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A novel radially local approximation of the drift kinetic equation is presented. The new drift

kinetic equation that includes both E� B and tangential magnetic drift terms is written in the

conservative form and it has favorable properties for numerical simulation that any additional

terms for particle and energy sources are unnecessary for obtaining stationary solutions under the

radially local approximation. These solutions satisfy the intrinsic ambipolarity condition for

neoclassical particle fluxes in the presence of quasisymmetry of the magnetic field strength. Also,

another radially local drift kinetic equation is presented, from which the positive definiteness of

entropy production due to neoclassical transport and Onsager symmetry of neoclassical transport

coefficients are derived while it sacrifices the ambipolarity condition for neoclassical particle

fluxes in axisymmetric and quasi-symmetric systems. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4945618]

I. INTRODUCTION

Effects of neoclassical transport1–3 on plasma confine-

ment are more significant in stellarator and heliotron plasmas

than in tokamak plasmas because, in the former, radial drift

motions of trapped particles in helical ripples enhance parti-

cle and heat transport due to nonaxisymmetry of the mag-

netic configuration.4–6 Conventional calculations of

neoclassical transport fluxes are done by applying radially

local approximation to solving the drift kinetic equation, in

which vd � rf is often neglected as a small term of higher

order in the normalized gyroradius parameter d � q=L.

(Here, vd, f, q, and L represent the guiding center drift veloc-

ity, the deviation of the guiding center distribution function

from the local Maxwellian equilibrium distribution, the gyro-

radius, and the equilibrium scale length, respectively.)

However, in stellarator and heliotron plasmas, this vd � rf
term is known to be influential on the resultant neoclassical

transport because it significantly changes orbits of particles

trapped in helical ripples. Therefore, at least, the E� B drift

part vE � rf in vd � rf has been kept in most studies of neo-

classical transport in helical systems.7–15

Recently, it was shown by Matsuoka et al.13 that the

neoclassical transport is significantly influenced by retaining

the magnetic drift tangential to flux surfaces in vd � rf for

the magnetic configuration of LHD especially when the ra-

dial electric field is weak. However, as pointed by

Landreman et al.,14 stationary solutions of the drift kinetic

equation with radially local approximation used require addi-

tional artificial sources (or sinks) of particles and energy

when the above-mentioned drift terms are retained. In this

paper, a novel radially local drift kinetic equation, which

includes both E� B and tangential magnetic drift motions,

is presented. The radially local guiding center motion equa-

tions do not satisfy the conservation law of the phase-space

volume, while the full guiding center motion equations do.

This fact causes the difficulty in obtaining the stationary so-

lution of the local drift kinetic equation. However, the new

local drift kinetic equation, which is written in the conserva-

tive form, has favorable properties for numerical simulation

such that any additional terms for particle and energy sources

are unnecessary for obtaining stationary solutions. In addi-

tion, it satisfies the intrinsic ambipolarity condition for neo-

classical particle fluxes in axisymmetric systems as well as

in quasi-symmetric helical systems.16,17 The present work

also treats interesting issues regarding the entropy production

rate and Onsager symmetry18,19 for neoclassical transport

equations resulting from the new local drift kinetic model.

The rest of this paper is organized as follows. In Sec. II,

we consider the full drift kinetic model based on Littlejohn’s

guiding-center equations20 without radially local approxima-

tion. Particle, energy, and parallel momentum balance equa-

tions are derived from the full drift kinetic equation. These

balance equations are flux-surface averaged to confirm that

they contain the second-order terms in d, which represent

neoclassical transport across flux surfaces. Also, expanding

the distribution function about the local Maxwellian, we

rewrite the drift kinetic equation to explicitly show that the

thermodynamic forces defined by the background density

and temperature gradients and the parallel electric field cause

the deviation f from the local Maxwellian. In Sec. III, a new

drift kinetic model is constructed by applying radially local

approximation to Littlejohn’s guiding-center equations with

keeping E� B and tangential magnetic drift velocities. The

new local drift kinetic equation for f is shown to be compati-

ble with the stationary solution and to give intrinsic ambipo-

lar particle fluxes for axisymmetric and quasi-symmetric

systems. In Sec. IV, we present another radially local drift

kinetic equation, from which the positive definiteness of en-

tropy production due to neoclassical transport and Onsager

symmetry of neoclassical transport coefficients are derived

although this local drift kinetic equation no longer
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guarantees rigorously the intrinsic ambipolarity of neoclassi-

cal particle fluxes for axisymmetric and quasi-symmetric

systems. Finally, conclusions are given in Sec. V.

II. FULL DRIFT KINETIC MODEL

A. Drift kinetic model based on Littlejohn’s
guiding-center equations

We denote the guiding-center variables by ðX;U; n; lÞ,
where X represents the position vector of the guiding center,

U the parallel velocity, n the gyrophase defined by the azi-

muthal angle of the gyroradius vector around the magnetic

field line, and l the magnetic moment. The Lagrangian for

the guiding-center motion is given by Littlejohn20 as

L ¼ e

c
Aþ mUb

� �
� _X þ mc

e
l _n � H; (1)

where the Hamiltonian H is given by

H ¼ 1

2
mU2 þ lBþ eU: (2)

Here, U denotes the electrostatic potential. Using Eqs. (1)

and (2), the guiding-center motion equations are derived as

dX

dt
¼ Vgc � Ubþ c

eB�k
b� mU2b � rbþ lrB� eE�

� �
;

dU

dt
¼ � 1

m
b � lrB� eEð Þ þ Ub � rb � Vgc;

dn
dt
¼ X;

dl
dt
¼ 0; (3)

where X ¼ eB=ðmcÞ, r ¼ @=@X, E � �rU� c�1@A=@t,
B � r� A, E� � �rU� c�1@A�=@t, B� � r � A�,
B�k � B� � b, and A� � Aþ ðmc=eÞUb are used, and the

guiding-center drift velocity Vgc is defined by the right-hand

side of the equation for dX=dt. On the right-hand side of the

equation for dU/dt in Eq. (3), the last term Ub � rb � Vgc is

smaller than other terms by the order of d ¼ q=L where q
and L represent the gyroradius and the gradient scale length

given by L � B=jrBj � U=jrUj.
The Jacobian for the guiding-center variables is written

as

D ¼ det
@ x; vð Þ

@ X;U; n; lð Þ

" #
¼

B�k
m
; (4)

where x and v denote the particle position vector and the ve-

locity vector, respectively. Then, the conservation of the

phase-space volume d3x d3v ¼ D d3X dU dn dl is repre-

sented by

@D

@t
þr � D _Xð Þ þ @ D _Uð Þ

@U
¼ 0; (5)

which can be proved by using Eqs. (3) and (4).

