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ABSTRACT

The linearized model collision operator for multiple species plasmas given by Sugama et al. [Phys. Plasmas 16, 112503 (2009)] is improved
to be properly applicable up to the highly collisional regime. The improved linearized model operator retains the conservation laws of
particles, momentum, and energy, and it reproduces the same friction-flow relations as derived by the linearized Landau operator so that this
model can be used to correctly evaluate neoclassical transport fluxes in all collisionality regimes. The adjointness relations and Boltzmann’s
H-theorem are exactly satisfied by the improved operator except in the case of collisions between unlike particle species with unequal temper-
atures where these relations and H-theorem still hold approximately because there is a large difference between the masses of the two species
with significantly different temperatures. Even in the unequal-temperature case, the improved operator can also be modified so as to exactly
satisfy the adjointness relations, while it causes the values of the friction coefficients to deviate from those given by the Landau operator. In
addition, for application to gyrokinetic simulations of turbulent transport, the improved operator is transformed into the gyrophase-
averaged form by keeping the finite gyroradius effect.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115440

I. INTRODUCTION collision operators have been proposed, in which simplified versions
: 17-23 23

Coulomb collisions are the main mechanism which causes classi- ~ ©f the field particle part are used. "~ As an example, Sugama et al.
cal and neoclassical transport in magnetically confined plasmas.' presented a linearized model collision operator for multiple ion species
Even though plasma confinement is generally dominated by turbulent plasmas which conserves particles, momentum, and energy and satis-

transport rather than by collisional transport, collisions still have fies adjointness relations and Boltzmann’s H-theorem even for colli-
impacts on structures of phase-space distribution functions of par- sions between unlike particle species with unequal temperatures. This

ticles, growth rates of instabilities, and micro/macroscopic profiles of
plasma flows so that they indirectly influence turbulent transport pro-
cesses as well.” "' Also, transport processes of heavy impurities with
high charge numbers which penetrate from the edge into the core
region are greatly affected by Coulomb collisions.'”"” So far, there
have been numerous works on model collision operators'® ™" for
application to theoretical and numerical studies of plasma transport.

A well-established Coulomb collision term is given by the
Landau operator’’ which is nonlinear for like-species collisions or
bilinear for unlike-species collisions. The linearized Landau opera-
tor’” " obtained by perturbatively expanding the distribution func-
tions about the local Maxwellian is more tractable than the full Landau
operator,” *” and the former is preferred to be used for transport
studies when the deviation from the Maxwellian is sufficiently small.
Since the field particle part of the linearized Landau operator is not as

easy to evaluate as its test particle part, several linearized model

model called the Sugama operator has been successfully applied to
studies of neoclassical and turbulent transport in relatively low colli-
sional regimes.”* *°

The difference between the field particle part of the Sugama oper-
ator and that of the exact linearized Landau operator is anticipated to
increase in a highly collisional regime. Even in very-high-temperature
fusion plasmas such as the ITER plasma,*'** minority impurity ions
such as tungsten are considered to remain in the Pfirsch-Schliiter
regime even though bulk ions and electrons are in the banana regime.
For such a case, it is necessary to use a collision model which is accu-
rate in all collisionality regimes. In this work, the Sugama operator is
improved to present a new linearized model collision operator, which
is appropriately applicable to all cases from low to high collisionality.
The improved model is constructed so as to give exactly the same
friction-flow relations as those derived from the linearized Landau
operator. Therefore, it can be used in drift kinetic simulations to
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accurately evaluate neoclassical transport fluxes in all collisionality
regimes. Then, it is noted that the exact friction-flow relations no lon-
ger rigorously keep the symmetry property in the case of collisions
between unlike particle species with unequal temperatures, where nei-
ther the improved model operator nor the linearized Landau operator
is completely self-adjoint. Since the self-adjointness is practically useful
for the analytical or numerical derivation of the Onsager symmetric
neoclassical transport coefficients,” """ further modification of the
improved model for the unequal-temperature case is considered in the
present paper to restore the adjointness relations by relaxing the accu-
racy of the friction-flow relations. In addition, the improved collision
operator in the form suitable for application to gyrokinetic simulations
of turbulent transport is derived by taking the gyrophase average with
the finite gyroradius effect taken into account.

It is instructive to note here that Hirshman and Sigmar'® pre-
sented a linearized model collision operator which is similar to ours in
that spherical harmonic functions and Laguerre polynomials are used
to expand distribution functions, and the key properties of the original
linearized Landau collision operator are retained. In their work,'® an
elegant and skillful method of constructing novel basis functions is
presented to approximate both test and field particle operators includ-
ing spherical harmonic functions of all degree numbers (7's) although
an explicit expression of their model collision operator is given in their
paper only for the case where spherical harmonic functions of degrees
> 2 are dropped. To satisfy the conservation laws of momentum and
energy, the field particle part of the Sugama collision operator contains
the =0 and 1 parts which are expressed using the test particle part
and take similar forms to those of the Hirshman-Sigmar operator. In
the present paper, the improved Sugama collision operator is given by
adding the correction terms into only the /=1 spherical harmonic
component of the original Sugama operator in order to correctly
reproduce the friction-flow relations which determine collisional
transport and influence turbulent transport through controlling
micro/macroscopic plasma flow profiles. However, the procedures
shown in the present work can be extended to give correction terms to
all other spherical harmonic components. It is also shown by Abel
et al”’ that, when the Hirshman-Sigmar model operator is trans-
formed to its gyrophase-averaged form for application to the gyroki-
netic equation, the problematic gyroradius dependence appears in
the energy diffusion term in the test particle operator. Therefore, for
the gyrokinetic case, our model operator is more favorable than the
Hirshman-Sigmar model operator.

The rest of this paper is organized as follows: in Sec. II, we briefly
explain the Landau collision operator and its linearization, from which
the associated matrix elements are defined to obtain the friction coeffi-
cients entering the friction-flow relations. Then, after reviewing the
definition and properties of the original Sugama operator in Sec. III,
its improved version is presented in Sec. IV, where we write down the
correction term to reproduce the same matrix elements and friction
coefficients as given by the linearized Landau operator. In Sec. V, the
improved operator is expressed in the form suitable for gyrokinetic
equations. Finally, conclusions are given in Sec. VI. In Appendix A, a
collisional energy transfer rate between unlike species with unequal
temperatures is estimated depending on the ratio between the masses
of the two species. In Appendix B, the effects of unequal temperatures
of colliding particle species on the adjointness relations and matrix ele-
ments associated with the linearized Landau operator are discussed.

scitation.org/journal/php

The detailed expressions of the matrix elements are shown in
Appendix C. In addition, Appendix D presents a modified version
of the improved operator which exactly satisfies the adjointness
relations even for collisions between unlike particle species with
unequal temperatures although it consequently makes the values of
the friction coefficients deviate from those given by the Landau
operator.

