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ABSTRACT

The Eulerian variational formulation of the gyrokinetic system with electrostatic turbulence is presented in general spatial coordinates by
extending our previous work [H. Sugama et al., Phys. Plasmas 25, 102506 (2018)]. The invariance of the Lagrangian of the system under an
arbitrary spatial coordinate transformation is used to derive the local momentum balance equation satisfied by the gyrocenter distribution
functions and the turbulent potential, which are given as solutions of the governing equations. In the symmetric background magnetic field,
the derived local momentum balance equation gives rise to the local momentum conservation law in the direction of symmetry. This
derivation is in contrast to the conventional method using the spatial translation in which the asymmetric canonical pressure tensor
generally enters the momentum balance equation. In the present study, the variation of the Lagrangian density with respect to the metric
tensor is taken to directly obtain the symmetric pressure tensor, which includes the effect of turbulence on the momentum transport. In
addition, it is shown in this work how the momentum balance is modified when the collision and/or external source terms are added to the
gyrokinetic equation. The results obtained here are considered useful for global gyrokinetic simulations investigating both neoclassical and
turbulent transport processes even in general non-axisymmetric toroidal systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027905

I. INTRODUCTION

Gyrokinetics1–7 has been used for several decades as a basic theo-
retical framework to study microinstabilities and turbulent processes
in magnetized plasmas.8 A significant number of large-scale simula-
tions are being performed based on gyrokinetic equations to analyze
and predict turbulent transport fluxes of particles, heat, and momen-
tum.9,10 The gyrokinetic equations derived from the Lagrangian and/
or Hamiltonian describing the gyrocenter motion possess conservation
properties,4,5 which are suitable for long-time and global transport
simulations. Variational formulations based on the action integral of
the Lagrangian provide a useful and systematic means to obtain
governing equations and conservation laws of energy and momentum
for considered systems.4,5,11–13 The variational formulations are also
applied to derive the useful conservative numerical schemes14–18 in
plasma physics for solving the guiding center equations and the
ideal magnetohydrodynamics (MHD) equations as well as the
Vlasov–Poisson and Vlasov–Maxwell equations.

Because background flow profiles are considered as one of the
key factors for improving plasma confinement, momentum transport
processes that determine the flow profiles are investigated by large-

scale gyrokinetic simulations.19–23 Thus, the momentum balance equa-
tion satisfied by the gyrokinetic model attracts our attention as a basis
for theoretically and/or numerically investigating the physical mecha-
nisms in the formation of the flow profiles.24–29 In our previous
work,30 the Eulerian formulation,31 which is also called the
Euler–Poincar�e reduction procedure,11,13,32–34 is applied to derive
the governing equations of the Vlasov–Poisson–Ampère (or
Vlasov–Darwin) system and those of the drift kinetic system in the
general spatial coordinates, and the momentum balance equations for
these systems are obtained by using the invariance of the action
integrals for the systems under arbitrary spatial coordinate transfor-
mations. In this paper, the previous work is extended to present the
Eulerian variational formulation of the gyrokinetic system with elec-
trostatic turbulence in general spatial coordinates and to derive the
local momentum balance equation with the symmetric pressure tensor
including the effects of electrostatic turbulent fluctuations on the
momentum transport.

In the present work, the governing equations of the gyrokinetic
system are represented in general spatial coordinates so that they are
useful for application to systems with complex geometries such as
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stellarator and heliotron plasmas35 in which it is convenient to employ
flux surface coordinates (e.g., Hamada coordinates36 and Boozer coor-
dinates37) to express these equations for analytical and numerical stud-
ies. In our formulation, the momentum balance equation is derived
using the invariance of the Lagrangian under arbitrary spatial coordi-
nate transformations, which is analogous to the derivation of energy-
momentum conservation laws from the invariance of the action inte-
gral under arbitrary transformations of spatiotemporal coordinates in
the theory of general relativity.38 In the same way as in the previous
work,30 the symmetric pressure tensor entering our momentum bal-
ance equation is directly obtained by taking the variational derivative
of the Lagrangian density with respect to the metric tensor, which is in
contrast to the conventional technique using the spatial translation
transformation for the derivation of the canonical momentum balance
including the asymmetric pressure tensor in the presence of the
magnetic field. The canonical pressure tensor is asymmetric and
gauge-dependent because of the vector potential included in the
canonical momentum. In order to obtain the symmetric pressure ten-
sor from the asymmetric canonical pressure tensor, additional compli-
cated procedures of the Belinfante–Rosenfeld type using the angular
momentum conservation law derived from the rotational symmetry
are required.39,40 On the other hand, our method can more directly
derive the symmetric pressure tensor, which is clearly shown in this
work to describe both neoclassical41,42 and turbulent transport of the
momentum in the gyrokinetic system.

