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ABSTRACT

The linearized model collision operator for multiple species plasmas given by Sugama et al. [Phys. Plasmas 16, 112503 (2009)] is improved
to be properly applicable up to the highly collisional regime. The improved linearized model operator retains the conservation laws of
particles, momentum, and energy, and it reproduces the same friction-flow relations as derived by the linearized Landau operator so that this
model can be used to correctly evaluate neoclassical transport fluxes in all collisionality regimes. The adjointness relations and Boltzmann’s
H-theorem are exactly satisfied by the improved operator except in the case of collisions between unlike particle species with unequal temper-
atures where these relations and H-theorem still hold approximately because there is a large difference between the masses of the two species
with significantly different temperatures. Even in the unequal-temperature case, the improved operator can also be modified so as to exactly
satisfy the adjointness relations, while it causes the values of the friction coefficients to deviate from those given by the Landau operator. In
addition, for application to gyrokinetic simulations of turbulent transport, the improved operator is transformed into the gyrophase-
averaged form by keeping the finite gyroradius effect.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115440

I. INTRODUCTION

Coulomb collisions are the main mechanism which causes classi-
cal and neoclassical transport in magnetically confined plasmas.1–5

Even though plasma confinement is generally dominated by turbulent
transport rather than by collisional transport, collisions still have
impacts on structures of phase-space distribution functions of par-
ticles, growth rates of instabilities, and micro/macroscopic profiles of
plasma flows so that they indirectly influence turbulent transport pro-
cesses as well.6–11 Also, transport processes of heavy impurities with
high charge numbers which penetrate from the edge into the core
region are greatly affected by Coulomb collisions.12–15 So far, there
have been numerous works on model collision operators16–30 for
application to theoretical and numerical studies of plasma transport.

A well-established Coulomb collision term is given by the
Landau operator31 which is nonlinear for like-species collisions or
bilinear for unlike-species collisions. The linearized Landau opera-
tor32–34 obtained by perturbatively expanding the distribution func-
tions about the local Maxwellian is more tractable than the full Landau
operator,35–37 and the former is preferred to be used for transport
studies when the deviation from the Maxwellian is sufficiently small.
Since the field particle part of the linearized Landau operator is not as
easy to evaluate as its test particle part, several linearized model

collision operators have been proposed, in which simplified versions
of the field particle part are used.17–23 As an example, Sugama et al.23

presented a linearized model collision operator for multiple ion species
plasmas which conserves particles, momentum, and energy and satis-
fies adjointness relations and Boltzmann’s H-theorem even for colli-
sions between unlike particle species with unequal temperatures. This
model called the Sugama operator has been successfully applied to
studies of neoclassical and turbulent transport in relatively low colli-
sional regimes.38–45

The difference between the field particle part of the Sugama oper-
ator and that of the exact linearized Landau operator is anticipated to
increase in a highly collisional regime. Even in very-high-temperature
fusion plasmas such as the ITER plasma,14,15,46 minority impurity ions
such as tungsten are considered to remain in the Pfirsch–Schl€uter
regime even though bulk ions and electrons are in the banana regime.
For such a case, it is necessary to use a collision model which is accu-
rate in all collisionality regimes. In this work, the Sugama operator is
improved to present a new linearized model collision operator, which
is appropriately applicable to all cases from low to high collisionality.
The improved model is constructed so as to give exactly the same
friction-flow relations as those derived from the linearized Landau
operator. Therefore, it can be used in drift kinetic simulations to
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accurately evaluate neoclassical transport fluxes in all collisionality
regimes. Then, it is noted that the exact friction-flow relations no lon-
ger rigorously keep the symmetry property in the case of collisions
between unlike particle species with unequal temperatures, where nei-
ther the improved model operator nor the linearized Landau operator
is completely self-adjoint. Since the self-adjointness is practically useful
for the analytical or numerical derivation of the Onsager symmetric
neoclassical transport coefficients,1–5,47–50 further modification of the
improved model for the unequal-temperature case is considered in the
present paper to restore the adjointness relations by relaxing the accu-
racy of the friction-flow relations. In addition, the improved collision
operator in the form suitable for application to gyrokinetic simulations
of turbulent transport is derived by taking the gyrophase average with
the finite gyroradius effect taken into account.

It is instructive to note here that Hirshman and Sigmar16 pre-
sented a linearized model collision operator which is similar to ours in
that spherical harmonic functions and Laguerre polynomials are used
to expand distribution functions, and the key properties of the original
linearized Landau collision operator are retained. In their work,16 an
elegant and skillful method of constructing novel basis functions is
presented to approximate both test and field particle operators includ-
ing spherical harmonic functions of all degree numbers (l’s) although
an explicit expression of their model collision operator is given in their
paper only for the case where spherical harmonic functions of degrees
l> 2 are dropped. To satisfy the conservation laws of momentum and
energy, the field particle part of the Sugama collision operator contains
the l¼ 0 and 1 parts which are expressed using the test particle part
and take similar forms to those of the Hirshman-Sigmar operator. In
the present paper, the improved Sugama collision operator is given by
adding the correction terms into only the l¼ 1 spherical harmonic
component of the original Sugama operator in order to correctly
reproduce the friction-flow relations which determine collisional
transport and influence turbulent transport through controlling
micro/macroscopic plasma flow profiles. However, the procedures
shown in the present work can be extended to give correction terms to
all other spherical harmonic components. It is also shown by Abel
et al.22 that, when the Hirshman-Sigmar model operator is trans-
formed to its gyrophase-averaged form for application to the gyroki-
netic equation, the problematic gyroradius dependence appears in
the energy diffusion term in the test particle operator. Therefore, for
the gyrokinetic case, our model operator is more favorable than the
Hirshman-Sigmar model operator.

The rest of this paper is organized as follows: in Sec. II, we briefly
explain the Landau collision operator and its linearization, from which
the associated matrix elements are defined to obtain the friction coeffi-
cients entering the friction-flow relations. Then, after reviewing the
definition and properties of the original Sugama operator in Sec. III,
its improved version is presented in Sec. IV, where we write down the
correction term to reproduce the same matrix elements and friction
coefficients as given by the linearized Landau operator. In Sec. V, the
improved operator is expressed in the form suitable for gyrokinetic
equations. Finally, conclusions are given in Sec. VI. In Appendix A, a
collisional energy transfer rate between unlike species with unequal
temperatures is estimated depending on the ratio between the masses
of the two species. In Appendix B, the effects of unequal temperatures
of colliding particle species on the adjointness relations and matrix ele-
ments associated with the linearized Landau operator are discussed.

The detailed expressions of the matrix elements are shown in
Appendix C. In addition, Appendix D presents a modified version
of the improved operator which exactly satisfies the adjointness
relations even for collisions between unlike particle species with
unequal temperatures although it consequently makes the values of
the friction coefficients deviate from those given by the Landau
operator.

II. LANDAU COLLISION OPERATOR AND
FRICTION-FLOW RELATIONS

The Landau operator for collisions between particle species a and
b is written as31

Cabðfa; fbÞ � �
2pe2ae

2
b lnK

ma

@

@v
�
ð
d3v0 Uðv � v0Þ

�

� faðvÞ
mb

@fbðv0Þ
@v0

� fbðv0Þ
ma

@faðvÞ
@v

� ��
; (1)

where

Uðv � v0Þ � jv � v0j2 I� ðv � v0Þðv � v0Þ
jv � v0j3

(2)

and lnK is the Coulomb logarithm. The particle mass and charge are
denoted by ms and es, respectively, where the particle species is
denoted by the subscript sð¼a; bÞ. The distribution function fsðvÞ gen-
erally depends not only on the velocity v but also on the position and
time variables (x, t) although the dependence on (x, t) is not explicitly
shown here. Writing the distribution function by the sum of the equi-
librium part and the small perturbation part as fs ¼ fs0 þ dfs, we
obtain

Cabðfa; fbÞ ¼ Cabðfa0; fb0Þ þ Cabðdfa; fb0Þ
þCabðfa0; dfbÞ þ Cabðdfa; dfbÞ; (3)

where the last term Cabðdfa; dfbÞ is neglected hereafter.
We now assume the equilibrium distribution functions to take

the Maxwellian form fs0 ¼ fsM � ðns=p3=2v3TsÞ exp ð�v2=v2TsÞ, where
ns is the density, vTs � ð2Ts=msÞ1=2 is the thermal velocity, and Ts is
the temperature. Then, the first term on the right-hand side of Eq. (3)
is written as

CabðfaM ; fbMÞ ¼ �3
ffiffiffi
p
p Ta

Tb
� 1

� �
faM
sab

xa

� GðaabxaÞ �
aab
2xa

U0ðaabxaÞ
� �

; (4)

where xa � v=vTa, aab � vTa=vTb, GðxÞ � ½UðxÞ � xU0ðxÞ�=ð2x2Þ,
UðxÞ � 2p�1=2

Ð x
0 e
�t2dt, and U0ðxÞ � 2p�1=2e�x

2
. The collision time

sab is defined as 3
ffiffiffi
p
p

=4
	 


s�1ab � 4pnbe2ae
2
b lnK=ðm2

av
3
TaÞ. It is easily

seen that CabðfaM; fbMÞ vanishes for Ta ¼ Tb. We hereafter assume
that Ta=Tb ¼ Oð1Þ. When ma=mb ¼ Oð1Þ, we have aab ¼ Oð1Þ and
CabðfaM ; fbMÞ � �ðTa=Tb � 1ÞfaM=sab. In this case, as explained in
Appendix A, we may consider that collisions cause species a and b to
have equal temperature Ta¼ Tb after a time scale longer than sab.