Il. LANDAU COLLISION OPERATOR AND
FRICTION-FLOW RELATIONS

The Landau operator for collisions between particle species a and
b is written as”'

Cav(fu, fp) = —%%~ U &3 U(v—V)
(V)0 (v)  foV) Ofa(v)
{rTb N me o H W
where
Ulv—V) = v—vi I—(v7|3v’)(v—v’) (2)

v—v

and In A is the Coulomb logarithm. The particle mass and charge are
denoted by m; and e, respectively, where the particle species is
denoted by the subscript s(=a, b). The distribution function f;(v) gen-
erally depends not only on the velocity v but also on the position and
time variables (x, t) although the dependence on (x, t) is not explicitly
shown here. Writing the distribution function by the sum of the equi-
librium part and the small perturbation part as f; = fi + Jf;, we
obtain

Cap(far fo) = Cap(fao, foo) + Ca(0fas fuo)
+Cab(fao, 0fp) + Cap(fa, Ofp), (3)

where the last term C,p,(9fa, 0fp) is neglected hereafter.

We now assume the equilibrium distribution functions to take
the Maxwellian form fi = fuy = (n,/7%/%v3,) exp (—v?/v2,), where
1, is the density, vr, = (27T/ ms)l/ * is the thermal velocity, and T, is
the temperature. Then, the first term on the right-hand side of Eq. (3)
is written as

Cab(famt fom) = 73\/E<% — I)f“—an

Tab

a

X {G(aabxa) - %@’(aabxa)} , (4)
where x, = 0/V1a, %ab = Ura/vTn, G(x) = [O(x) — xD'(x)]/(2x%),
®(x) =217 "/? [ e~ dt, and @' (x) = 2n~/2e~*". The collision time
T is defined as (3/7/4)1;} = 4nnpeel In A/ (m2v3,). It is easily
seen that Cup(fapr, frm) vanishes for T, = Tj,. We hereafter assume
that T, /T, = O(1). When m, /m; = O(1), we have o5, = O(1) and
Cab(fasts fomr) ~ —(Ta/Tp — 1)furr/Tap. In this case, as explained in
Appendix A, we may consider that collisions cause species a and b to
have equal temperature T, = Tj, after a time scale longer than 7,

The second and third terms on the right-hand side of Eq. (3) are
called the test and field particle parts, respectively, and the sum of
them gives the linearized collision operator

Phys. Plasmas 26, 102108 (2019); doi: 10.1063/1.5115440
Published under license by AIP Publishing

26, 102108-2


https://scitation.org/journal/php

Physics of Plasmas ARTICLE

Cov(fa, 0fs) = Cav(0fa, font) + Cav(foar, Ofp)
= Cay(0f2) + Cy (). ®)
We now expand the perturbed distribution functions df; (s = a, b) as

ofs(v) = Zéf!” (v),
;B (6)
> ()] () Y70, ),

m=—1

o (v) =

where Y]"(0, ¢) represent spherical harmonic functions and (v, 0, @)
are spherical coordinates in the velocity space. The /=1 component

5f (=1 of the distribution function Of; is further expanded in terms

of the Laguerre polynomials L3/2 (2) [L é3/2( =1 L<3/2)( 2)
=3—xZ,..]as
(=1) _ my L _E
of; fSMTSV u5—0—55<x5 3 +
[ ——
= for vy _uiL (2), @)
s =0

where x; = v/vr,. The flow vectors ug; (j = 0, 1,2, ...) are defined as

u; = ;—jjd% 5st;3/2> (x2)v,

D o
T2+ 31
For j=0 and j=1, we can write uyy = u, and ug = —(2/5)(q,/ps)>

where u; = n! [d®vdfv and q, = T; [ d®v Sfev(x? —3) represent
the fluid velocity and the heat flow, respectively.

We next use the Laguerre polynomials to expand the /=1
spherical harmonic component of the collision operator before
deriving the friction-flow relations in Eq. (12). The resultant
expansion [given below in Eq. (9)] contains the coefficients
(denoted by Cuh]) as functionals of distribution functions, into
which the express10n in Eq. (7) is substituted to define the matrlx
elements M': and N5 for representing the friction coefficients e
later. The =1 component of the collision term in Eq. (5) is wrltten
as

Cul(0f™, 0, ) = C(of) + € (6f£’:”)

_faMiv an ]L 3/2 9

Here, Coj (j = 0, 1,2, ...) are defined as

Cuy = [d3 122y )
C» . .
-2 S (M + M) (10)
% k=0

where the matrix elements MJZZ and Nﬁ’; (j,k=0,1,2,...) are given

from the test and field particle operators, respectively, as’

scitation.org/journal/php

Na ik mav
Beatl, = [den 2 ek (k) L),

Tab a

ﬁNikb = stv UHLJ@/Z)( )CF (fb 3/2 (xh) th”).

Tab Ty

(1m

In Eq. (11), v denotes the velocity component parallel to the back-
ground magnetic field although it can be replaced with the velocity
component in any other direction because of the spherical symmetry
of the collision operator.

Using the linear collision operator, the friction forces Fy; (i = 1,
2,...) are given by’

F, = (—1)" Jd3vm vL ZC (0fa, Ofp)

i1 g,
:(_1)11 £ azcah,i—l
Ci-1 o
= (-1 ZZlfjbubJ,I(i =1,2,..). (12)
b =1

Here, the first two-order friction forces are
Fo = namey ,Capo = [dPvmgvy,, and  Fa = namey.,Capo
 omyS s, Cly (0,36 = | emov (2 — 53, Ch (0 ).
The friction coefficients lgb (i,j = 1,2,...) are defined as’

M;;Ljfl Nifl.jfl
lah = N, |:(Z )51117 + u ) (13)

written as

- Tac Tab

where 0, denotes the Kronecker delta (0., = 1 fora=band o, = 0
for a # b).

From the momentum conservation in collisions [see Eq. (B8) in
Appendix B], we obtain

i TUT
MY+ TaNY — g (j=0,1,2,. 14
ub+TUb ba (] ] ) ( )
and
dort=0 (j=12,..). (15)

a

The adjointness relations for the linearized Landau collision
operator are written as

J féfa CT (6g.) = [ fg“ Cly(5f.),
(16)
T, JdSUﬁi;C (ofy) = Tp J d’v ffh Cpa(0fa)-

Strictly speaking, the linearized Landau operator satisfies the adjoint-
ness relations in Eq. (16) rigorously only for the case of T, = Tj. In
this case, the symmetry properties of M, N;b, and l“.h are derived
from Eq. (16) as

B . NY N
MU :MJ” ab_ _ _“Tba i7':071,2,... y
ab ab TaUTa TbUTh ( / )
B =1 (i,j=1,2,..). 17)

As explained in Appendix A, T, and T, are significantly different from
each other only when m,/m;, < 1 or m,/m; > 1. It is explained in
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Appendix B that, even for this case of unequal temperatures, the
adjointness relations given in Eq. (16), the symmetry properties in Eq.
(17), and Boltzmann’s H-theorem in the form shown later in Eq. (30)
are regarded as approximately valid because of the large difference
between m, and m,. We also should note that the Onsager symmetry
for collisional transport coefficients is derived from the adjointness
relations which are also used to give useful methods for solving drift
kinetic equations and evaluating neoclassical transport fluxes.' """

. SUGAMA OPERATOR

The linearized model collision operator for collisions between
species a and b given by Sugama et al.”” is written here as