We should note here that while employing the Hamiltonian
gyrocenter motion equations, an irreversible collision term must be
included into the gyrokinetic equation in order to treat neoclassical
and turbulent transport simultaneously.43,44 It is shown in our formu-
lation how the momentum balance equations are modified when the
collision and/or external source terms are added into the gyrokinetic
equation. This is possible because the momentum balance equations
are derived from the invariance of the Lagrangian under the general
spatial coordinate transformations, with the help of the gyrocenter
motion equations and the gyrokinetic Poisson’s equation while we
have freedom in choosing the governing equation for the gyrocenter
distribution function. The momentum balance equations including
the effects of collisions and external sources are useful for checking
and analyzing results of global gyrokinetic simulations using the
Lagrangian and Hamiltonian equations to investigate neoclassical and
turbulent transport in plasmas with particle, momentum, and/or heat
sources.

It is valuable to make comparisons of the present work with
recent works45,46 on similar subjects. In Ref. 45, a constrained Eulerian
variational principle presented by Brizard47 is used to derive the gov-
erning equations and local energy-momentum conservation laws of
the electromagnetic gyrokinetic Vlasov–Maxwell system, for which the
gyrocenter motion equations are expressed only in terms of the per-
turbed electric and magnetic fields by including the perturbed fields in
the Poisson-bracket structure. In Ref. 46, the field theory presented by
Qin et al.48 for particle-field systems on heterogenous manifolds is
applied to derive local energy and momentum conservation laws in
the electromagnetic gyrokinetic system. Except for dropping magnetic
fluctuations and some of the second or higher order terms with respect
to the small perturbation amplitude, the gyrokinetic system treated
here is basically the same as seen in other earlier works,4,5 and it con-
tains full finite gyroradius effects due to electrostatic fluctuations with

high wavenumbers, which are not included in Ref. 46. Also, in the
same way as in our previous work,30 the governing equations for the
gyrokinetic system are derived in this paper based on the Eulerian (or
the Euler–Poincar�e) formulation, which is historically older than the
methods employed in Refs. 45 and 46. The Euler–Poincar�e formula-
tion was used in the pioneering work by Newcomb31 to derive the
ideal MHD equations, and later it was applied to the derivation of the
Vlasov–Maxwell equations, the guiding-center (or drift kinetic) sys-
tem, as well as the gyrokinetic system as shown in Refs. 11, 13, 30, and
32–34. Here, the Eulerian formulation implies that, for the present
gyrokinetic case, the phase-space velocity (or the temporal change rate
of the gyrocenter coordinates in the phase space) of the gyrocenter is
regarded as a field function of time and phase-space coordinates of the
gyrocenter at the time when the gyrocenter passes through the consid-
ered point. In the formulation presented in Refs. 46 and 48, the gyro-
center (or particle) phase-space velocity is described by not the
Eulerian but Lagrangian viewpoint and is coupled with the Eulerian
description of the electromagnetic fields. In Refs. 45 and 46, not gen-
eral but isometric transformations such as spatial translation and rota-
tion are considered to derive local conservation laws of canonical
linear and angular momentum in collisionless systems. In the present
work, recognizing that the Lagrangian and the governing equations of
the gyrokinetic system can be expressed in the invariant form under
arbitrary spatial coordinate transformations in the Eulerian frame-
work, this invariance property is used to derive the local momentum
balance equation even in the presence of collisions and external sour-
ces, and the derived balance equation is shown to give the local
momentum conservation law in the direction of symmetry for colli-
sionless systems without external sources.