The second and third terms on the right-hand side of Eq. (3) are
called the test and field particle parts, respectively, and the sum of
them gives the linearized collision operator
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CL
abðdfa; dfbÞ � Cabðdfa; fbMÞ þ CabðfaM ; dfbÞ

� CT
abðdfaÞ þ CF

abðdfbÞ: (5)

We now expand the perturbed distribution functions dfs ðs ¼ a; bÞ as

dfsðvÞ ¼
X1
l¼0

df ðlÞs ðvÞ;

df ðlÞs ðvÞ ¼
Xl
m¼�l
ðdfsÞml ðvÞYm

l ðh;uÞ;
(6)

where Ym
l ðh;uÞ represent spherical harmonic functions and ðv; h;uÞ

are spherical coordinates in the velocity space. The l¼ 1 component

df ðl¼1Þs of the distribution function dfs is further expanded in terms

of the Laguerre polynomials Lð3=2Þj ðx2s Þ ½L
ð3=2Þ
0 ðx2s Þ ¼ 1; Lð3=2Þ1 ðx2s Þ

¼ 5
2� x2s ;…� as

df ðl¼1Þs ¼ fsM
ms

Ts
v � us þ

2
5
qs
ps

x2s �
5
2

� �
þ � � �

" #

¼ fsM
ms

Ts
v �
X1
j¼0

usjL
ð3=2Þ
j ðx2s Þ; (7)

where xs � v=vTs. The flow vectors usj ðj ¼ 0; 1; 2;…Þ are defined as

usj �
cj
ns

ð
d3v dfsL

ð3=2Þ
j ðx2s Þv;

cj �
3 � 2j � j!
ð2jþ 3Þ!! :

(8)

For j¼ 0 and j¼ 1, we can write us0 ¼ us and us1 ¼ �ð2=5Þðqs=psÞ,
where us � n�1s

Ð
d3v dfsv and qs � Ts

Ð
d3v dfsv x2s � 5

2

	 

represent

the fluid velocity and the heat flow, respectively.
We next use the Laguerre polynomials to expand the l¼ 1

spherical harmonic component of the collision operator before
deriving the friction-flow relations in Eq. (12). The resultant
expansion [given below in Eq. (9)] contains the coefficients
(denoted by Cabj) as functionals of distribution functions, into
which the expression in Eq. (7) is substituted to define the matrix
elements Mjk

ab and Njk
ab for representing the friction coefficients labij

later. The l¼ 1 component of the collision term in Eq. (5) is written
as

CL
abðdf ðl¼1Þa ; df ðl¼1Þb Þ � CT

abðdf ðl¼1Þa Þ þ CF
abðdf

ðl¼1Þ
b Þ

¼ faM
ma

Ta
v �
X1
j¼0

CabjL
ð3=2Þ
j ðx2aÞ: (9)

Here, Cabj ðj ¼ 0; 1; 2;…Þ are defined as

Cabj �
cj
na

ð
d3v vLð3=2Þj ðx2aÞCL

abðdfa; dfbÞ

¼
cj
sab

X1
k¼0

Mjk
abuak þ Njk

abubk
� �

; (10)

where the matrix elements Mjk
ab and Njk

ab ðj; k ¼ 0; 1; 2;…Þ are given
from the test and field particle operators, respectively, as3

na
sab

Mjk
ab �

ð
d3v vkL

ð3=2Þ
j ðx2aÞCT

ab faML
ð3=2Þ
k ðx2aÞ

mavk
Ta

� �
;

na
sab

Njk
ab �

ð
d3v vkL

ð3=2Þ
j ðx2aÞCF

ab fbML
ð3=2Þ
k ðx2bÞ

mbvk
Tb

� �
:

(11)

In Eq. (11), vk denotes the velocity component parallel to the back-
ground magnetic field although it can be replaced with the velocity
component in any other direction because of the spherical symmetry
of the collision operator.

Using the linear collision operator, the friction forces Fai ði ¼ 1;
2;…Þ are given by3

Fai � ð�1Þi�1
ð
d3vmavL

ð3=2Þ
i�1 ðx2aÞ

X
b

CL
abðdfa; dfbÞ

¼ ð�1Þi�1 nama

ci�1

X
b

Cab;i�1

¼ ð�1Þi�1
X
b

X1
j¼1

labij ub;j�1ði ¼ 1; 2;…Þ: (12)

Here, the first two-order friction forces are written as
Fa1 ¼ nama

P
bCab0 ¼

Ð
d3vmav

P
b and Fa1 ¼ nama

P
bCab0

¼
Ð
d3vmav

P
bC

L
abðdfa; dfbÞ ¼

Ð
d3vmav x2a � 5

2

	 
P
bC

L
abðdfa; dfbÞ.

The friction coefficients labij ði; j ¼ 1; 2;…Þ are defined as3

labij � nama

X
c

Mi�1;j�1
ac

sac

 !
dab þ

Ni�1;j�1
ab

sab

" #
; (13)

where dab denotes the Kronecker delta (dab ¼ 1 for a¼ b and dab ¼ 0
for a 6¼ b).

From the momentum conservation in collisions [see Eq. (B8) in
Appendix B], we obtain

M0j
ab þ

TavTa
TbvTb

N0j
ba ¼ 0 ðj ¼ 0; 1; 2;…Þ (14)

and X
a

lab1j ¼ 0 ðj ¼ 1; 2;…Þ: (15)

The adjointness relations for the linearized Landau collision
operator are written asð

d3v
dfa
faM

CT
abðdgaÞ ¼

ð
d3v

dga
faM

CT
abðdfaÞ;

Ta

ð
d3v

dfa
faM

CF
abðdfbÞ ¼ Tb

ð
d3v

dfb
fbM

CF
baðdfaÞ:

(16)

Strictly speaking, the linearized Landau operator satisfies the adjoint-
ness relations in Eq. (16) rigorously only for the case of Ta ¼ Tb. In
this case, the symmetry properties of Mij

ab; N
ij
ab, and labij are derived

from Eq. (16) as

Mij
ab ¼ Mji

ab;
Nij
ab

TavTa
¼ Nji

ba

TbvTb
ði; j ¼ 0; 1; 2;…Þ;

labij ¼ lbaji ði; j ¼ 1; 2;…Þ: (17)

As explained in Appendix A, Ta and Tb are significantly different from
each other only when ma=mb � 1 or ma=mb 	 1. It is explained in
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Appendix B that, even for this case of unequal temperatures, the
adjointness relations given in Eq. (16), the symmetry properties in Eq.
(17), and Boltzmann’s H-theorem in the form shown later in Eq. (30)
are regarded as approximately valid because of the large difference
between ma and mb. We also should note that the Onsager symmetry
for collisional transport coefficients is derived from the adjointness
relations which are also used to give useful methods for solving drift
kinetic equations and evaluating neoclassical transport fluxes.1–5,47–50

III. SUGAMA OPERATOR

The linearized model collision operator for collisions between
species a and b given by Sugama et al.23 is written here as

CLS
abðdfa; dfbÞ ¼ CTS

ab ðdfaÞ þ CFS
abðdfbÞ: (18)

The test-particle part CTS
ab ðdfaÞ of the Sugama operator is defined as

CTS
ab ðdfaÞ ¼ Qab C

T0
ab Qab dfa; (19)

where CT0
ab is defined by Eq. (B2) in Appendix B and the operatorQab

is given for an arbitrary distribution function g by

Qab g � g þ ðhab � 1ÞðP1a g þ P2a gÞ; (20)

with the dimensionless parameter hab

hab �
Ta

1
ma
þ 1
mb

� �
Ta

ma
þ Tb

mb

� �
2
6664

3
7775
1=2

¼ Ta=Tb þ a2ab
1þ a2ab

 !1=2

: (21)

The projection operators P1a andP2a are defined as

P1a g � faM
ma

Ta
ua g½ � � v;

P2a g � faM
dTa g½ �
Ta

x2a �
3
2

� �
;

(22)

where ua½g� � n�1a

Ð
d3v gv and dTa½g�=Ta � n�1a

Ð
d3v gðmav2=

3Ta � 1Þ. The definition of hab is given so as to satisfyÐ
d3vmav CTS

ab ðfaMmav=TaÞ ¼
Ð
d3vmav CT

abðfaMmav=TaÞ, where CT
ab

represents the test particle part of the linearized Landau collision oper-
ator given in Sec. II. We here note that CTS

ab is defined such that the
self-adjointness conditionð

d3v
dfa
faM

CTS
ab ðdgaÞ ¼

ð
d3v

dga
faM

CTS
ab ðdfaÞ (23)

holds exactly even if Ta 6¼ Tb.
The field particle part CFS

abðdfbÞ of the Sugama operator is given
by

CFS
abðdfbÞ ¼ �Vab dfb½ � � CTS

ab ðfaMmav=TaÞ �Wab dfb½ �CTS
ab ðfaMx2aÞ;