Cab (fa, fs) = Cgy(9fa) + Cay (0fp)- (18)
The test-particle part C13(5f,) of the Sugama operator is defined as
Ca (8a) = Qub Cif Qv O (19)

where CZ? is defined by Eq. (B2) in Appendix B and the operator Qg
is given for an arbitrary distribution function g by

Qabg =g + (Hab - 1)(P1ag + PZag)7 (20)

with the dimensionless parameter 0,

1/2
1 1
T, —+—) 1/2
O = M = T“/Tb—_’_aﬁb . (21)

(£+£> 1+,
mg myp

The projection operators Py, and P,, are defined as

Plg = faM “a[g]
5T [g] (xa 3)7 @2

2

where w,[g]=n;' [dPvgv and OT,[g]/T. =n;"' [ dPvg(mav?/
3T, —1). The definition of 0, is given so as to satisfy
[dPomgv CaTbS(fuMmav/Tu) = [dPvmuv CaTb(faMmuv/Ta), where Cgb
represents the test particle part of the linearized Landau collision oper-
ator given in Sec. II. We here note that C5 is defined such that the
self-adjointness condition

3 5fa 3 5ga TS
jd TCHUAR jd o Cof) 23)

holds exactly even if T, # Tj.
The field particle part CE5(3f,) of the Sugama operator is given

by
ng(éfb) = —Va[0fp] - CaTbS(faMmav/Ta) - Wah[éfb]CZhS()%Mxﬁ),
(24)
where
Valof] =22 [ @02l umiv ) (25)
and

scitation.org/journal/php

Wap [5fh}

In Egs. (25) and (26)

J v 5fb CIS (). (26)

tl

Yo = Ta Jd3v(mav“/Ta)Can(ﬂMmavH/Ta)
namg Olab T, 2 )
= — —_— =+ fxa
Tap (14 02,)"? (Th !
_ 16ﬁ i’lamyezei InA ( 1 ) 27)

3 (3, +03,) P \ma my

and

nabETaJ UxC (faMx)

:7naTa 30lqp <T +OC )
Tab (1+O‘§b)5/2 Tb ab

nanpeelvz v3, [ 1 1
= 8y/min AT Ta b (_ + _> (28)
ma

(3, + 03, my

are used. We see y,, = 7, and 1., = 1, from Egs. (27) and (28),
respectively. It can be easily verified that the test-particle operator C13
and the field particle part C'3 defined in Egs. (19) and (24) obey the
conservation laws for particles, momentum, and energy. In addition,
C*S satisfies the adjointness relation

n [ @ ey = @0 Lcpon). @)
Jam Jom
It is shown in Ref. 23 that the Sugama operator satisfies
Boltzmann’s H-theorem

e J‘ff“ [CB () + CF5(6,)]
4T, Jd”v ﬁ_ﬁ [Chs (5fs) +

We also find that, for the case of m,/m; < 1, CQS and CE g coincide
with C%, and CI, of the linearized Landau collision operator to the
lowest order in (m,/m;)"/?. For the case of m,/my, > 1, C equals
CF, !, to the lowest order in (m;,/ ma) , while, for T, # Tp, CaTbS differs
from CI, by the non-self-adjoint part which remains to the lowest
order [see the paragraph 1nclud1n% Eq. (B16) in Appendix B].

The matrix elements M S and N( ik (j,k=0,1,2,...) are
defined by replacing C1, and CF +, with CI5 and Cis, respectlvely, in Eq.
(11). Slmllarly, the frlctlon coefficients l Jab' (i,j=1,2,...) are
defined using M, (% and N ¥ in Eq. (13). Then, from the momentum
conservation law satlsﬁed by CaTS and C%5, we obtain

Cis(of,)] <o. (30)

)0 TaVTa \ ()05
M N =0 =0,1,2,. 31
ab +TbUTh ba (] s 4y )7 ( )
and
S =0 (i=12..). (32)
We also have
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_ N 00
Mgy = —Ngy = M, =

(8)00
ab 7Nab ’
a S)ab
luh = l§1)

(33)

From the adjointness relations shown in Egs. (23) and (29), the sym-
metry properties of the matrix elements and the friction coefficients
are derived as

(8)ij (8)ji
®i _ i Nap N .
My~ =M,", = i,j=0,1,2,...),
ab ab Toore  Tyvmy (i.j ) (34)
Siab _ (Sba /. .
li(j)“ :l](i)“ (i,j=1,2,...).

In addition, it is found from replacing (C%,, Cf,) with (CL3, ng) i
(11) and using Egs. (24), (31), (33), and (34) that N 7 (i)

=0,1,2,...) are represented by
(8)0i 5 1(8)0j (8)i0 1 1(8)0j
N(S)IJ _ Mah lNab ’ _ Naht Nab !
ab = 00 = 0 - (35)
Mab Nub

pendix C, we ﬁnd the detailed expressions of the matrix elements
5%‘] N () 1]] and (M N ).
ab ’ ah’ ab
In the moment method,””" the neoclassical transport coefficients,
with which the radial particle and heat fluxes and the parallel current
are linearly related to the radial density and temperature gradients and
the parallel electric field, can be expressed in terms of the VlSCOSlt
coefficients and the friction coefficients. The friction coefficients l
derived from the Sugama operator do not all coincide with lf]‘b given
by the Landau operator even for the case of T, = T, (see Sec. Il A).
The dependence of the neoclassical transport coefficients on the fric-
tion coefficients becomes relatively strong in the highly collisional
regime where accurate values of the friction coefficients need to be
derived from the model collision operator for correctly describing the
neoclassical transport. In Sec. IV, the improved Sugama operator is
presented to reproduce such accurate friction coefficients.

3,50

A. Equal temperature case

When T, = T, the test particle part of the Sugama operator is
equivalent to that of the Linearized Landau collision operator

Cah = Cab, (36)

which can be easily verified from Eq. (19) with 6, = 1, Qu(g) = &,
and CI, = CI? for that case.

In this equal temperature case, we have

Mg =,
. NONY (37)
s ..
Nib),] - ;\brooab (17] = 07 17 2a )a
ab
from which we see
$)io i .
NOO—NO (i=0,1,2,...), )
($)0j _ 770 s
NYY=NY (j=0,1,2,..),
and
D = b (1=1,2,..),
il ( ) (39)

=1 (=1,2,..).
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We find from Egs. (33) and (39) that the deviations of the friction
coefficients l “ evaluated by the Sugama operator from lf]‘b by the
Landau operator appear only for i > 2 and j > 2. It is also noted that,
for collisions between particles of like species (a=0b), the Sugama
operator is equivalent to the linearized model collision operator given
in Refs. 18, 19, and 22.