The drift kinetic equation for the distribution function

FðX;U; l; tÞ is given by

@

@t
þ _X � r þ _U

@

@U

� �
F X;U; l; tð Þ ¼ C Fð Þ þ S; (6)

where the total time derivative is denoted by _¼ d=dt. In the

right-hand side of Eq. (6), C(F) is the collision term and the

additional term S is given to represent external particle, mo-

mentum, and/or energy sources if any. Here, S is considered

to be of the second order in d. We can also treat effects of

turbulent fluctuations by Eq. (6) if we regard the second-

order additional term S as the ensemble average of the prod-

uct of fluctuation parts in the electromagnetic fields and the

distribution function as shown in Refs. 21 and 22 where the

notation D is used instead of S to represent the term includ-

ing the effects of turbulent fluctuations. Using Eq. (5), the

drift kinetic equation can be rewritten in the conservative

form as

@ DFð Þ
@t

þr � DF _Xð Þ þ @ DF _Uð Þ
@U

¼ D C Fð Þ þ S½ �: (7)

B. Particle, energy, and parallel momentum balance
equations

Multiplying Eq. (7) with an arbitrary function

Aðt;X;U; lÞ which is independent of the gyrophase n and

taking its velocity-space integral, the balance equation for

the density variable
Ð

d3v FA in the X-space is derived as

@

@t

ð
d3v FA

� �
þr �

ð
d3v FA _X

� �

¼
ð

d3v FA_þ C Fð Þ þ S½ �A
� �

; (8)

where

A_¼ dA
dt
¼ @A

@t
þ _X � rA þ _U

@A
@U

; (9)

and the velocity-space integral is denoted by
Ð

d3v ¼
2p
Ð

dU
Ð

dl D for gyrophase-independent integrands. For

the case of A ¼ 1, Eq. (8) reduces to the time-evolution

equation for the density
Ð

d3v F

@

@t

ð
d3v F

� �
þr �

ð
d3v F _X

� �
¼
ð

d3vS: (10)

In deriving Eq. (10), the conservation law,
Ð

d3v CðFÞ ¼ 0, is

used. However, it is noted that, if we use the collision opera-

tor obtained by the transformation from the particle coordi-

nates to the guiding-center coordinates with finite-gyroradius

effects taken into account, the velocity-space integralÐ
d3v CðFÞ does not vanish but it becomes the opposite sign

of the divergence of the classical particle flux as shown in

Refs. 23–25. Here and hereafter, we assume that the expres-

sion of C(F) is the same as that of the Landau collision oper-

ator given in the particle coordinates for simplicity so that
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Ð
d3v CðFÞ ¼ 0 is satisfied and the classical transport is

neglected.

We next consider the energy E ¼ H [see Eq. (2)] as A in

Eq. (8) and obtain the energy balance equation

@

@t

ð
d3v FE

� �
þr �

ð
d3v FE _X

� �

¼
ð

d3v F _E þ C Fð Þ þ S½ �E
� �

; (11)

where the total time derivative of the energy is written as

_E ¼ dE
dt

¼ e
@U X; tð Þ

@t
þ l

@B X; tð Þ
@t

� e

c

@A� X; tð Þ
@t

� _X: (12)

We easily see from Eq. (12) that _E ¼ 0 for the stationary

electromagnetic field. When we use the kinetic energy

W ¼ 1

2
mU2 þ lB ¼ E � eU; (13)

another form of the energy balance equation is given by

@

@t

ð
d3v FW

� �
þr �

ð
d3v FW _X

� �

¼
ð

d3v F _W þ C Fð Þ þ S½ �W
� �

; (14)

where the total time derivative of the kinetic energy is writ-

ten as

_W ¼ dW

dt
¼ dE

dt
� e

dU
dt

¼ l
@B X; tð Þ
@t

þ eE� � _X: (15)

The parallel momentum balance equation is derived

from Eq. (8) with A ¼ mU as

@

@t

ð
d3v FmU

� �
þr �

ð
d3v FmU _X

� �

¼
ð

d3v Fm _U þ C Fð Þ þ S½ �mU
� �

: (16)

We now use

r �
ð

d3v FmU _X

� �
�
ð

d3v Fm _U

¼ r �
ð

d3v FmU2b

� �
þ
ð

d3v Fb � ðlrB� eEÞ

þr �
ð

d3v FmU _X?

� �
�
ð

d3v FmU _X? � ðb � rÞb

¼ b � r �
ð

d3v FðmU2bbþ lBðI� bbÞ
��

þmUð _X?bþ b _X?ÞÞ
��
� eEk

ð
d3v F; ð17Þ

and rewrite Eq. (16) as

@

@t
nmukð Þ þ b � r � Pð Þ ¼ neEk þ Fk þ

ð
d3vSmU: (18)

Here, the density n, the parallel flow velocity uk, the pressure

tensor P, and the parallel friction force Fk are defined by

n ¼
ð

d3v F

nuk ¼
ð

d3v FU

P ¼ PCGL þ p2

PCGL ¼
ð

d3v FðmU2bbþ lBðI� bbÞÞ

p2 ¼
ð

d3v FmUð _X?bþ b _X?Þ

Fk ¼
ð

d3v CðFÞmU; (19)

where _X? � _X � ð _X � bÞb. Note that the pressure tensor P

consists of the Chew-Goldbeger-Low (CGL) tensor26 PCGL

and the viscosity tensor p2 of the second order in d, where p2

satisfies p2 : I ¼ p2 : bb ¼ 0 and the deviation of F from the

local Maxwellian distribution is considered to be of OðdÞ.
It is well known that, if we use the original Boltzmann

kinetic equation instead of the drift kinetic equation in Eq.

(7), we can derive the momentum balance equation

@

@t
nmuð Þ þ r � P ¼ ne Eþ u

c
� B

� �
þ Fþ

ð
d3vSmv;

(20)

where the Boltzmann kinetic equation is assumed to also

contain the source term S. In Eq. (20), the particle flow nu,

the pressure tensor P, and the friction force F are defined by

nu ¼
Ð

d3v F, P ¼
Ð

d3v Fmvv, and F ¼
Ð

d3v CðFÞmv,

where, exactly speaking, F ¼ Fðx; v; tÞ represents the parti-

cle distribution function given by the solution of the

Boltzmann kinetic equation and it has a gyrophase depend-

ence that is not included in the solution of the drift kinetic

equation. Comparing Eqs. (18) and (20), we see that Eq. (18)

coincides with the parallel component of the exact momen-

tum balance equation in Eq. (20) except that the former con-

tains nmu � @b=@t and the non-CGL viscosity tensor

expressed differently from the one in the latter.