(24)

where

Vab dfb½ � �
Tb

cab

ð
d3v

dfb
fbM

CTS
ba ðfbMmbv=TbÞ (25)

and

Wab dfb½ � �
Tb

gab

ð
d3v

dfb
fbM

CTS
ba ðfbMx2bÞ: (26)

In Eqs. (25) and (26)

cab � Ta

ð
d3vðmavk=TaÞCTS

ab ðfaMmavk=TaÞ

¼ � nama

sab

aab

ð1þ a2abÞ
3=2

Ta

Tb
þ a2ab

� �

¼ � 16
ffiffiffi
p
p

3
nanbe2ae

2
b lnK

ðv2Ta þ v2TbÞ
3=2

1
ma
þ 1
mb

� �
(27)

and

gab � Ta

ð
d3vx2aC

TS
ab ðfaMx2aÞ

¼ � naTa

sab

3aab

ð1þ a2abÞ
5=2

Ta

Tb
þ a2ab

� �

¼ �8
ffiffiffi
p
p

lnK
nanbe2ae

2
bv

2
Tav

2
Tb

ðv2Ta þ v2TbÞ
5=2

1
ma
þ 1
mb

� �
(28)

are used. We see cab ¼ cba and gab ¼ gba from Eqs. (27) and (28),
respectively. It can be easily verified that the test-particle operator CTS

ab
and the field particle part CFS

ab defined in Eqs. (19) and (24) obey the
conservation laws for particles, momentum, and energy. In addition,
CFS
ab satisfies the adjointness relation

Ta

ð
d3v

dfa
faM

CFS
abðdfbÞ ¼ Tb

ð
d3v

dfb
fbM

CFS
baðdfaÞ: (29)

It is shown in Ref. 23 that the Sugama operator satisfies
Boltzmann’s H-theorem

Ta

ð
d3v

dfa
faM

CTS
ab ðdfaÞ þ CFS

abðdfbÞ

 �

þTb

ð
d3v

dfb
fbM

CTS
ba ðdfbÞ þ CFS

baðdfaÞ

 �


 0: (30)

We also find that, for the case of ma=mb � 1, CTS
ab and CFS

ab coincide
with CT

ab and CF
ab of the linearized Landau collision operator to the

lowest order in ðma=mbÞ1=2. For the case of ma=mb 	 1, CFS
ab equals

CF
ab to the lowest order in ðmb=maÞ1=2, while, for Ta 6¼ Tb, CTS

ab differs
from CT

ab by the non-self-adjoint part which remains to the lowest
order [see the paragraph including Eq. (B16) in Appendix B].

The matrix elements MðSÞjkab and NðSÞjkab ðj; k ¼ 0; 1; 2;…Þ are
defined by replacing CT

ab and C
F
ab with C

TS
ab and C

FS
ab , respectively, in Eq.

(11). Similarly, the friction coefficients lðSÞabij ði; j ¼ 1; 2;…Þ are
defined usingMðSÞjkab andNðSÞjkab in Eq. (13). Then, from the momentum
conservation law satisfied by CTS

ab and C
FS
ab , we obtain

MðSÞ0jab þ TavTa
TbvTb

NðSÞ0jba ¼ 0 ðj ¼ 0; 1; 2;…Þ; (31)

and X
a

lðSÞab1j ¼ 0 ðj ¼ 1; 2;…Þ: (32)

We also have
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M00
ab ¼ �N00

ab ¼ MðSÞ00ab ¼ �NðSÞ00ab ;

lab11 ¼ lðSÞab11 :
(33)

From the adjointness relations shown in Eqs. (23) and (29), the sym-
metry properties of the matrix elements and the friction coefficients
are derived as

MðSÞijab ¼ MðSÞjiab ;
NðSÞijab

TavTa
¼ NðSÞjiba

TbvTb
ði; j ¼ 0; 1; 2;…Þ;

lðSÞabij ¼ lðSÞbaji ði; j ¼ 1; 2;…Þ:
(34)

In addition, it is found from replacing ðCT
ab;C

F
abÞ with ðCTS

ab ;C
FS
abÞ in

Eq. (11) and using Eqs. (24), (31), (33), and (34) that NðSÞijab ði; j
¼ 0; 1; 2;…Þ are represented by

NðSÞijab ¼
MðSÞ0iab NðSÞ0jab

M00
ab

¼ NðSÞi0ab NðSÞ0jab

N00
ab

: (35)

In Appendix C, we find the detailed expressions of the matrix elements
½MðSÞijab ;NðSÞijab � and ðM

ij
ab;N

ij
abÞ.

In the moment method,3,50 the neoclassical transport coefficients,
with which the radial particle and heat fluxes and the parallel current
are linearly related to the radial density and temperature gradients and
the parallel electric field, can be expressed in terms of the viscosity
coefficients and the friction coefficients. The friction coefficients lðSÞabij
derived from the Sugama operator do not all coincide with labij given
by the Landau operator even for the case of Ta ¼ Tb (see Sec. IIIA).
The dependence of the neoclassical transport coefficients on the fric-
tion coefficients becomes relatively strong in the highly collisional
regime where accurate values of the friction coefficients need to be
derived from the model collision operator for correctly describing the
neoclassical transport. In Sec. IV, the improved Sugama operator is
presented to reproduce such accurate friction coefficients.

A. Equal temperature case

When Ta ¼ Tb, the test particle part of the Sugama operator is
equivalent to that of the Linearized Landau collision operator

CTS
ab ¼ CT

ab; (36)

which can be easily verified from Eq. (19) with hab ¼ 1; QabðgÞ ¼ g,
and CT

ab ¼ CT0
ab for that case.

In this equal temperature case, we have

MðSÞijab ¼ Mij
ab;

NðSÞijab ¼
Ni0
abN

0j
ab

N00
ab

ði; j ¼ 0; 1; 2;…Þ;
(37)

from which we see

NðSÞi0ab ¼ Ni0
ab ði ¼ 0; 1; 2;…Þ;

NðSÞ0jab ¼ N0j
ab ðj ¼ 0; 1; 2;…Þ;

(38)

and

lðSÞabi1 ¼ labi1 ði ¼ 1; 2;…Þ;

lðSÞab1j ¼ lab1j ðj ¼ 1; 2;…Þ:
(39)

We find from Eqs. (33) and (39) that the deviations of the friction
coefficients lðSÞabij evaluated by the Sugama operator from labij by the
Landau operator appear only for i � 2 and j � 2. It is also noted that,
for collisions between particles of like species (a¼ b), the Sugama
operator is equivalent to the linearized model collision operator given
in Refs. 18, 19, and 22.

IV. IMPROVED SUGAMA OPERATOR

The improved Sugama operator CLSðimpÞ
ab is defined by adding the

correction part DCLS
ab to the original one C

LS
ab

CLSðimpÞ
ab ðdfa; dfbÞ � CLS

abðdfa; dfbÞ þ DCLS
abðdfa; dfbÞ: (40)

In order for CLSðimpÞ
ab to reproduce the same friction-flow relations and

friction coefficients as those in Eqs. (12) and (13) derived from the lin-
earized Landau collision operator CL

ab, the correction term
DCLS

abðdfa; dfbÞ is defined as

DCLS
abðdfa; dfbÞ � faM

ma

Ta
v �
X1
j¼0

DCL
abj dfa; dfb½ �Lð3=2Þj ðx2aÞ; (41)

with

DCL
abj dfa; dfb½ � �

cj
sab

X1
k¼0

DMjk
ab uak dfa½ �þDNjk

ab ubk dfb½ �
� �

ðj ¼ 0; 1; 2;…Þ; (42)

where uak½dfa� and ubk½dfb� are evaluated using Eq. (8). The correc-
tions DMjk

ab andDNjk
ab of the matrix elements are defined as

DMjk
ab � Mjk

ab �MðSÞjkab ;

DNjk
ab � Njk

ab � NðSÞjkab ¼ N00
abN

jk
ab � NðSÞj0ab NðSÞ0kab

N00
ab

;
(43)

where the matrix elements Mjk
ab and Njk

ab [M
ðSÞjk
ab and MðSÞjkab ] are given

using the test and field particle parts of the Landau operator (the origi-
nal Sugama operator) in Eq. (11). From Eq. (33), we immediately find

DM00
ab ¼ DN00

ab ¼ 0: (44)

Using the improved Sugama operator CLSðimpÞ
ab defined by Eqs.

(40)–(42) instead of the linearized Landau collision operator CL
ab to

evaluate the matrix elements and friction coefficients in Eqs. (11) and
(13), we can confirm that CLSðimpÞ

ab still gives the same values to
Mij

ab; N
ij
ab, and l

ab
ij as CL

ab does, and accordingly, the improved operator
correctly reproduces the friction-flow relations in Eq. (12) derived
from the Landau operator, and it retains the conservation laws of par-
ticles, momentum, and energy. Therefore, we can expect that the clas-
sical and neoclassical transport fluxes are accurately evaluated using
the improved operator up to the highly collisional regime.