IV. IMPROVED SUGAMA OPERATOR

The improved Sugama operator C5 "™ is defined by adding the
correction part ACL to the original one CL5

CHI™) (6f,., fy) = CL(0fu, 0fs) + ACE (3o, 0fy). (40

In order for C* o SGmp) g, reproduce the same friction-flow relations and
friction coefficients as those in Eqs. (12) and (13) derived from the lin-
earized Landau collision operator C’;b, the correction term
ACE (8fa, fy) is defined as

ACLS (3f,., ofy) faM v ZACab] [0fa, OfILYP (:2),  (41)

with

ACofu 3] = =2~ (AM wic[of -+ AN sl o)

% k=0
0:0,1,2,...), (42)

where uak_iéfa} and wuy[0f;] are evaluated using Eq. (8). The correc-
tions AM!; and AN’} of the matrix elements are defined as

ik _ ok (8)jk
AMizh = M{;h - Mabj )

00 nk _ A7(8)j0£7(S)0k (43)
jk — Ak )k _ NapNap — Nay~ Nay
ANy, = Njj, — Np, " = —#—= NoéZ —,
where the matrix elements MJ and N b [M and Mc(ds?)jk] are given

using the test and field partlcle parts of the Landau operator (the origi-
nal Sugama operator) in Eq. (11). From Eq. (33), we immediately find

AM% = AN% = 0. (44)

Using the improved Sugama operator Cs:(lmp) defined by Eqs.
(40)-(42) instead of the linearized Landau collision operator C% o to
evaluate the matrix elements and friction coefficients in Eqs. (11) and
(13), we can confirm that Css(lmp) still gives the same values to
MY, N! y »> and l“b as CL, does, and accordingly, the improved operator
correctly reproduces the friction-flow relations in Eq. (12) derived
from the Landau operator, and it retains the conservation laws of par-
ticles, momentum, and energy. Therefore, we can expect that the clas-
sical and neoclassical transport fluxes are accurately evaluated using
the improved operator up to the hlghly collisional regime.

As shown in the literature,””" in order to correctly describe the
neoclassical transport for the case where all particle species belong to
the Pfirsch-Schliiter collisionality regime, we need accurate values for
at least the part of the friction coefficients lgb with 7,7 =1,2,3.
Accordingly, in this highly collisional case, truncation of the summa-
tion ) ;and 3 in Egs. (41) and (42) should not be done unless the
terms with j < 2 and k < 2 are retained. When the truncation is done
such that AM% and AN with k < kax (kmax: an arbitrary integer
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number) are included, the matrix elements associated with the
improved operator satisfy the relations given in the same form as in
Egs. (14) or (31) so that the momentum conservation law and the con-
servation laws of particles and energy still hold.

We note here that the correction term ACL (3f,, of;) is given for
only the /=1 spherical harmonic component of the Sugama operator
to correctly reproduce the friction-flow relations which are regarded as
an important factor in accurate evaluation of collisional transport and
flow profiles influencing turbulent transport. As pointed out in Ref. 3,
since the spherical harmonic function of degree I is an eigenfunction
of the pitch-angle-scattering operator included in the test particle colli-
sion part with an eigenvalue proportional to —I(I + 1), the test particle
part tends to be more dominant over the field particle part as [ is
larger. Also, in the highly collisional regime, anisotropic components
of the distribution function represented by the spherical harmonic
functions of higher I's are considered to be stronger damped. Thus,
without correction terms in the ] > 2 spherical harmonic components
of the field particle part, the improved operator is expected to work
accurately for describing the distribution function at high collisional-
ity. Besides, in principle, we can extend our procedures to add correc-
tion terms to all other spherical harmonic components similarly with
the approximation method of Hirshman and Sigmar.'® Then, the
Landau field particle operator is recovered by using spherical har-
monic functions and Laguerre functions of all degrees.

As described in Appendix B, the adjointness relations, the resul-
tant symmetry properties for M’ N, and lgh in Eq. (17), and
Boltzmann’s H-theorem in the form of Eq. (30) are not exactly but
only approximately satisfied by the linearized Landau operator and the
improved Sugama operator for the case of unequal species tempera-
tures T, # Tp. Also, it should be recalled here that the two species
need to have very different masses for their temperatures to be signifi-
cantly different from each other.

When the summations »; and 3 in Eqs. (41) and (42) are
truncated at the same maximum number jyay = Kmayx, the adjointness
relations of the improved Sugama operator are still satisfied for T,
= T, because the matrix elements M{lkb and Ng; evaluated by the
improved operator still retain the symmetry properties. On the other
hand, the H-theorem is not guaranteed by this truncation even for T,
= T, because not all but only some fraction of the matrix elements
Nﬁkb (j,k=0,1,2,...) of the Sugama field particle operator are
replaced with those of the Landau field particle operator. &Note that
the friction-flow relations including all matrix elements M’ and NZZ
(j,k=0,1,2,...) given by the linearized Landau operator are equiva-
lent to the I=1 spherical harmonic part of that Landau operator
which satisfies the H-theorem for the I=1 parts of the distribution
functions.] It is shown in Ref. 23 that the H-theorem for the original
Sugama operator can be derived from the fact that its field particle
part can be completely expressed in terms of the test particle part
although the same technique of the derivation of the H-theorem can-
not be used for the truncated version of the improved Sugama opera-
tor. However, we can still expect that the H-theorem is approximately
satisfied by the truncated model if the /=1 parts of the distribution
functions are well represented by the linear combinations of only low-
order Laguerre polynomials. As shown in Ref. 4, sufficiently accurate
evaluations of collisional (classical and neoclassical) transport fluxes
can be made using the friction-flow relations including the Laguerre
polynomial moments up to the order of j=2. This appears to be
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because higher-order Laguerre-polynomial components of the distri-
bution functions are stronger suppressed by the energy diffusion oper-
ator [see Eq. (B4) in Appendix B]. Therefore, except for the case where
the field particle distribution takes a special form due to some external
sources, we do not generally expect that higher (j > 3) moments need
to be retained in Eq. (41).

It is easily found from the definition of the improved operator in
Eqgs. (40)-(42) that CLS(8f,, 0fy) = C=U™)(5f,. 6f,) holds if the per-
turbed distribution functions of; (s = a,b) include no /=1 compo-
nents [(3f5(Z=l) = 0] [see Egs. (6) and (7)]. Therefore, if of; (s = a,b)
are given by the perturbed Maxwellian with the perturbed densities
ong and temperatures 6T as

ony 0T, (ma* 3

% _ﬂM{ns T (ZTS 2)] )
for which 6T,/T, = 0T,/ T} is assumed, and then, Cii('mp)(éfa, ofp)
vanishes as CL(f;, Jf,) does.”” However, when &f, (s = a,b) are
written as the shifted Maxwellian Jf, = fa(m,/T)(us - v) with the
same flow velocity u, = u, and different equilibrium temperatures
T, # Ty, CL(8fa,dfy) vanishes although neither CL (f,, df,) nor
CHStmP) (57, 5f,) does exactly. This is related to the fact that the sym-
metry properties I/, =# (i,j =1,2,...) are slightly broken when
T, # Ty (see the Appendix D).

When the above-mentioned adjointness relations and resultant
symmetry properties are satisfied, they provide useful techniques for
calculating the neoclassical transport coefficients.' "' *” Therefore, it
will be beneficial for such applications if we can have a linearized colli-
sion model which satisfies the adjoint relations exactly even for
T, # T, while giving small inaccuracies to the values of the matrix ele-
ments and the friction coefficients. Such a model is presented in
Appendix D where the correction part of the improved Sugama opera-
tor is symmetrized.