We now consider general toroidal configurations, for

which the magnetic field is written in terms of the flux coor-

dinates ðs; h; fÞ as

B ¼ w0rs�rhþ v0rf�rs; (21)

where h and f represent the poloidal and toroidal angles,

respectively, and s is an arbitrary label of a flux surface. The

poloidal and toroidal fluxes within a flux surface labeled by s
are given by 2pwðsÞ and 2pvðsÞ, respectively. The derivative

with respect to s is denoted by 0 ¼ d=ds so that w0 ¼ dw=ds
and v0 ¼ dv=ds. Taking the flux-surface average of the co-

variant toroidal component of Eq. (20) and making the sum-

mation over species, we obtain the expression for the radial

current as6
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v0

c

X
a

eahnaus
ai ¼

X
a

ma
@

@t
hnauafi þ h r � Pað Þfi

�

�
ð

d3vSamavf

� 	�
; (22)

where the superscript s and the subscript f represent the

contravariant radial component and covariant toroidal com-

ponent given by taking the inner products with rs and

@x=@f, respectively, and the subscript a is used to explicitly

show the particle species. Using the symmetry property of

the pressure tensor P, we can show that, for axisymmetric to-

roidal systems

h r � Pð Þfi ¼
1

V0
@

@s
V0hPs

fi

 �

; (23)

where Ps
f ¼ rs � P � @x=@f. In axisymmetric and quasi-

axisymmetric toroidal systems,17 we have

hðr � PCGLÞfi ¼ 0: (24)

Then, using Eqs. (22)–(24) and P ¼ PCGL þ p2, we find that,

even for axisymmetric toroidal systems in the stationary state

(@=@t ¼ 0) with S ¼ 0, the surface-averaged radial current

does not vanish exactly due to the second-order viscosity

tensor p2 as shown by

v0

c

X
a

eahnaus
ai ¼

X
a

1

V0
@

@s
V0h pa2ð Þsfi
h i

: (25)

However, it is shown in Ref. 17 that hðpa2Þsfi is a small quan-

tity of Oðd3Þ in axisymmetric systems with up-down symme-

try (as well as in quasi-axisymmetric systems with stellarator

symmetry) where all terms in the toroidal momentum bal-

ance equation given from Eq. (22) vanish up to Oðd2Þ. The

same argument as above can be done for other quasi-

symmetric systems such as quasi-poloidally-symmetric and

quasi-helically-symmetric systems if stellarator symmetry

holds. On the other hand, in axisymmetric systems without

up-down symmetry, hðpa2Þsfi ¼ Oðd
3Þ is not guaranteed.

Then, the ambipolarity condition
P

a eahnaus
ai ¼ 0 is not

automatically satisfied on the second order in d because of

the third-order radial particle fluxes ðc=eav0V0Þ@½V0hðpa2Þsfi�
=@s driven by the second-order shear viscosity tensor com-

ponents ðpa2Þsf [here, it is useful to formally regard the elec-

tric charge as the Oðd�1Þ quantity27 so that the radial current

due to the third-order radial particle flux is immediately

found to be of the second order]. However, even in this axi-

symmetric but up-down asymmetric case, the second-order

radial neoclassical particle fluxes driven by the CGL tensors

still automatically satisfy the ambipolarity condition for the

radial current up to the first order.1–3

C. Drift kinetic equation expressed in terms of flux
coordinates

Using the flux coordinates ðs; h; fÞ, the drift kinetic

equation, Eq. (6), is rewritten as

@

@t
þ _s

@

@s
þ _h

@

@h
þ _f

@

@f
þ _U

@

@U

� �
F s; h; f;U; l; tð Þ

¼ C Fð Þ þ S; (26)

where

_s; _h; _f
� 


¼ d

dt
s; h; f½ �

¼ @

@t
þ _X � r

� �
s X; tð Þ; h X; tð Þ; f X; tð Þ½ �: (27)

In Eq. (27), the functions sðX; tÞ; hðX; tÞ, and fðX; tÞ are

defined by the inverse of X ¼ Xðs; h; f; tÞ, where t is gener-

ally included as a parameter. Denoting the Jacobian for the

flux coordinates ðs; h; fÞ by

ffiffiffi
g
p ¼ det

@ Xð Þ
@ s; h; fð Þ

" #
¼ 1

rs � rh�rfð Þ½ � ; (28)

the conservation law of the phase-space volume, Eq. (5), and

the conservative form of the drift kinetic equation, Eq. (7),

are rewritten as

@
ffiffiffi
g
p

D
� �
@t

þ
@

ffiffiffi
g
p

D _s
� �
@s

þ
@

ffiffiffi
g
p

D _h

 �
@h

þ
@

ffiffiffi
g
p

D _f

 �
@f

þ
@

ffiffiffi
g
p

D _U

 �
@U

¼ 0; (29)

and

@
ffiffiffi
g
p

DF
� �
@t

þ
@

ffiffiffi
g
p

DF _s
� �
@s

þ
@

ffiffiffi
g
p

DF _h

 �

@h
þ
@

ffiffiffi
g
p

DF _f

 �

@f

þ
@

ffiffiffi
g
p

DF _U

 �

@U
¼ ffiffiffi

g
p

D C Fð Þ þ S½ �; (30)

respectively.

For an arbitrary function Aðs; h; f;U; l; tÞ which is inde-

pendent of the gyrophase n, the phase-space integral is writ-

ten as

2p
ð

d3X

ð
dU

ð
dl DA ¼ 2p

ð
ds

þ
dh
þ

df
ffiffiffi
g
p ð

dU

ð
dl DA

¼
ð

ds V0
ð

d3vA
� 	

; (31)

where

h� � �i ¼ 1

V0

þ
dh
þ

df
ffiffiffi
g
p � � � (32)

represents the flux-surface average and

V0 ¼ dV

ds
¼
þ

dh
þ

df
ffiffiffi
g
p

; (33)

denotes the radial derivative of the volume V(s) enclosed

within a flux surface labeled by s. We now integrate Eq. (30)

with respect to the coordinates ðh; f;U; lÞ to obtain
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@

@t
V0

ð
d3v FA

� 	� �
þ @

@s
V0

ð
d3v FA _s

� 	� �

¼ V0
ð

d3v FA_þ C Fð Þ þ S½ �A
� �� 	

; (34)

where

A_¼ dA
dt
¼ @A

@t
þ _s

@A
@s
þ _h

@A
@h
þ _f

@A
@f
þ _U

@A
@U

: (35)

The time-evolution equation for the surface-averaged density

h
Ð

d3v Fi is derived from Eq. (34) with A ¼ 1 as

@

@t
V0

ð
d3v F

� 	� �
þ @

@s
V0

ð
d3v F _s

� 	� �
¼ V0

ð
d3vS

� 	
:

(36)

For the cases of A ¼ W, Eq. (34) reduces to the surface-

averaged energy balance equation

@

@t
V0

ð
d3v FW

� 	� �
þ @

@s
V0

ð
d3v FW _s

� 	� �

¼ V0
ð

d3v F _W þ C Fð Þ þ S½ �W
� �� 	

; (37)

where _W is given by Eq. (15). In Eqs. (36) and (37),

h
Ð

d3v F _si and h
Ð

d3v FW _si represent the radial neoclassical

transport fluxes of particles and energy, respectively, which are

regarded as of Oðd2Þ assuming that the deviation of F from the

local Maxwellian is of OðdÞ (see Sec. II D). The radial trans-

port fluxes of Oðd2Þ are consistent with the so-called transport

ordering1 which implies @=@t ¼ Oðd2Þ in Eqs. (36) and (37).

