2 and laB0 are of Oðd0Þ. The toroidal flow V0

also induces the OðdÞ part of Hamiltonian defined by HV
a1

�ðmac=eaÞla
1
2
b �ðr�VE0ÞþVfWf	

h
, where Wf��ðRB0Þ�1

ðrR �rvÞþ1
2
bfb �ðr�bÞ is included to take account of

Littlejohn’s gyro-gauge-dependent term19 and reproduce the

equations for the parallel acceleration dUa/dt and the change

rate of the kinetic energy correctly up to OðdÞ. The turbulent

fields are included in Wa, which is defined in terms of the

first-order potential fields /1 and A1 as

Wa � hwaina
þ ea

2mac2
hjA1j2ina

� ea

2B0

@

@l

�
~wa

� �2�
na
; (3)
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where wa � /1ðXa þ qa; tÞ � c�1ðV0 þ v0aÞ � A1ðXa þ qa; tÞ
and qa � b� v0a=Xa. The velocity v0a observed from the

rotating frame is written as v0a ¼ Uab� ½2laB0=ma	1=2

½sin na e1 þ cos na e2	, where the unit vectors (e1, e2, b) form

a right-handed orthogonal system at (Xa, t). The gyrophase-

average and gyrophase-dependent parts of an arbitrary peri-

odic function Q(na) are denoted by hQina
�
Þ

dna QðnaÞ=
ð2pÞ and ~Q � Q� hQina

, respectively.

Now, the Lagrangian for the whole system is given by

L ¼
X

a

ð
d6Z0 DaðZ0; t0ÞFaðZ0; t0ÞLajZa¼ZaðZ0;t0;tÞ þ Lf ; (4)

where
Ð

d6Z0 �
Ð

d3X0

Ð1
�1 dU0

Ð1
0

dl0

Ð 2p
0

dn0 represents

the integral with respect to the initial gyrocenter coordinates,

Fa(Z0, t0) is the particle distribution function at the initial

time t0, and LajZa¼ZaðZ0;t0;tÞ is given by Eq. (1) with

Za¼Za(Z0, t0; t), which represents the gyrocenter phase

space trajectory at the time t satisfying the initial condition,

ZaðZ0; t0; t0Þ ¼ Z0. The Jacobian is given by Da � B�ak=ma,

where B�ak � B�a � b and B�a � r� A�a. The Lagrangian asso-

ciated with electromagnetic fields is defined by Lf �
Ð

d3X

Lf with

Lf ¼
1

8p
½jr U0 þ /1ð Þj2 � jr � A0 þ A1ð Þj2	

þ K
4p
� B0�Irf�rf�rvð Þ þ a

4pc
r � A0

þ k
4pc
r � A1: (5)

The variational principle, dI � d
Ð t2

t1
Ldt ¼ 0, yields the

gyrocenter motion equations and the equations for the back-

ground and turbulent electromagnetic fields. The Lagrangian

undetermined multipliers K, a, and k are introduced in Eq.

(5) to impose constraint conditions B0 � r� A0 ¼ Irf
þrf�rv; r � A0 ¼ 0, and r � A1 ¼ 0, respectively. The

gyrokinetic Poisson equation is obtained from the condition

dI=d/1 ¼ 0 as17

r � ðEL þ 4pPðpolÞÞ ¼ 4p
X

a

eanðgcÞ
a ; (6)

where the longitudinal part of the electric field E � �r
ðU0 þ /1Þ � c�1@ðA0 þ A1Þ=@t is denoted by EL � �r
ðU0 þ /1Þ � E0 þ EL1 (the subscript L represents the longi-

tudinal part of the vector), the gyrocenter density is given by

nðgcÞ
a ðX; tÞ �

Ð
d3vðgcÞ FaðZ; tÞ, and the polarization density is

written as17

P polð Þ ¼
X

a

ea

X1
n¼0

�1ð Þn

nþ 1ð Þ!

�
X

i1;…;in

ð
d3v gcð Þ @

n DaF�aqaqai1 � � � qain

� �
@Xi1 � � � @Xin

: (7)

Here,
Ð

d3vðgcÞ �
Ð

dU
Ð

dl
Ð

dn DaðZ; tÞ represents the inte-

gral over the gyrocenter velocity space, qai is the ith

Cartesian component of qa, and F�a � Fa þ ðea
~wa=B0Þ

ð@Fa=@lÞ. From dI=dU0 ¼ 0, we obtain the surface-

averaged gyrokinetic Poisson equation

hr � ELi
4p

¼
X

a

ea

*
n

gcð Þ
a �r

�
ð

d3v gcð ÞFa

�
b

Xa
� _Xa � V0 �

ea

ma

@Wa

@V0

� �"

þ 2cl
eaXaR

rR

	
� rv

jrvj2
r

�
ð

d3v gcð Þ clFa

2eaXa
rv

� �
+
; (8)

where h� � �i represents the flux-surface average. Equations

(6) and (8) give two conditions to determine /1 and U0.