As shown in the literature,4,51 in order to correctly describe the
neoclassical transport for the case where all particle species belong to
the Pfirsch–Schl€uter collisionality regime, we need accurate values for
at least the part of the friction coefficients labij with i; j ¼ 1; 2; 3.
Accordingly, in this highly collisional case, truncation of the summa-
tion

P
j and

P
k in Eqs. (41) and (42) should not be done unless the

terms with j 
 2 and k 
 2 are retained. When the truncation is done
such that DM0k

ab and DN0k
ba with k 
 kmax (kmax: an arbitrary integer
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number) are included, the matrix elements associated with the
improved operator satisfy the relations given in the same form as in
Eqs. (14) or (31) so that the momentum conservation law and the con-
servation laws of particles and energy still hold.

We note here that the correction term DCLS
abðdfa; dfbÞ is given for

only the l¼ 1 spherical harmonic component of the Sugama operator
to correctly reproduce the friction-flow relations which are regarded as
an important factor in accurate evaluation of collisional transport and
flow profiles influencing turbulent transport. As pointed out in Ref. 3,
since the spherical harmonic function of degree l is an eigenfunction
of the pitch-angle-scattering operator included in the test particle colli-
sion part with an eigenvalue proportional to�lðl þ 1Þ, the test particle
part tends to be more dominant over the field particle part as l is
larger. Also, in the highly collisional regime, anisotropic components
of the distribution function represented by the spherical harmonic
functions of higher l’s are considered to be stronger damped. Thus,
without correction terms in the l � 2 spherical harmonic components
of the field particle part, the improved operator is expected to work
accurately for describing the distribution function at high collisional-
ity. Besides, in principle, we can extend our procedures to add correc-
tion terms to all other spherical harmonic components similarly with
the approximation method of Hirshman and Sigmar.16 Then, the
Landau field particle operator is recovered by using spherical har-
monic functions and Laguerre functions of all degrees.

As described in Appendix B, the adjointness relations, the resul-
tant symmetry properties for Mij

ab; N
ij
ab, and labij in Eq. (17), and

Boltzmann’s H-theorem in the form of Eq. (30) are not exactly but
only approximately satisfied by the linearized Landau operator and the
improved Sugama operator for the case of unequal species tempera-
tures Ta 6¼ Tb. Also, it should be recalled here that the two species
need to have very different masses for their temperatures to be signifi-
cantly different from each other.

When the summations
P

j and
P

k in Eqs. (41) and (42) are
truncated at the same maximum number jmax ¼ kmax, the adjointness
relations of the improved Sugama operator are still satisfied for Ta
¼ Tb because the matrix elements Mjk

ab and Njk
ab evaluated by the

improved operator still retain the symmetry properties. On the other
hand, the H-theorem is not guaranteed by this truncation even for Ta
¼ Tb because not all but only some fraction of the matrix elements
Njk
ab ðj; k ¼ 0; 1; 2;…Þ of the Sugama field particle operator are

replaced with those of the Landau field particle operator. [Note that
the friction-flow relations including all matrix elements Mjk

ab and Njk
ab

ðj; k ¼ 0; 1; 2;…Þ given by the linearized Landau operator are equiva-
lent to the l¼ 1 spherical harmonic part of that Landau operator
which satisfies the H-theorem for the l¼ 1 parts of the distribution
functions.] It is shown in Ref. 23 that the H-theorem for the original
Sugama operator can be derived from the fact that its field particle
part can be completely expressed in terms of the test particle part
although the same technique of the derivation of the H-theorem can-
not be used for the truncated version of the improved Sugama opera-
tor. However, we can still expect that the H-theorem is approximately
satisfied by the truncated model if the l¼ 1 parts of the distribution
functions are well represented by the linear combinations of only low-
order Laguerre polynomials. As shown in Ref. 4, sufficiently accurate
evaluations of collisional (classical and neoclassical) transport fluxes
can be made using the friction-flow relations including the Laguerre
polynomial moments up to the order of j¼ 2. This appears to be

because higher-order Laguerre-polynomial components of the distri-
bution functions are stronger suppressed by the energy diffusion oper-
ator [see Eq. (B4) in Appendix B]. Therefore, except for the case where
the field particle distribution takes a special form due to some external
sources, we do not generally expect that higher ðj � 3Þ moments need
to be retained in Eq. (41).

It is easily found from the definition of the improved operator in
Eqs. (40)–(42) that CLS

abðdfa; dfbÞ ¼ CLSðimpÞ
ab ðdfa; dfbÞ holds if the per-

turbed distribution functions dfs ðs ¼ a; bÞ include no l¼ 1 compo-
nents [df ðl¼1Þs ¼ 0] [see Eqs. (6) and (7)]. Therefore, if dfs ðs ¼ a; bÞ
are given by the perturbed Maxwellian with the perturbed densities
dns and temperatures dTs as

dfs ¼ fsM
dns
ns
þ dTs

Ts

msv2

2Ts
� 3
2

� �� �
; (45)

for which dTa=Ta ¼ dTb=Tb is assumed, and then, CLSðimpÞ
ab ðdfa; dfbÞ

vanishes as CLS
abðdfa; dfbÞ does.

23 However, when dfs ðs ¼ a; bÞ are
written as the shifted Maxwellian dfs ¼ fsMðma=TsÞðus � vÞ with the
same flow velocity ua ¼ ub and different equilibrium temperatures
Ta 6¼ Tb, CLS

abðdfa; dfbÞ vanishes although neither CL
abðdfa; dfbÞ nor

CLSðimpÞ
ab ðdfa; dfbÞ does exactly. This is related to the fact that the sym-

metry properties lijab ¼ ljiba ði; j ¼ 1; 2;…Þ are slightly broken when
Ta 6¼ Tb (see the Appendix D).

When the above-mentioned adjointness relations and resultant
symmetry properties are satisfied, they provide useful techniques for
calculating the neoclassical transport coefficients.1–5,47–50 Therefore, it
will be beneficial for such applications if we can have a linearized colli-
sion model which satisfies the adjoint relations exactly even for
Ta 6¼ Tb while giving small inaccuracies to the values of the matrix ele-
ments and the friction coefficients. Such a model is presented in
Appendix D where the correction part of the improved Sugama opera-
tor is symmetrized.

A. Equal temperature case

When Ta¼ Tb, we use Eqs. (37) and (38) to obtain

DMij
ab ¼ 0;

DNij
ab ¼

N00
abN

ij
ab � Ni0

abN
0j
ab

N00
ab

ði; j ¼ 0; 1; 2;…Þ;
(46)

from which we have

DN00
ab ¼ DNi0

ab ¼ DN0j
ab ¼ 0 ði; j ¼ 1; 2;…Þ: (47)

V. COLLISION OPERATOR FOR GYROKINETIC
EQUATIONS

There are two types of gyrokinetic equations. One is the gyroki-
netic equation derived by using the WKB representation for the per-
turbed distribution function52–57 which has a high wavenumber in the
direction perpendicular to the equilibrium magnetic field B. The other
is derived by using the Lie transform technique to properly define the
gyrocenter coordinates for the description of the total distribution
function.58,59 The collision operator for the former type of the gyroki-
netic equation is considered in this section and in the literature.20–23

On the other hand, several studies have been done to represent the col-
lision operator for the latter type in the gyrocenter coordinates.24–30
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When applying the improved Sugama operator to the gyrokinetic
equation for the perpendicular wavenumber vector k?, the collision
operator is transformed into the following form:þ

dn
2p

eik?�qaCLSðimpÞ
ab ðe�ik?�qahak? ; e

�ik?�qbhbk?Þ

¼
þ
dn
2p

eik?�qaCLS
abðe�ik?�qa hak? ; e

�ik?�qbhbk?Þ

þ
þ
dn
2p

eik?�qaDCLS
abðe�ik?�qahak? ; e

�ik?�qbhbk?Þ; (48)

where qa � ðb� vÞ=Xa ðb � B=B;Xa � eaB=macÞ and
Þ
dn=ð2pÞ

represent the gyroradius vector and the gyrophase average, respec-
tively, and hak? is obtained from the nonadiabatic part of the perturbed
particle distribution function dfak? ¼ �ðe/k?=TaÞfaM þ e�ik?�qahak? .
The detailed expression of the first term on the right-hand of Eq. (48)
is shown in Ref. 23, while the second term is written as

DCLSðGKÞ
ab ðdfak? ; dfbk?Þ

�
þ
dn
2p

eik?�qaDCLS
abðdfak? ; dfbk?Þ �

ma

Ta

faM
sab

X1
j¼0

cjL
ð3=2Þ
j ðx2aÞ

�
X1
k¼0

DMjk
ab �ukak hak?½ �J0avk þ �u?ak hak?½ �J1av?
� �h

þDNjk
ab �ukbk hbk?½ �J0avk þ �u?bk hbk?½ �J1av?
� �i

; (49)

where J0s � J0ðk?v?=XsÞ and J1s � J1ðk?v?=XsÞ ðs ¼ a; bÞ denote
the zeroth- and first-order Bessel functions of the normalized perpen-
dicular wavenumber k?v?=Xs, respectively, and

�uksk hsk?½ � � ck
ns

ð
d3v Lð3=2Þk ðx2s Þhsk? J0svk;

�u?sk hsk?½ � � ck
ns

ð
d3v Lð3=2Þk ðx2s Þhsk? J1sv?

(50)

are used.
In the case of application to the drift kinetic equation for studying

neoclassical transport, we neglect the finite gyroradius effects and take
the limit k? � qs ! 0 ðs ¼ a; bÞ. Then, we put J0s ! 1; J1s ! 0, and
�u?sk½hsk? � ! 0 in Eqs. (49) and (50).