D. Expansion about a local Maxwellian distribution

The zeroth-order solution F0 of the drift kinetic equa-

tion, Eq. (26), is given by the local Maxwellian

F0 ¼ n0

m

2pT0

� �3=2

exp �W

T0

� �

¼ n0

m

2pT0

� �3=2

exp �E � eU
T0

� �
; (38)

which annihilates the collision term

CðF0Þ ¼ 0: (39)

The total time derivative of F0 is written as

dF0

dt
¼ F0

d ln n0

dt
þ d ln T0

dt

mv2

2T0

� 3

2

� �
� 1

T0

dW

dt

� �

¼ F0
_X � rs

@ ln n0

@s
þ e

T0

@hUi
@s
þ @ ln T0

@s

��

� W

T0

� 3

2

� ��
�

eUEk
T0

�
þO d2ð Þ; (40)

where the zeroth-order density n0 and temperature T0 are

flux-surface functions independent of ðh; fÞ, and their time

dependence follows the transport ordering, @=@t ¼ Oðd2Þ.
The parallel electric field Ek is given by

Ek ¼ �b � r~U þ 1

c

@A

@t

� �
¼ B
hBEki
hB2i þ Ek � B

hBEki
hB2i

 !
;

(41)

where ~U ¼ U� hUi. We now define the first-order distribu-

tion f by

F ¼ F0 1þ e

T0

ðl

dl Ek � B
hBEki
hB2i

 !" #
þ f ; (42)

where
Ð l

dl represents the integral along the magnetic field

line. Then, substituting Eqs. (41) and (42) into Eq. (26)

yields

df

dt
¼ F0

T0

Vs
gc X1 þ X2

W

T0

� 5

2

� �� �
þ eUB

hB2i1=2
XE

( )

þCL fð Þ þ O d2ð Þ; (43)

where the thermodynamic forces are defined by

X1 ¼ �
1

n0

@p0

@s
� e

@U
@s
; X2 ¼ �

@T0

@s
; XE ¼

hBEki
hB2i1=2

; (44)

and CLðf Þ represents the linearized collision operator. Note

that all terms explicitly shown on the right-hand side of Eq.

(43) are of the first order in d. Using the transport ordering

@=@t ¼ Oðd2Þ and f ¼ OðdÞ, the left-hand side of Eq. (43) is

written as

df

dt
¼ Vs

gc

@

@s
þ Vh

gc

@

@h
þ Vf

gc

@

@f
þ _U

@

@U

� �
� f s; h; f;U; lð Þ þ O d3ð Þ

¼ 1

D
@ DfVs

gc

� �
@s

þ
@ DfVh

gc


 �
@h

þ
@ DfVf

gc


 �
@f

0
@

þ @ Df _U
� �
@U

!
þO d3ð Þ; (45)

where Vs
gc ¼ _X � rs, Vh

gc ¼ _X � rh, Vf
gc ¼ _X � rf, and

D ¼ ffiffiffi
g
p

D. Since Vs
gc ¼ OðdÞ, the radial drift term Vs

gc@f=@s
in Eq. (45) is of the second order in d and this gives rise to

global or finite-orbit-width effects on neoclassical transport.

III. RADIALLY LOCAL APPROXIMATION

Under the radially local approximation made here, the

guiding center equations are written as

dX

dt
¼ V rlð Þ

gc � Ubþ V rlð Þ
gc


 �
?
;

dU

dt
¼ � l

m
b � rBþ Ub � rb � V rlð Þ

gc

dl
dt
¼ � 1

B
V rlð Þ

gc


 �
?
� mU2b � rbþ lrB
� �

; (46)

where the second-order part �r~U � c�1@A=@t of the electric

field E is neglected and the guiding center drift velocity in Eq.
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(3) is replaced by VðrlÞgc which has no radial component:

VðrlÞgc � rs ¼ 0. The component of VðrlÞgc perpendicular to the

magnetic field is denoted by ðVðrlÞgc Þ?. We later impose the condi-

tion, ðVðrlÞgc Þ?ðl ¼ 0Þ ¼ 0, in order to derive appropriate balance

equations of particles, energy, and parallel momentum [see Eqs.

(54), (57), and (61)] by removing improper sources and/or sinks

at the boundary l¼ 0 in the velocity-space integral domain.

In Eq. (46), the magnetic moment l is allowed to vary

in time such that conservation of the kinetic energy of the

particle W ¼ mU2=2þ lB

dW

dt
¼ mU

dU

dt
þ B

dl
dt
þ lV rlð Þ

gc � rB ¼ 0; (47)

is satisfied. It might appear that the energy E ¼ W þ eU
should be conserved instead of W. However, using U ’ hUi,
we find that the difference eU between E and W is approxi-

mately constant along the radially local guiding center orbit,

and accordingly, the conservation of W is reasonable under

the radially local approximation.

We now define ðVðrlÞgc Þ? by removing the radial compo-

nent from ðVgcÞ? as

V rlð Þ
gc


 �
?
¼ a Kð Þ Vgcð Þ? �

Vgcð Þ? � rs

jrsj2
rs

 !

¼ a Kð Þ c

eB
b�rsð Þ

�
rs

jrsj2
�
�
mv2
kb � rb

þlrB


þe

dU
ds

�

¼ a Kð Þ c

eB
b�rsð Þ mU2

B
þ l

� �
rs

jrsj2
� rB

"

þmU2 4p
B2

dP

ds
þ e

dU
ds

�
; (48)

where B�k and E� in the definition of Vgc given by Eq. (3) are

replaced with their lowest-order parts B and �ðdU=dsÞrs,

respectively, and the factor aðKÞ is introduced to satisfy the

condition ðVðrlÞgc Þ?ðl ¼ 0Þ ¼ 0. Here, the ratio of the mag-

netic moment l to the kinetic energy W ¼ mU2=2þ lB is

used to define the dimensionless parameter, K � lBmax=W,

where Bmax is the maximum value of B on the flux surface.

This parameter K is a measure for classifying the guiding

center motion into either passing or trapped orbit. As K
increases from 0 and approaches to 1, the orbit changes from

the passing to the trapped one. Then, we assume that

lim
K!þ0

aðKÞ ¼ 0; (49)

while aðKÞ ¼ 1 except for an interval, 0 	 K < K0, where

K0ð
1Þ is a small positive constant value. For example,

aðKÞ is defined by

aðKÞ ¼
sinðpK=2K0Þ ðK < K0Þ
1 ðK � K0Þ:

�
(50)

We should note that influences of the magnetic and E� B

drift motions are significant mainly for precession drift orbits

of trapped particles, and that particles in the region, K < K0,

are passing ones whose orbits almost coincide with field lines.