Instead of Eq. (8), we can also use the toroidal momentum

balance given later in Eq. (21). The equations necessary for

determining the other fields A0, A1, I, v, K, a, and k are

derived from the conditions dI=dA0 ¼ dI=dA1 ¼ 0; dI=dI
¼ dI=dv ¼ 0; r �A0 ¼r �A1 ¼ 0, and B0 � r�A0 ¼ Irf
þrf�rv.17

The gyrocenter motion equations are derived from dI=
dZa ¼ 0 as

dZa

dt
¼ Za;Haf g þ Za;Xaf g � ea

c

@A�a
@t

: (9)

Here, nonvanishing Poisson brackets between the gyrocenter

coordinates are obtained from Eq. (1) as fXa;Xag ¼ c ðb�
IÞ=ðeaB�akÞ; fXa;Uag ¼ B�a=ðmaB�akÞ and fna;lag ¼ ea=

ðmacÞ. We now consider the gyrokinetic Boltzmann equation

for the distribution function Fa(Z, t)

@

@t
þ dZa

dt
� @
@Z

� �
Fa ¼

X
a

hCab Fa;Fb½ 	in þ Sa � Ka; (10)

where Cab[Fa, Fb] represents the rate of change in Fa due to

Coulomb collisions between particle species a and b and Sa

is an external source term. Here, Fa is assumed to be inde-

pendent of the gyrophase n. When Ka ¼ 0, Eq. (10) reduces

to the gyrokinetic Vlasov equation for which Noether’s theo-

rem can be applied to derive conservation laws of energy

and toroidal momentum from symmetry properties.17

However, even if Ka 6¼ 0, we can still derive the energy and

toroidal momentum balance equations from Noether’s theo-

rem modified using the correspondence relation between

@FV
a =@t and @Fa=@t�Ka, where FV

a and Fa represent the

solution of Eq. (10) for Ka ¼ 0 and that for Ka 6¼ 0,

respectively.18

In Ref. 18, a gyrokinetic collision operator is con-

structed under the low-flow ordering such that collisional

terms in the particle, energy, and momentum equations are

represented by the divergences of the classical transport

fluxes. To obtain similar representations for the high-flow

case, we here follow Burby et al.20 and use Poisson brackets

to write the collision operator as
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Cab Fa;Fb½ 	 ¼ �aab

X3

i¼1

fxai; c
ab
i g; (11)

where aab � 2pe2
ae2

blnK and lnK is the Coulomb logarithm.

Here, xai and cab
i are the ith Cartesian components of the par-

ticle position vector xa ¼ Xa þ qa and the vector cab, respec-

tively, the latter of which is defined by

cabðZaÞ �
ð

d6Zb DbðZbÞd xaðZaÞ � xbðZbÞ	UðuabÞ � Aab;½

(12)

with uab � fxa;Hag � fxb;Hbg; UðuÞ � ðu2I� uuÞ=u3 and

Aab � FaðZaÞfxb;FbðZbÞg � FbðZbÞfxa;FaðZaÞg. Then, we

can show that the integral of the collision operator with

respect to the gyrocenter velocity variables (Ua, la, na) at the

fixed gyrocenter position Xa¼X does not vanish, but it is

given in the divergence form as

ð
d3vðgcÞ

a Cab Fa;Fb	 ¼ �r � CC
abðXÞ;

�
(13)

where r � @=@X and

CC
ab � �aab

ð
d3vðgcÞ

a fXa; xag � cab (14)

represents the classical particle flux due to finite gyroradii

and collisions between the species a and b.18 In addition, Eq.

(11) can be used to derive the integral formulas representing

the divergences of energy, toroidal momentum, and entropy

fluxes at the gyrocenter position Xa¼Xb¼X asð
d3vðgcÞ

a CabHa þ
ð

d3vðgcÞ
b CbaHb ¼ �r � ðQC

ab þQC
baÞ;ð

d3vðgcÞ
a CabPc

af þ
ð

d3vðgcÞ
b CbaPc

bf ¼ �r � ðPC
abf þPC

bafÞ;

�
ð

d3vðgcÞ
a Cabðlog Fa þ 1Þ �

ð
d3vðgcÞ

b Cbaðlog Fb þ 1Þ

¼ rC
ab �r � ðJC

Sab þ JC
SbaÞ: (15)

Here, the energy flux QC
ab is defined by

QC
ab � �aab

� ð
d3v

gcð Þ
a Ha Xa; xaf g � cab þ

X1
n¼0

�1ð Þn

nþ 1ð Þ!