VI. CONCLUSIONS

In this paper, the improved linearized model collision operator
which can be applied up to the highly collisional regime is presented.
The improved operator is constructed by adding the correction part to
the previous model by Sugama et al. so as to reproduce the same
friction-flow relations as those given by the linearized Landau collision
operator. In the improved model, conservation laws of particles,
momentum, and energy are retained, while the adjointness relations
and Boltzmann’s H-theorem are approximately valid for collisions
between unlike particle species with unequal temperatures and very
different masses. It is also shown that the improved operator can be
modified to satisfy the adjointness relations exactly even in the
unequal-temperature case. This modification causes the friction coeffi-
cients to deviate from those given by the Landau operator although
the influence of the deviations is made small by the very different
masses.

Performing the gyrophase average by keeping the finite gyrora-
dius effect, the improved operator is represented in the suitable form
for gyrokinetic equations. In the zero-gyroradius limit, the gyrophase-
averaged improved operator can be used in drift kinetic equations to
accurately evaluate neoclassical transport in all collisionality regimes.
It is considered that only the terms with j 
 2 in the Laguerre polyno-
mial expansion of the correction part of the operator need to be kept
even for the most collisional case where all particle species are in the
Pfirsch–Schl€uter collisionality regime. The present model is expected
to be useful for simulation studies of neoclassical and turbulent trans-
port processes in plasmas including multispecies of particles in various
collisional regimes.
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APPENDIX A: COLLISIONAL ENERGY TRANSFER
BETWEEN UNLIKE SPECIES WITH UNEQUAL
TEMPERATURES

Using Eq. (4), the collisional energy transfer from species b to a,
which equals the opposite sign of that from species a to b, is given byð

d3vCabðfaM; fbMÞ
mav2

2
¼ �

ð
d3vCbaðfbM; faMÞ

mbv2

2

¼ �3 maa3ab
mbð1þ a2abÞ

3=2

naðTa � TbÞ
sab

; (A1)

where each species is assumed to be in the local equilibrium state
represented by the Maxwellian distribution function. Thus, if
Ta 6¼ Tb, collisions cause the temperatures of the two species to
approach each other, and the characteristic rate �etab of the colli-
sional energy transfer from species b to a is given by

�etab ¼
maa3ab

mbð1þ a2abÞ
3=2

1
sab
¼ e2bnbmaa3ab

e2anambð1þ a2abÞ
3=2

1
saa

¼ e2amb

e2bmað1þ a2abÞ
3=2

1
sbb

: (A2)

We now assume that jea=ebj ¼ Oð1Þ; na=nb ¼ Oð1Þ, and
Ta=Tb ¼ Oð1Þ. Then, in the case where ma=mb ¼ Oð1Þ, we have
aab ¼ Oð1Þ, and accordingly, �etab � 1=saa � 1=sbb from Eq. (A2).
This implies that the relaxation toward the equal-temperature
ðTa ¼ TbÞ state due to the unlike-species collisions and the thermali-
zation toward the Maxwellian equilibrium are expected to have
occurred on the same time scale and that the Maxwellian distribution
functions faM and fbM should have the same temperature Ta ¼ Tb.

Next, we consider another case where ma=mb � 1 or
ma=mb 	 1 holds. Then, aab 	 1 and �etab � ðma=mbÞ=saa
� ðma=mbÞ1=2=sbb are obtained for ma=mb � 1, while aab � 1 and
�etab � ðmb=maÞ1=2=saa � ðmb=maÞ=sbb for ma=mb 	 1. Therefore,
when ma=mb � 1 or ma=mb 	 1, collisional energy exchange
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between species a and b is so slow that faM and fbM are permitted to
have unequal temperatures Ta 6¼ Tb.

We now consider the case where ma=mb 	 1, jea=ebj
	 1; na=nb � 1, and Ta=Tb ¼ Oð1Þ. This can happen when a and
b represent heavy minority impurity ions with a high charge num-
ber and bulk hydrogen isotopes (or electrons), respectively. Then,
we have aab � 1 and

�etab �
e2bnbm

1=2
b

e2anam
1=2
a

1
saa
� e2amb

e2bma

1
sbb

: (A3)

For example, using Eq. (A3) in realistic cases as in the JET and
ASDEX Upgrade experiments shown in Ref. 12, the characteristic
rates �etWi and �

et
We of the collisional energy transfer from tungsten

impurities (W) to bulk hydrogen isotopes (i) and to electrons (e)
are estimated to satisfy

�etWi � 1=sWW ; �etWi > 1=sii; (A4)

and

�etWe � 1=sWW ; �etWe � 1=see; (A5)

respectively. Under these conditions, it is reasonable to assume TW
¼ Ti although it is not to assume TW ¼ Te.

APPENDIX B: EFFECTS OF UNEQUAL
TEMPERATURES ON ADJOINTNESS RELATIONS

Based on the Landau collision operator defined in Eq. (1), the
test and field particle parts are written as

CT
abðdfaÞ � CT0

ab ðdfaÞ þ CTN
ab ðdfaÞ;

CF
abðdfbÞ � CF0

ab ðdfbÞ þ CFN
ab ðdfbÞ;

(B1)

where

CT0
ab ðdfaÞ�

2pe2ae
2
b lnK

m2
a

@

@v
� faMðvÞ

@

@v
dfaðvÞ
faMðvÞ

� ��

�
ð
d3v0 fbMðv0ÞUðv�v0Þ

�

��abD ðvÞLðdfaÞþCabv ðdfaÞ;

CTN
ab ðdfaÞ�

1
Tb
� 1
Ta

� �
2pe2ae

2
b lnK

ma

@

@v

� dfaðvÞv �
ð
d3v0 fbMðv0ÞUðv�v0Þ

� �

� 1
Tb
� 1
Ta

� �
ma

v2
@

@v

�abk ðvÞ
2

v5dfa

" #
;

CF0
ab ðdfbÞ��

2pe2ae
2
b lnK

mamb

@

@v
�

� faMðvÞ
ð
d3v0 fbMðv0ÞUðv�v0Þ � @

@v0
dfbðv0Þ
fbMðv0Þ

� �� �
;

CFN
ab ðdfbÞ�

1
Tb
� 1
Ta

� �
2pe2ae

2
b lnK

ma

@

@v

� faMðvÞv �
ð
d3v0dfbðv0ÞUðv�v0Þ

� �
:

(B2)

Here, CT0
ab ðdfaÞ consists of the pitch-angle-scattering part

�abD ðvÞLðdfaÞ and the energy diffusion part Cabv ðdfaÞ. The pitch-
angle-scattering operator L is defined as

LðdfaÞ �
1
2
@

@v
� v2I� vvð Þ � @dfa

@v

� �

¼ 1
2

1
sin h

@

@h
sin h

@dfa
@h

� �
þ 1

sin2h
@2dfa
@u2

" #
; (B3)

where I denotes the unit tensor and ðv; h;uÞ represent spherical
coordinates in the velocity space. The energy diffusion operator Cabv
is defined as

Cabv ðdfaÞ �
1
v2
@

@v

�abk ðvÞ
2

v4faM
@

@v

dfa
faM

� �" #
: (B4)

The collision frequencies for pitch-angle scattering and energy dif-
fusion are given by �abD ðvÞ � 3

ffiffiffi
p
p

=4
	 


s�1ab ½UðxbÞ � GðxbÞ�=x3a and
�abk ðvÞ � 3

ffiffiffi
p
p

=2
	 


s�1ab GðxbÞ=x3a , respectively, where 3
ffiffiffi
p
p

=4
	 


s�1ab

� 4pnbe2ae
2
b lnK=ðm2

av
3
TaÞ (lnK: the Coulomb logarithm), UðxÞ

� 2p�1=2
Ð x
0 e
�t2dt, GðxÞ � ½UðxÞ � xU0ðxÞ�=ð2x2Þ, xs � v=vTs, and

vTs � ð2Ts=msÞ1=2 ðs ¼ a; bÞ.
We can easily confirm that �DL; Cab

v , and accordingly CT0
ab are

all self-adjoint so thatð
d3v

dfa
faM

CT0
ab ðdgaÞ ¼

ð
d3v

dga
faM

CT0
ab ðdfaÞ (B5)

holds for arbitrary functions dfa and dga of v. It can also be shown
that CF0

ab satisfies the adjointness relation written asð
d3v

dfa
faM

CF0
ab ðdfbÞ ¼

ð
d3v

dfb
fbM

CF0
ba ðdfaÞ: (B6)

The remaining test and field particle operators CTN
ab and CFN

ab do not
keep adjoint relations such as Eqs. (B5) and (B6) satisfied by CT0

ab
and CF0

ab , respectively, although CTN
ab and CFN

ab vanish for Ta ¼ Tb.
We also note that the two pairs of the operators ðCT0

ab ;C
F0
ab Þ

and ðCTN
ab ;C

FN
ab Þ independently satisfy the particle, momentum, and

energy conservation laws, which are written asð
d3vCTA

ab ðdfaÞ ¼
ð
d3vCFA

ab ðdfbÞ ¼ 0 ðA ¼ 0;NÞ; (B7)

ð
d3vmavC

TA
ab ðdfaÞ þ

ð
d3vmbvC

FA
ba ðdfaÞ ¼ 0 ðA ¼ 0;NÞ; (B8)

andð
d3v

1
2
mav

2CTA
ab ðdfaÞ þ

ð
d3v

1
2
mbv

2CFA
ba ðdfaÞ ¼ 0 ðA ¼ 0;NÞ;

(B9)

respectively.
From the Galilean invariance and spherical symmetry of

the Landau collision operator, we have an identity,
Ð
d3vmaðv

�uÞCab½faMðv� uÞ; fbMðv� uÞ� ¼
Ð
d3vmavCab½faMðvÞ; fbMðvÞ� ¼ 0,

for an arbitrary vector u which is independent of v. Then, taking
the u! 0 limit of the above identity and using the particle and
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momentum conservation laws, we can derive another type of
relation ð

d3vmav C
T
abðfaMmav=TaÞ

¼
ð
d3vmbv C

T
baðfbMmbv=TbÞ

¼ �
ð
d3vmav C

F
abðfbMmbv=TbÞ

¼ �
ð
d3vmbv C

F
baðfaMmav=TaÞ: (B10)

We should note that the symmetry properties shown in Eq. (B10)
are valid even when Ta 6¼ Tb although they are not satisfied in the
same way as Eqs. (B7)–(B9) are separately satisfied by the two pairs
of the operators ðCTA

ab ;C
FA
ab Þ ðA ¼ 0;NÞ for Ta 6¼ Tb.