Therefore, even if the functional form of aðKÞ and the value of

K0 are changed, the artificial reduction factor aðKÞ for K < K0

is expected to cause little change in resultant passing particles’

orbits except that the limiting condition, limK!þ0 ðVðrlÞgc Þ? ¼ 0,

is rigorously satisfied. However, this insensitivity to the form

of aðKÞ remains a future subject to be verified by numerical

simulations.

It also should be mentioned that the radially local approxi-

mation described by Eqs. (46) and (48) is independent of what

poloidal and toroidal angles are chosen for the flux coordinates.

This is a favorable property that is lost in Ref. 13. We see that

the radially local guiding center equations given by Eqs. (46)

and the Jacobian D ¼ B�k=m for the phase-space coordinates

ðX;U; n; lÞ [see Eq. (4)] do not satisfy the conservation law of

the phase-space volume as shown in Eq. (5). This violation of

the phase-space-volume conservation occurs even if B�k is used

instead of B in the denominator on the right-hand side of Eq.

(48) to define ðVðrlÞgc Þ?. In Sec. IV, we consider another Jacobian

in order to recover the conservation law although, in this section,

a simpler approximate Jacobian D0 � B=m is used. Also, we

hereafter employ ðX;W;U; nÞ as phase-space coordinates.

Then, from the Jacobian D0 � B=m for ðX;U; n; lÞ with

l ¼ ðW � 1
2

mU2Þ=B, the Jacobian for ðX;W;U; nÞ is derived

as 1=m, which is constant in the phase space.

Using VðrlÞgc , dU/dt, and dW=dt ¼ 0 given by Eqs. (46)

with (48) under the radially local approximation, the drift ki-

netic equation for the first-order distribution function

f ðX;W;UÞ in the stationary state is written as

r � f V rlð Þ
gc


 �
þ @

@U
f

dU

dt

� �

¼ F0

T0

Vs
gc X1 þ X2

W

T0

� 5

2

� �� �
þ eUB

hB2i1=2
XE

( )

þCL fð Þ: (51)

The radial component of the guiding center drift velocity Vs
gc

on the right-hand side of Eq. (51) is given by

Vs
gc ¼

c

eB2
rs � b�rBð Þ½ � 1

2
mU2 þW

� �
: (52)

In deriving Eq. (52) from the guiding center drift velocity

given in Eq. (3), only the lowest-order terms in d are retained

and the formula, rs � ½b� ðb � rÞb� ¼ rs � ðb�rBÞ=B,

obtained from the MHD equilibrium condition r½n0ðsÞT0ðsÞ�
¼ ð4pÞ�1ðr� BÞ � B is used. The fact that the Jacobian is

constant is used in deriving Eq. (51) which is rewritten by

using the flux surface coordinates ðs; h; fÞ as

1ffiffiffi
g
p

@

@h
ffiffiffi
g
p

f V rlð Þ
gc � rh


 �
þ @

@f
ffiffiffi
g
p

f V rlð Þ
gc � rf


 �� �

þ @

@U
f

dU

dt

� �

¼ F0

T0

Vs
gc X1 þ X2

W

T0

� 5

2

� �� �
þ eUB

hB2i1=2
XE

( )

þCL fð Þ: (53)
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Here, we should note that, in Eq. (53), partial derivatives of

the first-order distribution function f are taken only with

respect to the three variables ðh; f;UÞ and that the radial

coordinate s and the kinetic energy W enter f ðs; h; f;W;UÞ
as constant parameters.

Taking the velocity-space integral of Eq. (51) yields the

continuity equation in the stationary state

r � ðCkbþ C?1 þ CðrlÞ?2 Þ ¼ 0: (54)

The parallel and perpendicular particle fluxes in Eq. (54) are

defined by

Ck ¼ n0uk ¼
ð

d3v fU;

C?1 ¼ n0u?1 ¼
n0cX1

eB
rs� b;

C rlð Þ
?2 ¼ n0u

rlð Þ
?2 ¼

ð
d3v f V rlð Þ

gc


 �
?
; (55)

where the velocity-space integral is written in terms of the

variables W and U by

ð
d3v ¼ 2p

m

ðþ1
0

dW

ðþ ffiffiffiffiffiffiffiffiffi
2W=m
p

�
ffiffiffiffiffiffiffiffiffi
2W=m
p dU: (56)

The diamagnetic flow C?1 ¼ n0u?1 and the parallel flow

Ck are of the first order in d ¼ q=L, while CðrlÞ?2 ¼ n0u
ðrlÞ
?2 is

of the second order. The collisional particle conservation

law,
Ð

d3v CLðf Þ ¼ 0, is used to obtain Eq. (54). Also, it

should be noted that the boundary condition,

ðVðrlÞgc Þ?ðl ¼ 0Þ ¼ ðVðrlÞgc Þ?ðU ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2W=m

p
Þ ¼ 0, is used for

deriving Eq. (54) as well as the energy and parallel momen-

tum balance equations [see Eqs. (57) and (61)] from

Eq. (51). We find that the flux surface average of the left-

hand side of Eq. (54) automatically vanishes so that no parti-

cle source is required for obtaining the stationary solution.

Thus, the radially local approximation presented here has

self-consistency with neglecting the radial transport that

causes variation in the surface-averaged particles’ number

[see Eq. (36)].

Next, we multiply Eq. (51) with ðW � 5T=2Þ and take

its velocity-space integral to derive

r � ðqkbþ q?1 þ q
ðrlÞ
?2 Þ ¼ Q; (57)

where the parallel and perpendicular heat fluxes are given by

qk ¼
ð

d3v f W � 5

2
T

� �
U;

q?1 ¼
5

2

p0cX2

eB
rs� b;

q
rlð Þ
?2 ¼

ð
d3v f W � 5

2
T

� �
V rlð Þ

gc


 �
?
; (58)

and the collisional heat generation is defined by

Q ¼
ð

d3v CLðf ÞW: (59)

In Eq. (57), q
ðrlÞ
?2 is the second-order flux like CðrlÞ?2 in Eq.

(54). Taking the flux surface average of Eq. (57), we obtain

hQi ¼ 0; (60)

which represents the collisional heat exchange balance that

needs to be satisfied in the stationary state. Unequal tempera-

tures Ta0 6¼ Tb0 can occur in the case of ma=mb 
 1 or

ma=mb � 1 where the characteristic time of the collisional

thermal equilibration between the species a and b is much lon-

ger than the 90
 scattering times due to like-species collisions

characterized by saa and sbb. Then, Cabðfa0; fb0Þ does not van-

ish even for the local Maxwellian distribution functions fa0

and fb0 given by Eq. (38), and it describes the above-

mentioned slow collisional thermal equilibration although the

linearized collision operator CL used for Eq. (53) does not

include this equilibrium part of the collision term. However,

the heat generation Qab, which is defined by Eq. (59) with the

linearized operator CL
ab for collisions between different spe-

cies a and b, generally remains nonzero (even for the case

of Ta0 ¼ Tb0). Therefore, Eq. (60), which is rewritten as

hQai �
P

b 6¼ahQabi ¼ 0 (recall Qaa � 0), is considered to be

the physically reasonable condition that should be satisfied in

the multi-species stationary state of the radially local model

without requiring additional heat source or sink.