The rest of this paper is organized as follows: in Sec. II, the
Lagrangian for describing the single-particle gyrocenter motion is
given, in which the electrostatic potential fluctuation with the wave-
length of the order of the gyroradius is included. Next, in Sec. III, we
use the general spatial coordinates and define the Lagrangian of the
whole system including particles of all species and turbulent electro-
static fields to present the Eulerian variational principle, from which
the collisionless gyrokinetic equations for the gyrocenter distribution
functions and the gyrokinetic Poisson’s equation for the electrostatic
potential are derived. In Sec. IV, we make use of the invariance of the
Lagrangians for the single-species and whole systems under arbitrary
spatial coordinate transformations to derive the momentum balance
equations for both systems while allowing the collision and/or external
source terms to be included in the gyrokinetic equations. Then, the
symmetric pressure tensors, which enter these momentum balance
equations, are obtained from the variational derivatives of the
Lagrangians with respect to the metric tensor components and they
are verified to describe both neoclassical and turbulent transport of the
momentum. Finally, conclusions are given in Sec. V. In addition,
Appendix A is given to briefly explain covariant derivatives and
Christoffel symbols, which are used in the general spatial coordinates.
Variations in the functional forms of vector and tensor fields under
the infinitesimal transformation of the spatial coordinates and varia-
tional derivative with respect to the metric tensor components are
described in Appendixes B and C, respectively. In Appendix D, the
WKB representation49 is used to express the turbulent part of the pres-
sure tensor in the form comparable with the one obtained in the past
work on the momentum transport. Another derivation of the
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momentum balance equations, in which the asymmetric canonical
pressure tensors appear, is shown in Appendix E and the energy bal-
ance equations are derived in Appendix F. The case of the symmetric
background magnetic field is considered in Appendix G where it is
shown how the local conservation law of the canonical momentum in
the direction of symmetry is derived in the present formulation.

II. THE GYROCENTER LAGRANGIAN

The Lagrangian for describing the gyrocenter motion of the parti-
cle with massm and charge e is given by4

LGY �
e
c
AðX; tÞ þmvkbðX; tÞ

� �
� _X þmc

e
l _# � HGY ; (1)

where the gyrocenter phase-space coordinates X; vk, l � mv2?=ð2BÞ,
and # denote the gyrocenter position, the velocity component parallel
to the magnetic field, the magnetic moment, and the gyrophase angle,
respectively, and _� d=dt represents the time derivative along the tra-
jectory in the phase space. The vector potential and the unit vector
parallel to the magnetic field B are written by A and b � B=B, respec-
tively. Here, we suppose that A can weakly depend on time t and,
accordingly, the background magnetic field B ¼ r� A is allowed to
slowly vary in time. Thus, we can treat the inductive electric field
�c�1@A=@t, which drives the Ohmic current in tokamaks.

The gyrocenter Hamiltonian that appears on the right-hand side
of Eq. (1) is defined by

HGY �
1
2
mv2k þ lBþ eW (2)

and its electrostatic fluctuation part is written as

eW � eh/ðX þ q; tÞi# �
e2

2B
@

@l
hð~/Þ2i#; (3)

where the gyroradius vector is denoted by q � b� v=X, v is the par-
ticle’s velocity, X � eB=ðmcÞ is the gyrofrequency, and the average of
the electrostatic potential / at the particle position X þ q over the
gyrophase # is given by

h/ðX þ qÞi# �
þ
d#
2p

/ðX þ qÞ; (4)

and the gyrophase-dependent part is denoted by

~/ � /ðX þ qÞ � h/ðX þ qÞi#: (5)