A. Equal temperature case
When T, = T}, we use Egs. (37) and (38) to obtain

AM!, =0,
i  NONJ —NOND (46)
AN?, = —abab___ab”_ab abNoo abab(jj=0,1,2,...),
ab
from which we have
ANy = ANy = AN =0 (ij = 1,2,..). 47)

V. COLLISION OPERATOR FOR GYROKINETIC
EQUATIONS

There are two types of gyrokinetic equations. One is the gyroki-
netic equation derived by using the WKB representation for the per-
turbed distribution function’” which has a high wavenumber in the
direction perpendicular to the equilibrium magnetic field B. The other
is derived by using the Lie transform technique to properly define the
gyrocenter coordinates for the description of the total distribution
function.”®*” The collision operator for the former type of the gyroki-
netic equation is considered in this section and in the literature.”” >
On the other hand, several studies have been done to represent the col-
lision operator for the latter type in the gyrocenter coordinates.”* *’

Phys. Plasmas 26, 102108 (2019); doi: 10.1063/1.5115440
Published under license by AIP Publishing

26, 102108-6


https://scitation.org/journal/php

Physics of Plasmas ARTICLE

When applying the improved Sugama operator to the gyrokinetic
equation for the perpendicular wavenumber vector k; , the collision
operator is transformed into the following form:

dé,‘ LS(im —ik, - —ik, -
4)2” ipa L) (¢ ibapy ey )

d¢ i LS —ik, - ik,
_4;27[ leuC ( lenhakA7e llpbhhki)

+ i;% eikL-pﬁAcsg (eiﬂ‘*"’“huki, e kP hhki )’ (48)
where p, = (b x v)/Q, (b=B/B,Q, = e,B/muc) and $d&/(2n)
represent the gyroradius vector and the gyrophase average, respec-
tively, and hg, is obtained from the nonadiabatic part of the perturbed
particle distribution function ofu, = —(e¢y /Ta)fam + € = Pahg, .
The detailed expression of the first term on the right-hand of Eq. (48)
is shown in Ref. 23, while the second term is written as

ACE ) (Ofu, , Ofinc.)
dc .. maﬁz
Efi;ﬁek’p“Acgg(éfak‘ﬁfhk == MZJ 3/2 x2)

X Z [AMZ,IZ{Wak[hakJIOuU” + ﬁuk[hah]halu}
=0

+AN’ b{”Hhk (o, JJoavy =+ t ok [Pox, [1av 1 }} (49)

where Jos = Jo(kp v, /Q) and Jis = Ji(kpvy /Q) (s = a,b) denote
the zeroth- and first-order Bessel functions of the normalized perpen-
dicular wavenumber kv, /Q, respectively, and

s [hae, ] = —Jd3uL 2 (2 )h ok, JosU)
(50)
sl ] = & [ @010 (ha o

are used.

In the case of application to the drift kinetic equation for studying
neoclassical transport, we neglect the finite gyroradius effects and take
the limit k; - p, — 0 (s = a, b). Then, we put Jo; — 1, J;; — 0, and
i sk[ha, ] — 01in Egs. (49) and (50).

VI. CONCLUSIONS

In this paper, the improved linearized model collision operator
which can be applied up to the highly collisional regime is presented.
The improved operator is constructed by adding the correction part to
the previous model by Sugama et al so as to reproduce the same
friction-flow relations as those given by the linearized Landau collision
operator. In the improved model, conservation laws of particles,
momentum, and energy are retained, while the adjointness relations
and Boltzmann’s H-theorem are approximately valid for collisions
between unlike particle species with unequal temperatures and very
different masses. It is also shown that the improved operator can be
modified to satisfy the adjointness relations exactly even in the
unequal-temperature case. This modification causes the friction coeffi-
cients to deviate from those given by the Landau operator although
the influence of the deviations is made small by the very different
masses.
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Performing the gyrophase average by keeping the finite gyrora-
dius effect, the improved operator is represented in the suitable form
for gyrokinetic equations. In the zero-gyroradius limit, the gyrophase-
averaged improved operator can be used in drift kinetic equations to
accurately evaluate neoclassical transport in all collisionality regimes.
It is considered that only the terms with j < 2 in the Laguerre polyno-
mial expansion of the correction part of the operator need to be kept
even for the most collisional case where all particle species are in the
Pfirsch-Schliiter collisionality regime. The present model is expected
to be useful for simulation studies of neoclassical and turbulent trans-
port processes in plasmas including multispecies of particles in various
collisional regimes.
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APPENDIX A: COLLISIONAL ENERGY TRANSFER
BETWEEN UNLIKE SPECIES WITH UNEQUAL
TEMPERATURES

Using Eq. (4), the collisional energy transfer from species b to a,
which equals the opposite sign of that from species a to b, is given by

muvz mbv

Jd% Cab (fart fomr) Jd v Cpa(forr; famr)
”u(Ta —T)

Tab

m,,ocub

mb(l + Otib)

32

where each species is assumed to be in the local equilibrium state
represented by the Maxwellian distribution function. Thus, if
T, # Ty, collisions cause the temperatures of the two species to
approach each other, and the characteristic rate 1%, of the colli-
sional energy transfer from species b to a is given by

vt~ mao, 1 empmaoy, 1
¢ my(1+ o )3/2 Tab eznamb(lJroc ») 3214
2
1
- 7%”1" = (A2)
e2mg(1 + o) Ty
We now assume that |e;/e;| = O(1), ny/np, = O(1), and

T./Ty = O(1). Then, in the case where m,/m, = O(1), we have
o = O(1), and accordingly, v% ~ 1/745 ~ 1/73 from Eq. (A2).
This implies that the relaxation toward the equal-temperature
(T, = Tp) state due to the unlike-species collisions and the thermali-
zation toward the Maxwellian equilibrium are expected to have
occurred on the same time scale and that the Maxwellian distribution
functions f, and fys should have the same temperature T, = T,
Next, we consider another case where m,/m, <1 or
mg/my > 1 holds. Then, o> 1 and V% ~ (ma/mp)/Taa
~ (mu/mb) /‘cbh are obtained for m,/m;, < 1, while o, < 1 and
Ve, ~ (m;,/ma) /r,m (mp/mg) /e for my/my > 1. Therefore,
when m,/my < 1 or m,/my > 1, collisional energy exchange
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between species a and b is so slow that f,,; and f;s are permitted to
have unequal temperatures T, # Tj.

We now consider the case where m,/my, > 1, l|e,/ep|
> 1, n,/n, < 1, and T, /T, = O(1). This can happen when a and
b represent heavy minority impurity ions with a high charge num-
ber and bulk hydrogen isotopes (or electrons), respectively. Then,
we have o, < 1 and

1/2
o einhmh/ 1 em 1
V- R B (A3)
egnama Taa e€,Mg Tpp

For example, using Eq. (A3) in realistic cases as in the JET and
ASDEX Upgrade experiments shown in Ref. 12, the characteristic
rates 15, and 1%, of the collisional energy transfer from tungsten
impurities (W) to bulk hydrogen isotopes (i) and to electrons (e)
are estimated to satisfy

Vi’(/i ~ 1/TWW7 V?’(’i > 1/‘[1'1', (A4)
and
V?/t\fe < l/TWW7 V?At/e < I/Teev (A5)

respectively. Under these conditions, it is reasonable to assume Ty,
= T; although it is not to assume Ty, = T..