Using Eq. (B1), the matrix elements Mij
ab and Nij

ab, which are
defined by Eq. (11), are written as

Mij
ab ¼ Mð0Þijab þMðNÞijab ;

Nij
ab ¼ Nð0Þijab þ NðNÞijab ;

(B11)

whereMðAÞijab and NðAÞijab ðA ¼ 0;NÞ are defined as

na
sab

MðAÞijab �
ð
d3v vkL

ð3=2Þ
i ðx2aÞCTA

ab faML
ð3=2Þ
j ðx2aÞ

mavk
Ta

� �
;

na
sab

NðAÞijab �
ð
d3v vkL

ð3=2Þ
i ðx2aÞCFA

ab fbML
ð3=2Þ
j ðx2bÞ

mbvk
Tb

� �
:

(B12)

Then, the momentum conservation law shown in Eq. (B8) is used
to find

MðAÞ0jab þ TavTa
TbvTb

NðAÞ0jba ¼ 0 ðA ¼ 0;N; j ¼ 0; 1; 2;…Þ: (B13)

The symmetry properties of Mð0Þijab and Nð0Þijab are derived from the
adjointness relations given by Eqs. (B5) and (B6) as

Mð0Þijab ¼ Mð0Þjiab and
Nð0Þijab

T2
avTa
¼ Nð0Þjiba

T2
bvTb

; (B14)

respectively. Also from Eq. (B10), we obtain

M00
ab ¼ �N00

ab ;
N00
ab

TavTa
¼ N00

ba

TbvTb
: (B15)

It should be noted that the symmetry properties of Nð0Þijab and N00
ab

take different forms with respect to the way the temperatures enter.
In the case of ma=mb ¼ Oð1Þ, the temperatures Ta and Tb are

expected to be close to each other because of the relatively fast
energy exchange due to collisions. Therefore, only when ma � mb

or ma 	 mb, Ta can be significantly different from Tb. In the limit-
ing case ma � mb, it is shown that the pitch-angle-scattering term
�DðvÞLðdfaÞ is dominant in the test particle operator CT

abðdfaÞ where
the energy scattering term Cab

v ðdfaÞ and the nonadjoint part
CTN
ab ðdfaÞ are negligible in the lowest order of the expansion with

respect to ðma=mbÞ1=2. However, when Ta 6¼ Tb, CFN
ab ðdfbÞ is not

negligible, but it is necessary to keep contributions from both
CF0
ab ðdfbÞ and CFN

ab ðdfbÞ for accurately evaluating collisional

momentum transfer. Then, it can be shown that, to the lowest order
in ðma=mbÞ1=2, the test and field particle parts of the Sugama opera-
tor CS

abðdfa; dfbÞ ¼ CTS
ab ðdfaÞ þ CFS

abðdfbÞ correctly approximate
CT
abðdfaÞ and CF

abðdfbÞ of the linearized Landau operator,
respectively.

We next consider the case in which ma 	 mb and Ta 6¼ Tb

hold. In this case, CTN
ab ðdfaÞ is not negligibly small compared with

CT0
ab ðdfaÞ, while CFN

ab ðdfbÞ does not contribute to CF
abðdfbÞ in the low-

est order of the expansion with respect to ðmb=maÞ1=2. Then,
CF
abðdfbÞ is well approximated by either CF0

ab ðdfbÞ or CFS
abðdfbÞ

although the difference of CT
abðdfaÞ from CT0

ab ðdfaÞ or CTS
ab ðdfaÞ is sig-

nificant. However, this difference does not cause serious errors
in solving the kinetic equation for dfa as far as CT

abðdfaÞ=CT
aaðdfaÞ

� ðeb=eaÞ2ðnb=naÞðmb=maÞ1=2 becomes very small. [This ratio

ðeb=eaÞ2ðnb=naÞðmb=maÞ1=2 can be large in such a case of tungsten
impurity as mentioned in Appendix A although, for that case, Ta
¼ Tb is expected so that CT

abðdfaÞ ¼ CT0
ab ðdfaÞ ¼ CTS

ab ðdfaÞ holds.]
Except for this limiting case of ma 	 mb and Ta 6¼ Tb, we can

suppose that the matrix elements Mij
ab evaluated by CT

abðdfaÞ
¼ CT0

ab ðdfaÞ þ CTN
ab ðdfaÞ satisfy the symmetry relations of the same

form as those forMð0Þijab shown in Eq. (B14)

Mij
ab ¼ Mji

ab ði; j ¼ 0; 1; 2;…Þ: (B16)

It is recalled that contributions of CTN
ab ðdfaÞ to the collisional

momentum transfer are taken into account in defining CTS
ab ðdfaÞ

such that CTS
ab ðdfaÞ and CT

abðdfaÞ ¼ CT0
ab ðdfaÞ þ CTN

ab ðdfaÞ give the
same matrix element M00

ab even when ma 	 mb and Ta 6¼ Tb. Also,

CTS
ab ðdfaÞ is constructed so as to yield the matrix elements MðSÞijab

which satisfy symmetry relations of the same form as in Eq. (B16).
When ma=mb � 1 and Ta 6¼ Tb, CFN

ab ðdfaÞ makes a significant
contribution to CF

abðdfaÞ ¼ CF0
ab ðdfaÞ þ CFN

ab ðdfaÞ. In this case, we

can show that, to the lowest order in ðma=mbÞ1=2,

Nij
ab

TavTa
¼ Nji

ba

TbvTb
ði; j ¼ 0; 1; 2;…Þ (B17)

are satisfied by the matrix elements Nij
ab associated with CF

abðdfaÞ.
Note that the second relation in Eq. (B15), which holds exactly, is
included as a special case in the symmetry relations shown by Eq.
(B17) and that they take a different form from those for Nð0Þijab in Eq.
(B14). Also, the matrix elements NðSÞijab evaluated by CFS

abðdfaÞ satisfy
symmetry relations of the same form as in Eq. (B17).

In summary, the adjointness relations of the linearized
Landau operator CL

ab are not satisfied rigorously in collisions
between unlike species with unequal temperatures although signif-
icantly different temperatures occur in the case where the two spe-
cies have so different masses that the adjointness relations and
symmetry properties of the matrix elements and the friction coeffi-
cients can still be used as approximately valid formulas. On the
other hand, the Sugama operator CLS

ab in Sec. III and the operator
CLS�ðimpÞ
ab in Appendix D are constructed so as to exactly keep the

adjointness relations which can be useful in formulating efficient
methods of evaluating Onsager symmetric collisional transport
coefficients.1–5,47–50
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APPENDIX C: MATRIX ELEMENTS ASSOCIATED
WITH THE LINEARIZED LANDAU OPERATOR AND
THE SUGAMA OPERATOR

This Appendix shows that how the matrix elements Mij
ab

¼ Mð0Þijab þMðNÞijab and Mij
ab ¼ Mð0Þijab þMðNÞijab [see Eqs. (B11) and

(B12) in Appendix B] which are associated with the test part
CT
ab ¼ CT0

ab þ CTN
ab and the field part CF

ab ¼ CF0
ab þ CFN

ab of the linear-
ized Landau operator CL

ab ¼ CT
ab þ CF

ab are expressed in terms of
aab � vTa=vTb, Ta=Tb, and ma=mb. In addition, it is shown how

to evaluate MðSÞijab and NðSÞijab defined from the Sugama operator
CLS
ab ¼ CTS

ab þ CFS
ab (see Sec. III).