�
X

i1;…;in

@nð
Ð

d3v
gcð Þ

a qai1 � � � qainqac
ab � fxa;HagÞ

@Xai1 � � � @Xain



:

(16)

The toroidal momentum flux PC
abf and the entropy flux JC

Sab

are defined by the right-hand side of Eq. (16) with Ha

replaced by Pc
af and �ðlog Fa þ 1Þ, respectively, and the

entropy production rate rC
ab is given by

rC
abðXÞ ¼ aab

ð
d6Za

ð
d6ZaDaDbdðxa � xbÞdðxa � XÞ

� ðFaFbÞ�1
Aab � UðuabÞ � Aab: (17)

With the formula a �UðuÞ � a¼ u�3½a2u2� ða � uÞ2	 
 0, Eq.

(17) proves rC
ab 
 0, which represents the second law of

thermodynamics.

Now, using Eqs. (10) and (13), we obtain the particle

balance equation

@n
gcð Þ

a

@t
þr � C

gcð Þ
a þ CC

a


 �
¼
ð

d3v gcð Þ Sa; (18)

where CðgcÞ
a � nðgcÞ

a uðgcÞ
a �

Ð
d3vðgcÞ FavðgcÞ

a ; vðgcÞ
a � dXa=dt

and CC
a �

P
b CC

ab. Flux-surface-averaging Eq. (18) gives

@

@t



V0
D

n
gcð Þ

a

E�
þ @

@s
V0hðC gcð Þ

a þ CC
a � n

gcð Þ
a usÞ � rsi


 �

¼ V0
�ð

d3v gcð Þ Sa

�
; (19)

where s is an arbitrary label of a flux surface, V0 � @Vðs; tÞ= @s,

V(s, t) is the volume enclosed by the flux surface, and us is

defined by us � @Xðs; h; f; tÞ=@t with the flux coordinates (s, h,

f). In the same manner as in Ref. 18, we use the modified

Noether’s theorem and the collision term in Eq. (11) to derive

the energy and toroidal momentum balance equations written as

@

@t
V0hE�i
� �

þ @

@s
V0h Q� E�usð Þ � rsi
� �

¼ V0
X

a

�ð
d3v gcð Þ Sa Ha � eaU0ð Þ

�
(20)

and

@

@t
V0 PkVfþ

1

c
P

polð Þ
L þEL

4p

� �
� rv

� � !

þ @

@s
V0 Ps

kVfþPs
Rfþ PC�ð Þs� 1

4p
hA1f r�B1ð Þ � rsi

��

� 1

4p
hEL1fE

s
L1þB1fB

s
1i þ

1

4pc

�
@k
@f

As
1

�

�1

c

@v s; tð Þ
@t

�
P

polð Þ
L þEL

4p

� �
� rs

�
� hPkVfus � rsig	

¼ V0
X

a

�ð
d3v gcð Þ Sama Ubf þVfð Þ

�
; (21)

respectively. In the particle, energy, and toroidal momentum

balance equations given by Eqs. (19)–(21), effects of the

time-evolving background magnetic field are included

through us � rs, which represents the radial motion velocity

of the flux surface. The energy density E� and the toroidal

momentum density PkVf are defined by

E� �
X

a

ð
d3v gcð Þ Fa

�
ma

2

����V0 þ v0a �
ea

mac
A1

����
2

þ HV
a1

þ e2
a

2B0

@

@l
h~wa 2 ~/1 � ~wa

� �
in
�
� P polð Þ � rU0

þ 1

8p
ðjrðU0 þ /1Þj2 þ jB0 þ B1j2Þ; (22)
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and PkVf �
P