APPENDIX B: EFFECTS OF UNEQUAL
TEMPERATURES ON ADJOINTNESS RELATIONS

Based on the Landau collision operator defined in Eq. (1), the
test and field particle parts are written as

Cap(0fa) = Cly (0fa) + Cap' (0fa), (B1)
Chp(9fo) = Coy (3f) + Coy (0fs),
where
ng(éﬁz)EZRe;zlnAa {QM fa\;)
.Jd3v,fbM(V/)U(V—V/)]
=V (0)L(8fa) +Ci (6fa),
Y (of) = (Tib ,TL) Il
, [@;(V)V.Jd%’ fbM(v/)U(v—v’)}
(B2)

(b )ma 0]

2nelellnA 9

cion) = - et
[ [ty ) ()
(o) E( a)Zne ealnAaé)v
Jtow [0 s o) .
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Here, CI?(8f.) consists of the pitch-angle-scattering part
v (v)L(3f,) and the energy diffusion part C*(df,). The pitch-
angle scattering operator £ is defined as

(ﬁ):zfv[(uzlfw)p;ﬂ

1{ 1 0 0of, 1 0%*f,
= — | sin0 B3
z[sineae( 80)+sin20 apr | BY
where I denotes the unit tensor and (v, 0, ¢) represent spherical

coordinates in the velocity space. The energy diffusion operator C*’
is defined as

C“”(bﬁ:)-u2 o { ”2 oo 5 (/)} (B4)

The collision frequencies for pitch-angle scattering and energy dif-
fusion are given by v (v) = (3v/n/4) 7, [®(xs) — G(x)] /x> and
V‘ﬁb(v) = (3\/_/2) T G(xp) /%3, respectively, where (3/7/4)1y;
= dnmpelelInA/(m2v3,) (InA: the Coulomb logarithm), ®(x )
=2n~1/2 geftzdt, G(x) = [@(x) — x@(x)]/(2x?), x; = v/vr, and
vrs = (2To/ms)"? (s = a, b).

We can easily confirm that vpL, C%, and accordingly C1? are
all self-adjoint so that

Jd3 Aa 1050, = Jd3 %8a o5 (B5)
Jan Jam

holds for arbitrary functions Jf, and dg, of v. It can also be shown

that CT? satisfies the adjointness relation written as

[d3 /] CR(ofy) = [d3 % Cr(5f,). (B6)
Jam Jom

The remaining test and field particle operators C.}' and C’Y do not

keep adjoint relations such as Egs. (B5) and (B6) satisfied by CT?

and Cf;g , respectively, although Cﬂ\’ and Cﬂ‘[ vanish for T, = Tj,.
We also note that the two pairs of the operators (CLY, CE?)

and (CIN, CtN) independently satisfy the particle, momentum, and

energy conservation laws, which are written as

|eoctzon = [eeciien =0 w-on. @7

Jd3v mavCIA(6f,) + Jd3v mpyvCrA(5f,) =0 (A=0,N), (B8)
and

Jd%-ma CTA(SE) + J v%mbuzclff(éﬂ)zo (4 =0,N),
(B9)

respectively.

From the Galilean invariance and spherical symmetry of
the Landau collision operator, we have an identity, jd3v mg (v
) Coplforr (v — ) s (¥ — W) = [ PomavCon foaa (¥) S (v)] = 0,
for an arbitrary vector u which is independent of v. Then, taking
the u — 0 limit of the above identity and using the particle and
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momentum conservation laws, we can derive another type of
relation

Jd3v MaV CaTb (famumav/Ty)
= J Pomyv Cga(fmehv/Tb)
= — J BPomgv Cfb(fme;,v/T;,)

= — J Pomyv lea(faMmav/Ta). (B10)
We should note that the symmetry properties shown in Eq. (B10)
are valid even when T, # T}, although they are not satisfied in the
same way as Eqs. (B7)-(B9) are separately satisfied by the two pairs
of the operators (C#, CE4) (A = O,N) for T, # Tp.

Using Eq. (B1), the matrix elements M;Jb and N;Jb, which are
defined by Eq. (11), are written as

iji 5 r(0)if (N)ij
Mabeub +Mub ’

;) . 3 (B11)
_ O (N)
Ngy = Ngy" + Ny,
where MW7 and N7 (4 = 0, N) are defined as
. m U
e = [aon el (et () )
T
ab a (BIZ)

ab ) Tb

a ij mpv
n—N(A>] = Jd3v UHL,(S/Z) (xﬁ)CuFf (fbML]@/z) (xlz, id | H).
Tab

Then, the momentum conservation law shown in Eq. (B8) is used
to find

Ta UTa

MW +—TN},;‘>°7 =0 (A=0,N;j=0,1,2,...). (BI3)

The symmetry properties of Mi(;)ij and Nig) ¥ are derived from the
adjointness relations given by Egs. (B5) and (B6) as

NOT O

(0)ij (0)ji ab ba
M7 = M nd —2 = , Bl4
o @ M T2 T T (B19
respectively. Also from Eq. (B10), we obtain
NOO NOO
M% = —N% =~ ab _ ba (B15)

Ta UTa Tb Utp

It should be noted that the symmetry properties of N(ig)'] and N9
take different forms with respect to the way the temperatures enter.

In the case of m,/m;, = O(1), the temperatures T, and T}, are
expected to be close to each other because of the relatively fast
energy exchange due to collisions. Therefore, only when m, < m;
or m, > my, T, can be significantly different from T In the limit-
ing case m, < my, it is shown that the pitch-angle-scattering term
vp(v)L(3f,) is dominant in the test particle operator C7, (5f,) where
the energy scattering term C%(Jf,) and the nonadjoint part
CIN(9f,) are negligible in the lowest order of the expansion with
respect to (ma/mb)l/z. However, when T, # Tj, CiY(df,) is not
negligible, but it is necessary to keep contributions from both
C(5f,) and CIN(5f,) for accurately evaluating collisional
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momentum transfer. Then, it can be shown that, to the lowest order
in (m,/ mh)l/ ? the test and field particle parts of the Sugama opera-
tor  C3,(8fu, 0fp) = CI3(8fa) + CES(Sfy)  correctly approximate
CL(5f,) and CE(5f,) of the linearized Landau operator,
respectively.