First, the 00 elements of the matrices MðAÞijab and NðAÞijab
ðA ¼ 0;NÞ are written as follows:

Mð0Þ00ab ¼ � aab

ð1þ a2abÞ
1=2
;

MðNÞ00ab ¼ 1� Ta

Tb

� �
aab

ð1þ a2abÞ
3=2
;

Nð0Þ00ab ¼ �Ta

Tb
Mð0Þ00ab ¼ Ta

Tb

aab

ð1þ a2abÞ
1=2
;

NðNÞ00ab ¼ a2abM
ðNÞ00
ab ¼ 1� Ta

Tb

� �
a3ab

ð1þ a2abÞ
3=2
:

(C1)

Then, the 00 elements, M00
ab ¼ Mð0Þ00ab þMðNÞ00ab and N00

ab ¼ Nð0Þ00ab

þNðNÞ00ab , which equalMðSÞ00ab and NðSÞ00ab , respectively, are given by

M00
ab ¼ �N00

ab ¼ MðSÞ00ab ¼ �NðSÞ00ab

¼ � 1þma

mb

� �
a3ab

ð1þ a2abÞ
3=2
: (C2)

Next, the 0i elements MðAÞ0iab ; NðAÞ0iab ðA ¼ 0;NÞ, M0i
ab, and N0i

ab
(i¼ 1, 2) are given by

Mð0Þ01ab ¼ � 3a3ab
2ð1þ a2abÞ

3=2
;

Mð0Þ02ab ¼ � 15a5ab
8ð1þ a2abÞ

5=2
;

MðNÞ01ab ¼ ðh2ab � 1ÞMð0Þ01ab ¼ 1� Ta

Tb

� �
3a3ab

2ð1þ a2abÞ
5=2
;

MðNÞ02ab ¼ ðh2ab � 1ÞMð0Þ02ab ¼ 1� Ta

Tb

� �
15a5ab

8ð1þ a2abÞ
7=2
;

M01
ab ¼ h2abM

ð0Þ01
ab ¼ � 3a5ab

2ð1þ a2abÞ
5=2

1þma

mb

� �
;

M02
ab ¼ h2abM

ð0Þ02
ab ¼ � 15a7ab

8ð1þ a2abÞ
7=2

1þma

mb

� �
; (C3)

Nð0Þ01ab ¼ �Ta

Tb
aabM

ð0Þ01
ba ¼ Ta

Tb

3aab

2ð1þ a2abÞ
3=2
;

Nð0Þ02ab ¼ �Ta

Tb
aabM

ð0Þ02
ba ¼ Ta

Tb

15aab

8ð1þ a2abÞ
5=2
;

NðNÞ01ab ¼ �Ta

Tb
aabM

ðNÞ01
ba ¼ 1� Ta

Tb

� �
3a3ab

2ð1þ a2abÞ
5=2
;

NðNÞ02ab ¼ �Ta

Tb
aabM

ðNÞ02
ba ¼ 1� Ta

Tb

� �
15a3ab

8ð1þ a2abÞ
7=2
;

N01
ab ¼

3a3ab
2ð1þ a2abÞ

5=2
1þma

mb

� �
;

N02
ab ¼

15a3ab
8ð1þ a2abÞ

7=2
1þma

mb

� �
;

where hab defined in Eq. (21) and the momentum conservation law
shown in Eq. (B13) are used.

The i0 elements MðAÞi0ab and NðAÞi0ab ðA ¼ 0;N; i ¼ 1; 2Þ are
given by

Mð0Þ10ab ¼ Mð0Þ01ab ; Mð0Þ20ab ¼ Mð0Þ02ab ;

MðNÞ10ab ¼ Ta

Tb
� 1

� �
aabð10þ a2abÞ
2ð1þ a2abÞ

5=2
;

MðNÞ20ab ¼ Ta

Tb
� 1

� �
3a3abð28þ 3a2abÞ
8ð1þ a2abÞ

7=2
;

Nð0Þ10ab ¼ T2
a

T2
b

aabN
ð0Þ01
ba ¼ �Ta

Tb
Mð0Þ01ab ;

Nð0Þ20ab ¼ T2
a

T2
b

aabN
ð0Þ02
ba ¼ �Ta

Tb
Mð0Þ02ab ;

NðNÞ10ab ¼ 1� Ta

Tb

� �
3a3abð�2þ a2abÞ
2ð1þ a2abÞ

5=2
;

NðNÞ20ab ¼ 1� Ta

Tb

� �
15a5abð�4þ a2abÞ
8ð1þ a2abÞ

7=2
;

(C4)

where the relations shown in Eqs. (B13) and (B14) are used. Using

Eqs. (C3) and (C4), we can immediately evaluate Mi0
ab ¼ Mð0Þi0ab

þMðNÞi0ab and Ni0
ab ¼ Nð0Þi0ab þ NðNÞi0ab (i¼ 1, 2).

The ij elements MðAÞijab and NðAÞijab ðA ¼ 0;N; i; j ¼ 1; 2Þ are
written as

Mð0Þ11ab ¼ � aabð30þ 16a2ab þ 13a4abÞ
4ð1þ a2abÞ

5=2
;

Mð0Þ12ab ¼ Mð0Þ21ab ¼ � 3a3abð84þ 32a2ab þ 23a4abÞ
16ð1þ a2abÞ

7=2
;

Mð0Þ22ab ¼ � aab

64ð1þ a2abÞ
9=2

� ð1400þ 1792a2ab þ 3672a4ab þ 1088a6ab þ 433a8abÞ;

MðNÞ11ab ¼ 1� Ta

Tb

� �
3aabð10� 2a2ab þ 3a4abÞ

4ð1þ a2abÞ
7=2

;

MðNÞ12ab ¼ 1� Ta

Tb

� �
3a3abð84� 2a2ab þ 19a4abÞ

16ð1þ a2abÞ
9=2

;

MðNÞ21ab ¼ � 1� Ta

Tb

� �
aab

16ð1þ a2abÞ
9=2

� ð280þ 84a2ab þ 348a4ab þ 19a6abÞ;
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MðNÞ22ab ¼ 1� Ta

Tb

� �
aab

64ð1þ a2abÞ
11=2

� ð1400� 112a2ab þ 2424a4ab � 556a6ab þ 233a8abÞ;

Nð0Þ11ab ¼ Ta

Tb

27a3ab
4ð1þ a2abÞ

5=2
; (C5)

Nð0Þ12ab ¼ Ta

Tb

225a3ab
16ð1þ a2abÞ

7=2
;

Nð0Þ21ab ¼ Ta

Tb

225a5ab
16ð1þ a2abÞ

7=2
;

Nð0Þ22ab ¼ Ta

Tb

2125a5ab
64ð1þ a2abÞ

9=2
;

NðNÞ11ab ¼ 1� Ta

Tb

� �
9a3abð�2þ 3a2abÞ
4ð1þ a2abÞ

7=2
;

NðNÞ12ab ¼ 1� Ta

Tb

� �
45a3abð�2þ 5a2abÞ
16ð1þ a2abÞ

9=2
;

NðNÞ21ab ¼ 1� Ta

Tb

� �
75a5abð�4þ 3a2abÞ
16ð1þ a2abÞ

9=2
;

NðNÞ22ab ¼ 1� Ta

Tb

� �
525a5abð�4þ 5a2abÞ
64ð1þ a2abÞ

11=2
:

Then, Mij
ab ¼ Mð0Þijab þMðNÞijab and Nij

ab ¼ Nð0Þijab þ NðNÞijab ði; j ¼ 1; 2Þ
are evaluated from the results shown in Eq. (C5).

Now, we can use the matrix elements Mð0Þ0iab ¼ Mð0Þi0ab and

Mð0Þijab ði; j ¼ 1; 2;…Þ to express the matrix elements MðSÞ0iab ¼ MðSÞi0ab

andMðSÞijab ði; j ¼ 1; 2;…Þ by

MðSÞ0iab ¼ MðSÞi0ab ¼ habM
ð0Þ0i
ab ;

MðSÞijab ¼ Mð0Þijab

(C6)

and write the matrix elements NðSÞ0iab and NðSÞi0ab ði ¼ 1; 2;…Þ as

NðSÞ0iab ¼ �Ta

Tb
aabM

ðSÞ0i
ba ¼ hbaN

ð0Þ0i
ab ;

NðSÞi0ab ¼ Ta

Tb
aabN

ðSÞ0i
ba ¼ �MðSÞ0iab ;

(C7)

where Eqs. (31), (34), (B13), and (C6) are used. Then, Eq. (35) can
be used to evaluate NðSÞijab ði; j ¼ 1; 2;…Þ from NðSÞi0ab ; NðSÞ0jab , and
N00
ab [see Eq. (C2)].