Multiplying Eq. (51) with mU and taking its velocity-

space integral give the parallel momentum balance equation

b � rp1 þr � p1 þ p rlð Þ
2


 �h i
¼ n0eB

hBEki
hB2i þ Fk; (61)

where the first-order pressure p1 and the viscosity tensors p1

and p
ðrlÞ
2 are defined by

p1 ¼
2

3

ð
d3v fW;

p1 ¼
ð

d3v f mU2 � lB
� �

bb� 1

3
I

� �
;

p rlð Þ
2 ¼

ð
d3v f mU V rlð Þ

gc


 �
?

bþ b V rlð Þ
gc


 �
?

� �
; (62)

and the parallel friction force is given by

Fk ¼
ð

d3v CLðf ÞmU: (63)

The first-order viscosity tensor p1 is written in the form of the

traceless part of the CGL pressure tensor as p1 ¼ ðpk � p?Þ
ðbb� 1

3
IÞ, where pk and p? represent the parallel and perpen-

dicular pressures, respectively. On the other hand, the second-

order viscosity tensor p
ðrlÞ
2 , which is given by the correlation

between the parallel velocity U and the perpendicular drift

velocity ðVðrlÞgc Þ?, cannot be written in the CGL form. We now

multiply Eq. (61) with the magnetic-field strength B and take

its magnetic-surface average to derive

hB � ½r � ðp1 þ p
ðrlÞ
2 Þ�i ¼ n0ehBEki þ hBFki; (64)

which is used later to derive an alternative expression for the

neoclassical particle flux.
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The radial neoclassical particle flux is written as

Cncl¼
�ð

d3v fVs
gc

	
¼ c

e

�
rs

B
� b� rp1þr�p1ð Þ½ �

	

¼ c

ev0

�
@x

@f
� rp1þr�p1ð Þ

	
� cBf

ev0

�
b

B
� rp1þr�p1ð Þ

	
;

(65)

where Vs
gc ¼ Vgc � rs is given by Eq. (52). Derivation of Eq.

(65) uses the following formula:

v0
rs� b

B
¼ @x

@f
� Bf

B
b; (66)

and the Boozer coordinates ðs; h; fÞ,28 for which the

covariant poloidal and toroidal components, Bh and Bf, of

the magnetic field B are flux-surface functions. We see from

Eq. (65) that the neoclassical particle flux is caused by the

spatial gradients of the first-order pressure and viscosity ten-

sor. It can be shown that the second-order viscosity tensor

p
ðrlÞ
2 defined in Eq. (62) satisfies�

rs

B
� b� r � p rlð Þ

2


 �h i	
¼ 0; (67)

and �
b

B
� r � p rlð Þ

2


 �	
¼ 0: (68)

In deriving Eqs. (67) and (68), it is convenient to write

p
ðrlÞ
2 ¼ AðBwþ wBÞ with w � ðb�rsÞ=B. Then, we find

w � ðr � pðrlÞ2 Þ ¼ w2B � rAþ AðB � rw � w� w � rw � BÞ
¼ w2B � rA� Ars � ðr � wÞ ¼ r � ðArs� wÞ and ðb=BÞ
�ðr � pðrlÞ2 Þ ¼ r � ðAwÞ þ Aðw � rB � b� b � rB � wÞ=B ¼ r
�ðAwÞ þ Ars � ðr � BÞ=B2 ¼ r � ðAwÞ, which lead to Eqs.

(67) and (68), respectively. Then, using Eqs. (66)–(68), we

also have �
@x

@f
� r � p rlð Þ

2


 �	
¼ 0: (69)

It is found from Eqs. (65) and (67)–(69) that the second-

order viscosity tensor p
ðrlÞ
2 in the radially local approximation

cannot contribute to the neoclassical transport like the first-

order pressure p1 and viscosity tensor p1.

We now use Eqs. (61) and (68) to rewrite the expression

of the radial neoclassical particle flux in Eq. (65) as

Cncl¼ c

ev0

�
@x

@f
� rp1þr�p1ð Þ�

	
�cBf

ev0
n0e
hBEki
hB2i þ

�
Fk
B

	 !
:

(70)

Here, the first surface-averaged part on the right-hand of Eq.

(70) represents the nonaxisymmetric part of the neoclassical

particle flux6,19

Cna ¼ c

ev0

�
@x

@f
� rp1 þr � p1ð Þ�

	
: (71)

Then, we find from Eqs. (70) and (71) that the radial electric

current is written as

X
a

eaC
ncl
a ¼

X
a

eaC
na
a ; (72)

where the quasineutrality
P

a na0ea ¼ 0 and the collisional

momentum conservation
P

a Fka ¼ 0 are used.

For axisymmetric and quasi-axisymmetric systems, we

have �
@p1

@f

	
¼
�
@x

@f
� r � p1ð Þ

	
¼ 0; (73)

from which

Cna ¼ 0; (74)

and

Cncl ¼ � cBf

ev0
n0e
hBEki
hB2i þ

�
Fk
B

	 !
; (75)

are derived. Here, the quasi-axisymmetry means that the

magnetic field strength B ¼ jBj is independent of the toroidal

angle f. For derivation of Eq. (73), the f-independence of B
and

ffiffiffi
g
p ¼ ð4p2Þ�1ðdV=dsÞhB2i=B2 in the Boozer coordi-

nates10 is used [see also Eq. (25) in Ref. 17]. It is confirmed

from Eqs. (72) and (74) that the solution f of the radially

local drift kinetic equation shown in Eq. (51) or (53) gives

the neoclassical particle fluxes which satisfy the ambipolar-

ity condition X
a

eaC
ncl
a ¼ 0; (76)

automatically in axisymmetric and quasi-axisymmetric sys-

tems. The intrinsic ambipolarity can be proved in the same

way for all other quasi-symmetric systems such as quasi-

poloidally-symmetric and quasi-helically-symmetric systems.

It is seen from Eqs. (22)–(25) that the radial current is

closely related to the toroidal viscosity or the radial transport

of the toroidal momentum. As remarked after Eq. (25), the

ambipolarity condition is not guaranteed on the second order

in d for axisymmetric systems without up-down symmetry

(as well as quasi-axisymmetric systems without stellarator

symmetry) because of the component ðpa2Þsf of the second-

order non-CGL viscosity tensor. We also note that the radial

neoclassical particle flux defined by Eq. (65) is the second-

order flux driven by the first-order CGL tensor which

becomes a dominant part for nonaxisymmetric systems,

although it does not contain the third-order flux due to the

second-order tensor. Therefore, Eq. (76) should be inter-

preted to imply that the intrinsic ambipolarity condition for

the axisymmetric case can be correctly treated only up to the

first order by the present radially local approximation. On

the other hand, the second-order neoclassical radial flux

hðpa2Þsfi of the toroidal momentum in the axisymmetric but

up-down asymmetric case can also be evaluated using the so-

lution f of the radially local drift kinetic equation even with-

out resort to the radially global model. This can be done by

substituting the solution f into the formula for the toroidal

momentum transport flux given by Eq. (18) in Ref. 17. [It is
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confirmed from Eqs. (11) and (13) in Ref. 29 that, if using

the definition of p2 given by Eq. (19) in the present work to

evaluate hðpa2Þsfi, only a part of the result from Eq. (18) in

Ref. 17 is reproduced.]