We next consider the case in which m, > m; and T, # T}
hold. In this case, C1¥(df,) is not negligibly small compared with
CI2(8f.), while CEN(5f,) does not contribute to CF, (9f,) in the low-
est order of the expansion with respect to (my/m,)"?. Then,
CE (8fy) is well approximated by either CF)(df,) or CES(dfy)
although the difference of CZ, (6f,) from CI2(9f,) or CT5(9f,) is sig-
nificant. However, this difference does not cause serious errors
in solving the kinetic equation for &f, as far as C%, (f,)/CL (6f,)
~ (eb/ea)z(m,/na)(m;,/ma)l/2 becomes very small. [This ratio
(ep/ea)*(ny/1a) (my/ma)"? can be large in such a case of tungsten
impurity as mentioned in Appendix A although, for that case, T,
= T, is expected so that CI,(5f;) = CT(5f;) = CT5(5f,) holds.]
Except for this limiting case of m, > m; and T, # T}, we can
suppose that the matrix elements M;jh evaluated by CT,(5f,)
= CIX(dfa) + CIN(5f,) satisty the symmetry relations of the same
form as those for Mﬁz)‘j shown in Eq. (B14)

M, =M, (i,j=0,1,2,...). (B16)
It is recalled that contributions of CIN(df,) to the collisional
momentum transfer are taken into account in defining C13(f,)
such that CI3(6f,) and CL,(df,) = CI2(0f,) + CIN(5f.) give the
same matrix element M even when m, > mj;, and T, # Tj. Also,

CI3(3f,) is constructed so as to yield the matrix elements M‘(lls)ij

which satisfy symmetry relations of the same form as in Eq. (B16).
When m,/my < 1 and T, # Ty, C}'(5f,) makes a significant

contribution to CF,(3f,) = CIY(5f,) + CIY(8f,). In this case, we

can show that, to the lowest order in (m,/ mb)l/ 2

if i
Nub _ Nbu

= ij=0,1,2,...
TavTu Tvab ( / )

(B17)
are satisfied by the matrix elements N”, associated with C%, (f,).
Note that the second relation in Eq. (B15), which holds exactly, is
included as a special case in the symmetry relations shown by Eq.
(B17) and that they take a different form from those for ng)” in Eq.
(B14). Also, the matrix elements Néi)” evaluated by CE3(6f,) satisfy
symmetry relations of the same form as in Eq. (B17).

In summary, the adjointness relations of the linearized
Landau operator C-, are not satisfied rigorously in collisions
between unlike species with unequal temperatures although signif-
icantly different temperatures occur in the case where the two spe-
cies have so different masses that the adjointness relations and
symmetry properties of the matrix elements and the friction coeffi-
cients can still be used as approximately valid formulas. On the
other hand, the Sugama operator C%3 in Sec. 111 and the operator
Cﬁ:*(lmp in Appendix D are constructed so as to exactly keep the
adjointness relations which can be useful in formulating efficient
methods of evaluating Onsager symmetric collisional transport
coefficients. >*"°
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APPENDIX C: MATRIX ELEMENTS ASSOCIATED
WITH THE LINEARIZED LANDAU OPERATOR AND
THE SUGAMA OPERATOR

This Appendix shows that how the matrix elements Mgb
M( )i +M N and MU = M((l?])v —Q—M{EI:)U [see Egs. (B11) and
(B12) in Appenle B] Wthh are associated with the test part
CL = CI? + CIN and the field part Cf, = CE? + CIN
ized Landau operator Ck, = CI, + CF, are expressed in terms of
Oap = Ura/U1> Ta/ Ty, and m,/my. In addition, it is shown how
to evaluate M(S)lj and N 5 defined from the Sugama operator
Cég = CZbS + Cfg (see Sec. lll) ' |
First, the 00 elements of the matrices M( i and Nﬁb)u
(A = 0, N) are written as follows:

of the linear-

(0)00 Oab
M = an
ab (1+9( )1/2

T, a
My = (1 —*“) —
To) (1402,
(0)00 T, (0)00 T, XLab
N =M =2___T
CnT )
N)0o T,

3
( 2 3 (N)00 %ab
N =M =(1-2)—
ab %M g ( Tb) (1 + fxih)S/z

Then, the 00 elements, Mog = M(O)00 + Mﬁf)oo and Ngg = Nig)oo
)00

(C1)

+N£ )% which equal M and Nab , respectively, are given by
S)o! $)00
Mgy = —Ngy = c(zb) = _Néh)
3
:—(l—ﬁ—ﬂ)%. (C2)
mp ) (1+02,)

Next, the 0i elements Mﬁ?)m, Nis)m (A=
(i=1, 2) are given by

0,N), Mgf,, and Ngl’;

(0)o1 35,
M =%
ab (1+O( )3/2
(0)02 1505,
M =% -
ab (1+[x )5/2
3
(N)OL /2 (001 __ Ta) 3o,
M =(05, —1)M =(1—= | —F———,
ab (ub ) ab ( Th 2(14_“2}7)5/2

T, 1502
- (1)
To) 8(1+a2,)"

5
_ 2 001 30 m
Mgll - eubMab - 112 5/2 (1 + _“)7
2(1 +o2,) my

1507 m
M2 = 2, M0 = —7ah<1+—“), (C3)
a a ( + aab)7/2 mp
(0)o1 T, o1 _ Ta 30ap

N = ——10 bM _
ab ab""ba 3/27
Ty To2(1 402,
T, T, 15¢, b
N(O)OZ —_% ) (0)02 _ 1a a ,
e T, " Ty8(1+a2,)%?

scitation.org/journal/php

T, T, 303
N Lo o _ (1 3 _a) %ap

Th Tb ( + OC )5/27
oz T, N0z T, 150,
N = Jea = (1)
Ty To) 8(1+02,)

303 m
01 b a
Nub 2(1 ;2 )5/2 (1 - h)v
ab

1503 m
02 b a
N 8(1 +o; )7/2 <1 mb>7
ab

where 0, defined in Eq. (21) and the momentum conservation law
shown in Eq. (B13) are used.

The i0 elements M(A)t0 and Nu(f)lo (A=0,N;i=1,2) are
given by
(0)10 (0)01 (020 _ 5 £(0)02
Mub 7M Mub - ab >

MO _ (E _ 1) %ap (10 + 03, )
! Ty 2(1 4 02,)°?

M2 _ (E _ 1) 30,28 + 30,
ab - Tb )

8(1+ “21;)7/2
2
ow_Ts  yoo _ Tay @
Nub TZ a“bNba - T:Mab ) (C4)
2
o0 _To oo _ T, o0
Nuh T2 a“bNha - ?hM ’
N(N>10 — (1 o &) 30(217(_2 + O(ah)
ab Tb 2(1 + O(512’)5/2

N2 (1 B 2) 1500, (—4 + o)
ab Th 8(1 + OCﬁb)7/2

where the relations shown in Eqs. (B13) and (B14) are used. Using

Egs. (C3) and (C4), we can immediately evaluate MY :Miz)io

+MV0 and N = N0 4 N0 (1—1 2).
The ij elements M( i and NW (4
written as

=0,N;i,j=1,2) are

MO _ oap(30 + 1602, + 130%,)

ab T ’

41+ 02,)*?

MO — 02— _ 3oy, (84 + 3203, + 23a,)
a a 7/2 ’
16(1 +02,)"/
(0)22 XLab
M) =
b 9/2
’ 64(1+22,)”
x (1400 + 179202, + 367202, + 108808, + 43345,),
()11 T, 30tap(10 — 202, + 30%))
Mg, =|1- 7)2 )
T, 4(1+02,) /
M2 _ <1 B 1) 302, (84 — 202, + 190%))
ab Ty 16(1 + o2,)°/

T,
M _(1 __a) _w
Ty 16(1 + o2,)”

% (280 + 8402, + 34802, +1905,),
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) %ab
64(1 4 02,)"'/?
(1400 — 11202, + 242402, — 55605, + 23305),

L

on _Ta 2703,
Nab T (1 + O( )5/2 ’ (CS)
on T, 2250,
Nah T 2 \7/2
16(1 4 o2,)
(021 T 2250(
b )
@ Ty 16(1+ ocab)7/2
(022 E 212512b
ab -

Ty 64(1 4 02,)°%

N L 903 (=2 + 30
ab Tb ( + O(Z )7/2

) 450, (=2 + 50,)
Tv) 16(1+ o2 )9/2

(1 ) 7505,(—4 + 302,)
T, 1+o2)?
(1 )5250( L(—4+502,)
Tv) 64(1+a2,)"?