APPENDIX D: IMPROVED SUGAMA OPERATOR
MODIFIED BY SYMMETRIZING MATRIX ELEMENTS

In this Appendix, the improved Sugama operator defined in
Eq. (40) is modified when Ta 6¼ Tb as follows:

CLS�ðimpÞ
ab ðdfa; dfbÞ � CLS

abðdfa; dfbÞ þ DCF�
ab ðdfbÞ; (D1)

where CLS
abðdfa; dfbÞ represents the original Sugama operator

described in Sec. III, and the new correction part DCF�
ab ðdfbÞ is

defined as

DCF�
ab ðdfbÞ � faM

ma

Ta
v �
X1
j¼1

DCF�
abj dfb½ �Lð3=2Þj ðx2aÞ: (D2)

Here, DCF�
abj½dfb� ðj ¼ 1; 2;…Þ are given by

DCF�
abj dfb½ � �

cj
sab

X1
k¼1

DN�jkab ubk dfb½ � ðj ¼ 1; 2;…Þ (D3)

and

DN�jkab � N�jkab � NðSÞjkab ¼ N00
abN

�jk
ab � NðSÞi0ab NðSÞ0jab

N00
ab

ðj; k ¼ 1; 2;…Þ;

(D4)

where

N�jkab �
TavTa
2

Njk
ab

TavTa
þ Nkj

ba

TbvTb

 !
ðj; k ¼ 1; 2;…Þ: (D5)

We can now use the test and field particle part of
CLS�ðimpÞ
ab ðdfa; dfbÞ to obtain the matrix elements M�ijab and N�ijab in the

same way as shown in Eq. (11). Then, the friction coefficients lab�ij
can be derived from M�ijab and N�ijab [see Eq. (13)]. Since DCF�

ab ðdfbÞ
defined in Eq. (D2) gives the correction only in the field particle
part, we immediately see that

M�ijab ¼ MðSÞijab ði; j ¼ 0; 1; 2;…Þ: (D6)

We also find that

N�i0ab ¼ NðSÞi0ab ; N�0jab ¼ NðSÞ0jab ; ði; j ¼ 0; 1; 2;…Þ; (D7)

and N�ijab ði; j ¼ 1; 2;…Þ are given by Eq. (D5). It is confirmed from
Eqs. (D5)–(D7) that the matrix elementsM�ijab and N�ijab satisfy

M�ijab ¼ M�jiab ;
N�ijab

TavTa
¼ N�jiba

TbvTb
ði; j ¼ 0; 1; 2;…Þ; (D8)

which leads to the symmetry of the friction coefficients lab�ij

lab�ij ¼ lba�ji ði; j ¼ 1; 2;…Þ: (D9)

The modified operator CLS�ðimpÞ
ab ðdfa; dfbÞ exactly satisfies the

adjointness relations in the same form as those in Eq. (16) and
accordingly induces the Onsager symmetry of collisional transport
coefficients.

When Ta 6¼ Tb, the values of M�ijab ; N
�ij
ab , and lab�ij are different

from those of Mij
ab; N

ij
ab, and labij given by the linearized Landau

operator, respectively. However, as explained in Appendix B, the
differences between these values are not expected to cause serious
errors in solutions of kinetic equations because ma=mb � 1 or
ma=mb 	 1 are required if Ta and Tb differ significantly from each
other.

Noting that DCF�
ab ðdfbÞ never influences collisional momen-

tum and energy transfer, we can confirm that CLS�ðimpÞ
ab ðdfa; dfbÞ

retains the conservation laws of particles, momentum, and
energy. Specifically, the momentum conservation law imposes
the constraints on the matrix elements and the friction coeffi-
cients as
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M�0jab þ
TavTa
TbvTb

N�0jba ¼ 0 ðj ¼ 0; 1; 2;…Þ;X
a

lab�1j ¼ 0 ðj ¼ 1; 2;…Þ;
(D10)

which are rewritten with the help of Eqs. (D8) and (D9) as

M�j0ab þ N�j0ab ¼ 0 ðj ¼ 0; 1; 2;…Þ;X
b

lab�j1 ¼ 0 ðj ¼ 1; 2;…Þ: (D11)

Then, if the perturbed functions are written as dfs ¼ fsMðma=
TsÞðus � vÞ ðs ¼ a; bÞ with the condition ua ¼ ub, we find

that CLS�ðimpÞ
ab ðdfa;dfbÞ¼ s�1ab faMðma=TaÞv �

P1
j¼0 cjL

ð3=2Þ
j ðx2aÞðM

�j0
ab ua

þN�j0ab ubÞ¼ 0 because of Eq. (D11) and ua¼ ub. Noting that

CLS�ðimpÞ
ab is also annihilated by the perturbed distribution functions

dfs ðs¼ a;bÞ given by Eq. (45) with dTa=Ta¼ dTb=Tb, it is now

remarked that CLS�ðimpÞ
ab ðdfa;dfbÞ vanishes for the perturbed distribu-

tion functions given by the perturbed Maxwellian with the per-
turbed densities dns, temperatures dTs, and flows us ðs¼ a;bÞ as

dfs ¼ fsM
dns
ns
þms

Ts
us � v þ

dTs

Ts

msv2

2Ts
� 3
2

� �� �
; (D12)

where ua ¼ ub and dTa=Ta ¼ dTb=Tb.
Using Eq. (D1), the collision operator for gyrokinetic equa-

tions is given by

þ
dn
2p

eik?�qaCLS�ðimpÞ
ab ðe�ik?�qahak? ; e

�ik?�qb hbk?Þ

¼
þ
dn
2p

eik?�qaCLS
abðe�ik?�qa hak? ; e

�ik?�qb hbk?Þ

þ
þ
dn
2p

eik?�qaDCF�
ab ðe�ik?�qa hak? ; e

�ik?�qbhbk?Þ: (D13)

The detailed expression of the first term on the right-hand of
Eq. (D13) is found in Ref. 23 while the second term is expressed

by Eq. (49) by putting DMjk
ab ¼ 0 and replacing DNjk

ab by

DN�jkab � N�jkab � NðSÞjkab .
Since the two colliding particle species need to have very dif-

ferent masses for their temperatures to be significantly different
from each other, the improved Sugama operators presented in
this Appendix and Sec. IV do not seem to show large quantitative
differences from each other for the case of Ta 6¼ Tb, where
ma=mb � 1 or ma=mb 	 1 holds. It is not so clear how the
adjointness properties of the linearized collision operator are cru-
cial for accurate prediction of turbulent transport or for the for-
mulation of efficient turbulence simulation methods in
comparison with their roles in neoclassical transport theory and
simulation. Unless one can recognize merits of the adjointness
properties for analytical or numerical calculations of turbulent
transport, the operator presented in Sec. IV may seem more suit-
able for gyrokinetic simulation in the unequal temperature case
than that in this Appendix because the former describes
the friction-flow relations more accurately. However, we still note
that there are several theoretical studies on the Onsager-type

symmetry of the quasilinear turbulent transport matrix,60–64 for
which the collision operator given in this Appendix can be useful
to study collisional effects.

REFERENCES
1M. N. Rosenbluth, R. D. Hazeltine, and F. L. Hinton, Phys. Fluids 15, 116
(1972).

2F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 42, 239 (1976).
3S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).
4R. Balescu, Transport Processes in Plasmas (North-Holland, Amsterdam,
1988), Vols. 1 and 2.

5P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas
(Cambridge University Press, Cambridge, 2002).

6W. Horton, Turbulent Transport in Magnetized Plasmas, 2nd ed. (World
Scientific, Singapore, 2018), Chap.12.

7Y. Idomura, T.-H. Watanabe, and H. Sugama, C. R. Phys. 7, 650 (2006).
8T.-H. Watanabe and H. Sugama, Phys. Plasmas 11, 1476 (2004).
9F. L. Hinton and M. N. Rosenbluth, Plasma Phys. Controlled Fusion 41, A653
(1999).

10Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and P. H. Diamond, Phys. Rev.
Lett. 83, 3645 (1999).

11M. Nakata, M. Nunami, and H. Sugama, Phys. Rev. Lett. 118, 165002 (2017).
12F. J. Casson, C. Angioni, E. A. Belli, R. Bilato, P. Mantica, T. Odstrcil, T.
P€utterich, M. Valisa, L. Garzotti, C. Giroud, J. Hobirk, C. F. Maggi, J. Mlynar,
M. L. Reinke, JET EFDA Contributors, and ASDEX-Upgrade Team, Plasma
Phys. Controlled Fusion 57, 014031 (2015).

13P. Helander, S. L. Newton, A. Moll�en, and H. M. Smith, Phys. Rev. Lett. 118,
155002 (2017).

14R. Dux, A. Loarte, E. Fable, and A. Kukushkin, Plasma Phys. Controlled Fusion
56, 124003 (2014).

15S. Yamoto, X. Bonnin, Y. Homma, H. Inoue, K. Hoshino, A. Hatayama, and R.
A. Pitts, Nucl. Fusion 57, 116051 (2017).

16S. P. Hirshman and D. J. Sigmar, Phys. Fluids 19, 1532 (1976).
17A. M. Dimits and B. I. Cohen, Phys. Rev. E 49, 709 (1994).
18Z. Lin, M. W. Tang, and W. W. Lee, Phys. Plasmas 2, 2975 (1995).
19W. X. Wang, N. Nakajima, M. Okamoto, and S. Murakami, Plasma Phys.
Controlled Fusion 41, 1091 (1999).

20P. J. Catto and K. T. Tsang, Phys. Fluids 20, 396 (1977).
21X. Q. Xu and M. N. Rosenbluth, Phys. Fluids B 3, 627 (1991).
22I. G. Abel, M. Barnes, S. C. Cowley, W. Dorland, and A. A. Schekochihin, Phys.
Plasmas 15, 122509 (2008).

23H. Sugama, T.-H. Watanabe, and M. Nunami, Phys. Plasmas 16, 112503
(2009).

24A. J. Brizard, Phys. Plasmas 11, 4429 (2004).
25J. Madsen, Phys. Rev. E 87, 011101 (2013).
26J. W. Burby, A. J. Brizard, and H. Qin, Phys. Plasmas 22, 100707 (2015).
27H. Sugama, T.-H. Watanabe, and M. Nunami, Phys. Plasmas 22, 082306
(2015).
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