IV. ENTROPY PRODUCTION RATE AND ONSAGER
SYMMETRY ASSOCIATED WITH NEOCLASSICAL
TRANSPORT EQUATIONS

The neoclassical radial particle flux Cncl, heat flux qncl,

and parallel electric current JE ¼ hBJki=hB2i1=2
are defined

in terms of the solution f of Eq. (51) or (53) by

Cncl
a ¼

�ð
d3v faVs

gc a

	
;

qncl
a ¼

�ð
d3v faVs

gc a W � 5

2
Ta

� �	
;

JE ¼ hB2i�1=2
X

a

ea

�
B

ð
d3v faU

	
; (77)

where the subscript a denotes the particle species. The line-

arized collision operator in Eq. (51) for the species a is

defined in terms of the bilinear operator Cab for collisions

between the species a and b byX
b

½Cabðfa;Fb0Þ þ CabðFa0; fbÞ�: (78)

Here, CT
abðfaÞ � Cabðfa;Fb0Þ and CF

abðfbÞ � CabðFa0; fbÞ are

called test- and field-particle collision operators, respec-

tively, and they satisfy the adjointness relations30,31

ð
d3v

fa

Fa0

CT
ab gað Þ ¼

ð
d3v

ga

Fa0

CT
ab fað Þ;

Ta

ð
d3v

fa

Fa0

CF
ab gbð Þ ¼ Tb

ð
d3v

gb

Fb0

CF
ba fað Þ; (79)

and Boltzmann’s H-theorem30,31

Ta

ð
d3v

fa
Fa0

CT
ab fað Þ þ CF

ab fbð Þ
� 


þTb

ð
d3v

fb

Fb0

CT
ba fbð Þ þ CF

ba fað Þ
� 


	 0: (80)

Strictly speaking, the adjointness relations and the H-theorem

are rigorously satisfied by the linearized Landau collision

operator only for the case of Ta¼Tb, although they are still

approximately valid even for Ta 6¼ Tb when ðma=mbÞ1=2
or

ðmb=maÞ1=2ð1� Tb=TaÞ is small enough.30

Since the drift kinetic equations for different particle

species are coupled with each other due to the field parti-

cle collision operators, fa depends not only on thermody-

namic forces ðXa1;Xa2;XEÞ but also on those for

b 6¼ a; ðXb1;Xb2Þ. Accordingly, we find that Cncl
a ; qncl

a , and

JE in Eq. (77) are related to the thermodynamic forces

through the neoclassical transport equations which are

written as

Cncl
a ¼

X
b

ðL11
abXb1 þ L12

abXb2Þ þ L1
aEXE;

qncl
a =Ta ¼

X
b

ðL21
abXb1 þ L22

abXb2Þ þ L2
aEXE;

JE ¼
X

b

ðL1
EbXb1 þ L2

EbXb2Þ þ LEEXE: (81)

Here, the neoclassical transport coefficients ðL11
ab; L

12
ab;…Þ are

regarded as functions of the variables ½Esð� �dU=dsÞ; rs �
rB; rs � ðb � rbÞ� which characterize the perpendicular

guiding center velocity ðVðrlÞgc Þ? defined in Eq. (48).

We here examine the Onsager symmetry of the neo-

classical transport coefficients. In order to prove the Onsager

symmetry, the adjointness relations written in Eq. (79) and

the phase-space-volume conservation along the collisionless

guiding center orbit are required as shown in Refs. 19 and

29. However, in the radially local model based on Eq. (51),

the latter condition r � VðrlÞgc þ @ðdU=dtÞ=@U ¼ 0 is broken

so that the Onsager symmetry is not satisfied.

As noted before Eq. (51), the Jacobian for the phase-

space coordinates ðX;W;U; nÞ is given by 1=m. Here, we

consider a modified Jacobian

DW ¼ ½1þ d�ðX;W;UÞ�=m; (82)

which differs from the one mentioned above by the correction

term d� of OðdÞ [see Eq. (84) below]. This term d� is deter-

mined by assuming that the Jacobian DW satisfies the conser-

vation law of the phase-space volume element written as

r � DWV rlð Þ
gc


 �
þ @

@U
DW

dU

dt

� �
¼ 0; (83)

where VðrlÞgc and dU/dt are given by Eqs. (46) and (48). We

can rewrite Eq. (83) as

V rlð Þ
gc � rh

@

@h
þ V rlð Þ

gc � rf
@

@f
þ dU

dt

@

@U

� �
ln DW

¼ V rlð Þ
gc � rh

@

@h
þ V rlð Þ

gc � rf
@

@f
þ dU

dt

@

@U

� �
ln 1þ d�ð Þ

¼ �r � V rlð Þ
gc �

@

@U

dU

dt

� �
: (84)

Noting that the last line of Eq. (84) is of OðdÞ, we can take

the correction term d� as a small quantity of OðdÞ. The left-

hand side of Eq. (84) represents the derivative of ln DW along

the radially local guiding center orbit labeled by the constant

parameters (s, W). Assuming that the guiding center orbit

ergodically covers the ðh; f;UÞ space, DW ¼ ð1þ d�Þ=m is

determined by Eq. (84) except for a factor that is an arbitrary

function of (s, W). In order to uniquely specify

DW ¼ ð1þ d�Þ=m, we impose another constraint

ðþ ffiffiffiffiffiffiffiffiffi
2W=m
p

�
ffiffiffiffiffiffiffiffiffi
2W=m
p dU d�

* +
¼ 0; (85)

where h� � �i represents the flux-surface average defined in

Eq. (32). Owing to the condition in Eq. (85), d� is given as a

small correction and it does not affect the surface-averaged

042502-9 Sugama et al. Phys. Plasmas 23, 042502 (2016)



velocity integral of the equilibrium distribution function F0

as shown byð
d3v ð1þ d�ÞF0

� 	
¼

ð
d3v F0

� 	
¼ n0; (86)

where
Ð

d3v is given by Eq. (56) and F0 is the local

Maxwellian defined in Eq. (38) with the equilibrium density

n0 and temperature T0 given as flux-surface functions.