Then, M% = MW7 + M and NI = NOT 4+ NI (i j=1,2)
are evaluated from the results shown in Eq. (C5). )

Now, we can use the matrix elements M() = M((Zg)'o and
M(bu (i,j=1,2,..

ai
and M (i,j=1,2,...) by

.) to express the matrix elements MS,) o= M((lh) o

M = MO0 — g, MO
(S)ij _ 1 (0)i
Mah Y= Mab !

and write the matrix elements N % and N Pi=1,2,..)as

5)0i Ta i
thb)()l _ Fb aabM[(, Obu O 017
C7
OIS T, NSO 801 €7
ab ?b‘“ab ba — ~Mab >

where Egs. (31), (34), (Bl%) and (C6) are used. Then, Eq. (35) can
be used to evaluate N, (i,j =1,2,...) from N;Eb>07 Na(i)o’, and
N [see Eq. (C2)].

APPENDIX D: IMPROVED SUGAMA OPERATOR
MODIFIED BY SYMMETRIZING MATRIX ELEMENTS

In this Appendix, the improved Sugama operator defined in

Eq. (40) is modified when T, # T}, as follows:
Cav ™ (8fu, ofy) = C(9fu. Ofy) + ACL(8f). (D1
where Cslf(éfa, Ofp) represents the original Sugama operator

described in Sec. 111, and the new correction part ACE (dfy) is
defined as

scitation.org/journal/php

ACE (0fs) faM v ZAcab] PRILYY (). (D2)

Here, AC(;[0fi] (j = 1,2, ...) are given by

* xjk .
ACE[0f,] = —ZANJ wilofy] (i=1,2,...) (D3)
and
. . . NOON*jk _ N(S)iON(S)Oj
AN gk __ N jk N{E\Z)Jk _ Yab'Yab Nooub ab 07 k=1,2, )7
ab
(D4)
where
" »
v Tom [ N N/
NI = ZeTa | Tab ba ik=1,2,..). D5
=72 \Tun " Tovm) PEZDI B9

We can now use the test and field particle part of
Cﬁ:* mp) (8fa, 6fy) to obtain the matrix elements M and N,/ in the
same way as shown in Eq. (11). Then, the friction coefficients [’
can be derived from M/ and N;hJ [see Eq. (13)]. Since ACgZ(éfb
defined in Eq. (D2) gives the correction only in the field particle
part, we immediately see that

M:;ll;’ - MilS?)IJ (i7j = 07 17 27 "')' (D6)
We also find that
N =NG® N =NYY (j=0,12..), (D7)

and N;b] (i,j = 1,2,...) are given by Eq. (D5). It is confirmed from
Egs. (D5)-(D7) that the matrix elements M} “J and N i [ satisfy

*ij *ji
Nub . Nba

M*ij _ M*ji
TavTa

ab ab?’

ij=0,1,2,...), D8
Tyvop (ij ) (D)

which leads to the symmetry of the friction coefficients lff}

M= (hj=1,2,..). (DY)
The modified operator Cﬁ:mmp)(éfu, Ofp) exactly satisfies the
adjointness relations in the same form as those in Eq. (16) and
accordingly induces the Onsager symmetry of collisional transport
coefficients.

When T, # T, the values of M*'J ;;7] , and l"b are different
from those of M”,, N”. and 180 given by the linearized Landau
operator, respectively. However, as explained in Appendix B, the
differences between these values are not expected to cause serious
errors in solutions of kinetic equations because m,/m;, < 1 or
my/my, > 1 are required if T, and T}, differ significantly from each
other.

Noting that ACF;(df,) never influences collisional momen-
tum and energy transfer, we can confirm that CLS)k mp) (0fa, Of)
retains the conservation laws of particles, momentum and
energy. Specifically, the momentum conservation law imposes
the constraints on the matrix elements and the friction coeffi-
cients as
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07 T *0f .
MY +T“—”T“Nbgf =0 (j=0,1,2,...),

bUTH (DlO)

dIm=0 (=12..),

a
which are rewritten with the help of Egs. (D8) and (D9) as

MP 4+ NP =0 (j=0,1,2,..),

(D11)

S =0 (=12

b

Then, if the perturbed functions are written as Of; = fou(m,/
Ts)(us-v) (s=a,b) with the condition u, =u, we find

that Cly ™ (3, 0fi) = T famt (ma/ Ta)v - 3520 G L (a2) (M wg

—O—N;{;Oub):O because of Eq. (D11) and u,=u,. Noting that
Cﬁ:*(imp ) is also annihilated by the perturbed distribution functions
of; (s=a,b) given by Eq. (45) with 6T,/T, =0T,/ Ty, it is now
remarked that C{f:*(imp) (0fa,0fp) vanishes for the perturbed distribu-
tion functions given by the perturbed Maxwellian with the per-

turbed densities o, temperatures 6T;, and flows u, (s =a,b) as

ong  ms 0T, (my* 3
o= v 2 (51 3)|

(D12)

where u, = up, and 6T, /T, = 6T/ Tp.
Using Eq. (D1), the collision operator for gyrokinetic equa-
tions is given by

dé . , .
ﬁ;ﬁelhlp“ o Ca 2 P )

dé | . .
k- LS —ik, - —ik, -
- ﬁ;ﬂel lpacub(e 1 Lpﬂhﬂkue : Lpbhbh)

dé | . .
+ ﬂ;ﬁ M PACE (6™ Pehge e ™ P hy ). (D13)

The detailed expression of the first term on the right-hand of
Eq. (D13) is found in Ref. 23 while the second term is expressed
by Eq. (49) by putting AM]akh =0 and replacing ANikb by
AN = NIF - NOF,

Since the two colliding particle species need to have very dif-
ferent masses for their temperatures to be significantly different
from each other, the improved Sugama operators presented in
this Appendix and Sec. IV do not seem to show large quantitative
differences from each other for the case of T, # T, where
my/my < 1 or my/my > 1 holds. It is not so clear how the
adjointness properties of the linearized collision operator are cru-
cial for accurate prediction of turbulent transport or for the for-
mulation of efficient turbulence simulation methods in
comparison with their roles in neoclassical transport theory and
simulation. Unless one can recognize merits of the adjointness
properties for analytical or numerical calculations of turbulent
transport, the operator presented in Sec. IV may seem more suit-
able for gyrokinetic simulation in the unequal temperature case
than that in this Appendix because the former describes
the friction-flow relations more accurately. However, we still note
that there are several theoretical studies on the Onsager-type

ARTICLE scitation.org/journal/php

symmetry of the quasilinear turbulent transport matrix,”’ °* for
which the collision operator given in this Appendix can be useful
to study collisional effects.
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