a

Ð
d3vðgcÞ FamaðUbf þ VfÞ, respectively. In

Eq. (21), Ps
kVf �

P
ah
Ð

d3vðgcÞ FamaðUbf þ VfÞvðgcÞ
a � rsi

represents the radial flux of the toroidal momentum due to

gyrocenter motion and contains both collisional and turbu-

lent effects, while the residual turbulent and collisional

fluxes of the toroidal momentum are denoted by Ps
Rf and

ðPC�Þs, respectively, which are both caused by finite gyrora-

dii.18 In Eq. (20), Q contains collisional and turbulent energy

transport fluxes and the Poynting energy flux. The classical

energy flux QC� included in Q and the radial flux ðPC�Þs of

the toroidal momentum are written as QC� �
P

aðQC
a � ea

U0C
C
a Þ and ðPC�Þs �

P
ah½PC

af þ ðea=cÞvCC
a 	 � rsi, respec-

tively, where QC
a �

P
b QC

ab and PC
af �

P
b PC

abf. Equations

(19), (20), and (21) have the external source terms on the

right-hand sides and take the conservative forms on the left-

hand sides where collisional effects are included.

To compare the present results with those from the con-

ventional recursive and WKB techniques,6–8,12 we represent

an arbitrary physical variable Q by the sum of the average

and fluctuation parts, Q ¼ hQiens þ Q̂, where h� � �iens repre-

sents the ensemble average. We here write A0 ¼ hAiens; A1

¼ Â; U0 ¼ hUiens and /1 ¼ h/iens þ /̂. The lowest-order

distribution function is given by fa0 � Naðma=2pTaÞ3=2

expð��=TaÞ, where Na and Ta are flux-surface functions and

� � 1
2

maU2 þ lB0 þ eah/�h/iiens � 1
2

maV2
0 .6–8 The fluctua-

tion part of Fa is written as F̂a ¼ �fa0eahŵain=Ta þ ĥa.

Then, the fluctuation part of Eq. (10) is found to agree, to

OðdÞ, with the gyrokinetic equation for ĥa obtained from

using the WKB representation,12 while the linearized drift

kinetic equation for the neoclassical transport theory6–8 can

be derived from the average part of Eq. (10).

The ensemble-averaged particle, energy, and toroidal

momentum balance equations derived from Eqs. (19), (20),

and (21) are all consistent with the results from the conven-

tional recursive formulations.12 As an example, the ensemble

average of Eq. (21) is written as

@

@t
V0 qm 1þ v2

PA

c2

� �
Vf

� � !

þ @

@s

 
V0

"X
a

Pa �
�

qm 1þ v2
PA

c2

� �
Vf us � rsð Þ

�( )

� 1

4p
hhrs �

�
hEienshEiens þ ÊLÊL þ B̂B̂

þ r� B̂ð ÞÂ	 � efii
#!

¼ V0
X

a

�ð
d3vSama Ubf þ Vfð Þ

�
; (23)

where qm �
P

a na0ma �
P

a ma

Ð
d3v fa0; vPA � R�1jrvj=

ð4pqmÞ1=2
, and hh� � �ii represents a double average over the

flux surface and the ensemble. The transport ordering

@=@t ¼ Oðd2Þ and Sa ¼ Oðd2Þ are used in Eq. (23) where all

terms are of Oðd2Þ and other higher-order terms are

neglected. The momentum flux Pa including collisional and

turbulent effects is written as

Pa ¼
cma

v0

�
�naVfE

Að Þ
f �

ma

2ea

ð
d3v Cav

2
f

þ
ð

d3v vf

�
ĥa
@ŵa

@f

�
ens

�
; (24)

where E
ðAÞ
f � �c�1ð@A0=@tÞ � ef; Ca �

P
b Cab and vf � ef

�ðV0 þ v0Þ. The toroidal momentum balance given by Eqs.

(23) with (24), which describes the evolutions of the toroidal

flow and background radial electric field profiles, agrees

with the result from the recursive method in Ref. 12 except

that, in Ref. 12, the background field B0 is assumed to be sta-

tionary and us does not appear.

In summary, the Lagrangian variational principle and

the collision operator represented in terms of Poisson brack-

ets are combined for presenting the new gyrokinetic formula-

tion to derive governing equations of background and

turbulent electromagnetic fields and gyrocenter distribution

functions for toroidally rotating plasmas. They satisfy the

particle, energy, and toroidal momentum balance equations,

which, except for the external source terms, are written in

the conservative forms suitable for long-time global trans-

port simulation21–23 to pursue evolutions of the background

density, temperature, and flow profiles. These balance equa-

tions contain all classical, neoclassical, and turbulent trans-

port fluxes, which, in the scale-separation limit, coincide

with those derived from conventional recursive formulations.

Especially, in the present high-flow case, the background

radial electric field can be determined from the toroidal

momentum balance equation of the second order, which is in

contrast with the low-flow axisymmetric case where higher-

order accuracy is required to determine the radial electric

field.
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