We next define another distribution function f� by

f� �
f

1þ d�
; (87)

and use Eq. (83) to rewrite Eq. (51) in terms of f� as

Vf� ¼
F0

T0

Vs
gc X1 þ X2

W

T0

� 5

2

� �� �
þ eUB

hB2i1=2
XE

( )
þCL f�ð Þ;

(88)

where the differential operator V is defined by

V � 1þ d�ð Þ V rlð Þ
gc � r þ

dU

dt

@

@U

� �
: (89)

The collision term CLðf Þ in Eq. (51) is replaced by CLðf�Þ in

Eq. (88) where the deviation of CLðf�Þ from CLðf Þ is of

Oðd2Þ and it is neglected. It is shown from Eq. (83) that the

differential operator V satisfies the antisymmetry relationð
d3v aVb

� 	
¼ �

ð
d3v bVa

� 	
; (90)

where a and b are arbitrary smooth functions on the phase

space.

Replacing f with f� in Eq. (77), we can define modified

transport fluxes, Cncl
�a ; qncl

�a , and J�E, the values of which agree

with those of Cncl
a ; qncl

a , and JE, respectively, to the lowest

order in d because f� ¼ f ½1þOðdÞ�. Then, substituting the

solution f� of Eq. (88) into the definitions of the modified

transport fluxes, we can derive the neoclassical transport

equations relating ðCncl
�a ; q

ncl
�a ; J�EÞ to ðXb1;Xb2;XEÞ. These

transport equations take the same forms as those in Eq. (81),

and we use ðL11
�ab; L

12
�ab;…Þ to represent the modified trans-

port coefficients which correspond to ðL11
ab; L

12
ab;…Þ in Eq.

(81), respectively. It is shown in the same way as in Sec. III

that no additional sources and/or sinks are required to obtain

stationary particle and energy balances from Eq. (88).

We now multiply Eq. (88) for particle species a with

Taf�a=Fa0 and take its velocity-space integral, flux-surface

average, and summation over species. Then, we obtainX
a

TaC
ncl
�a Xa1 þ qncl

�a Xa2

� �
þ J�EXE

¼ �
X
a;b

Ta

ð
d3v

f�a
Fa0

CT
ab f�að Þ þ CF

ab f�bð Þ
� 
� 	

� 0; (91)

where the inequality is due to the H-theorem given in Eq.

(80). Equation (91) means that the neoclassical transport pro-

cess is subject to the second law of thermodynamics: the

summation of products between the transport fluxes and forces

equals the entropy production rate expressed in terms of the

linearized collision operator, which is positive definite.

Since the differential operator V and the linearized colli-

sion operator CL satisfy the antisymmetry relation in Eq.

(90) and the adjointness relations in Eq. (79), respectively,

we can use the same procedures as in Ref. 29 to prove that

the modified transport coefficients ðL11
�ab; L

12
�ab;…Þ obey the

Onsager symmetry relations written as

Lij
�abðbÞ ¼ Lji

�bað�bÞ ði; j ¼ 1; 2Þ;

Li
�aEðbÞ ¼ �Li

�Eað�bÞ ði ¼ 1; 2Þ;

L�EEðbÞ ¼ L�EEð�bÞ; (92)

where b � ½Es; rs � rB; rs � ðb � rbÞ� represent the variables

associated with the perpendicular guiding center velocity

ðVðrlÞgc Þ? as explained after Eq. (81). Note that the change from b

to�b corresponds to turning ðVðrlÞgc Þ? in the opposite direction.

The positive definiteness and the Onsager symmetry

shown in Eqs. (91) and (92) for the neoclassical transport

defined by the solution f� of Eq. (88) do not hold for the neo-

classical fluxes ðCncl
a ; qncl

a ; JEÞ and the transport coefficients

ðL11
ab; L

12
ab;…Þ in Eq. (81) derived from the solution f of Eq.

(51). On the other hand, we also find that Cncl
�a defined by f�

is not written in the same form as in Eq. (70) because the

parallel momentum balance equation derived from Eq. (88)

cannot be used exactly in the same way as in deriving Eq.

(70) from Eq. (65). Thus, the intrinsic ambipolarity condition

for axisymmetric and quasi-symmetric systems is slightly

broken by the modified neoclassical particle fluxes Cncl
�a

obtained using ðL11
�ab; L

12
�ab; L

1
�aEÞ, while it is rigorously satis-

fied by Cncl
a using ðL11

ab; L
12
ab; L

1
aEÞ as shown in Sec. III.

By the way, it can be shown in the same way as in Ref.

29 that, for axisymmetric systems with up-down symmetry

and helical systems with stellarator symmetry, the neoclassi-

cal transport coefficients ðL11
�ab; L

12
�ab;…Þ satisfy the restricted

forms of the Onsager symmetry relations

Lij
�abðbÞ ¼ Lij

�abð�bÞ ¼ Lji
�baðbÞ ði; j ¼ 1; 2Þ;

Li
�aEðbÞ ¼ �Li

�aEð�bÞ ¼ Li
�EaðbÞ ði ¼ 1; 2Þ;

L�EEðbÞ ¼ L�EEð�bÞ: (93)

V. CONCLUSIONS

In this paper, a novel radially local approximation of the

drift kinetic equation is presented. The approximated guiding

center equations, which are shown in Eq. (46), have no radial

drift velocity component but they maintain the E� B drift

and the component of the magnetic drift tangential to the

flux surface. In addition, they conserve the particle kinetic

energy at the expense of the conservation of the magnetic

moment. Under this approximation, a new drift kinetic equa-

tion is given by Eq. (51) in the conservative form, which has

favorable properties for numerical simulation that any addi-

tional terms for particle and energy sources are unnecessary

for obtaining stationary solutions. Also, it is shown to satisfy
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the intrinsic ambipolarity condition for neoclassical particle

fluxes in axisymmetric and quasi-symmetric toroidal sys-

tems. Another radially local drift kinetic equation is pre-

sented in Eq. (88), the solution of which equals that of Eq.

(46) to the leading order in the expansion with respect to the

drift ordering parameter d defined by the ratio of the gyrora-

dius to the equilibrium scale length. The positive definiteness

of the entropy production due to the neoclassical transport

fluxes and the Onsager symmetry of the neoclassical trans-

port coefficients are rigorously guaranteed by the solution of

Eq. (88), although it does not exactly assure the intrinsic

ambipolarity condition for neoclassical particle fluxes in axi-

symmetric and quasi-symmetric systems. Thus, Eqs. (51)

and (88) each have favorable properties which are weakly

broken in the other equation. To the lowest order in d, the

neoclassical transport fluxes derived from both solutions of

Eqs. (51) and (88) have the same values as each other, and

no additional sources and/or sinks are required for those sol-

utions to satisfy stationary particle and energy balances con-

sistently. Therefore, both drift kinetic equations are

considered to be practically useful for numerically evaluat-

ing the neoclassical transport fluxes including the effects of

the E� B and magnetic drift motions tangential to the flux

surface in the framework of the radially local approximation.

Numerical applications of the present local model are in pro-

gress and their results will be reported elsewhere.
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