The last term on the right-hand side of Eq. (3) is of the second order
in the gyrokinetic ordering parameter �, where � � e~/=ðmjvj2Þ
� q=L with L representing the equilibrium gradient scale length is
assumed. This second-order term is retained because it is necessary for
deriving the gyrokinetic Poisson’s equation correctly including the
polarization effect as shown in Sec. III C. However, other second-order
terms shown in Ref. 50 are neglected in the gyrocenter Hamiltonian
given by Eqs. (2) and (3). Therefore, rigorously speaking, the accuracy
of the present model is up to the first order. The turbulent fluctuations
are assumed to have the characteristic wavelength �ðk?Þ�1 � q.
Then, the fluctuation terms in Eq. (3) are considered to contain all-
order terms in k?qð� 1Þ even though small amplitude terms of higher
order in � � q=Lð� 1Þ are neglected. In Eqs. (4) and (5) as well as in

the equations shown below, the time variable t on which / depends is
omitted for simplicity.

In this section, the Cartesian spatial coordinates are used and
three-dimensional vectors are represented in terms of boldface letters.
Then, the electrostatic potential /ðX þ qÞ is Taylor expanded about
the gyrocenter position X as

/ðX þ qÞ ¼
X1
n¼0

1
n!

X3
j1¼1
� � �
X3
jn¼1

qj1 � � � qjn @n/ðXÞ
@Xj1 � � � @Xjn

; (6)

where Xj and qj (j¼ 1, 2, 3) and the Cartesian spatial coordinates of
the gyrocenter position vector X and the gyroradius vector q, respec-
tively. Substituting Eq. (6) into Eq. (4), we obtain

h/ðX þ qÞi# ¼
X1
n¼0

X3
j1¼1
� � �
X3
jn¼1

aj1���jn

n!

@n/ðXÞ
@Xj1 � � � @Xjn

; (7)

where the gyrophase average of a product of n gyroradius vector com-
ponents is denoted by

aj1���jn � hqj1 � � �qjni#: (8)

Obviously, aj1���jn is symmetric with respect to arbitrary permutations
of the indices j1;…; jn. It can be shown that

aj1���jn ¼ 0 for odd n (9)

and

aj1���j2l ¼ 1
ð2lÞ!

X
r2S2l

gjrð1Þ���jrð2lÞ ; (10)

where S2l is the symmetric group of permutations of the set
f1; 2;…; 2lg and gj1���j2l is defined by

gj1���j2l ¼ ð2lÞ!
ðl!Þ2

q
2

� �2l

hj1 j2hj3 j4 � � � hj2l�1j2l ; (11)

with

q � c
e

ffiffiffiffiffiffiffiffiffi
2ml
B

r
(12)

and

hij � dij � bibj: (13)

Here, bi is the ith contravariant component of b � B=B and dij repre-
sents the Kronecker delta; dij ¼ 1 (for i¼ j), 0 (for i 6¼ j). In Eq. (3),
we also find that

hð~/Þ2i# ¼
X1
m¼1

X1
n¼1

X3
i1¼1
� � �
X3
im¼1

X3
j1¼1
� � �
X3
jn¼1

bi1���im ;j1���jn

m! n!

� @n/ðXÞ
@Xi1 � � � @Xim

@n/ðXÞ
@Xj1 � � � @Xjn

; (14)

where

bi1���im;j1���jn � ai1���imj1���jn � ai1���imaj1���jn (15)

is defined and it satisfies
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bi1���im ;j1���jn ¼ 0 for oddðmþ nÞ: (16)

The expressions given in Eqs. (7), (13), and (14) are valid in the
Cartesian spatial coordinates although they can be easily transformed
into those in general spatial coordinates as shown in Sec. III.

III. EULERIAN VARIATIONAL PRINCIPLE FOR
DERIVATION OF THE COLLISIONLESS GYROKINETIC
SYSTEM OF EQUATIONS IN GENERAL SPATIAL
COORDINATES

In this section, the governing equations for the distribution func-
tions and the turbulent electrostatic potential in the collisionless gyro-
kinetic system are derived from the Eulerian variational principle
using the Lagrangian density represented in general spatial
coordinates.

A. The Lagrangian density represented in general
spatial coordinates

The action integral IGKF for the Eulerian variational principle to
derive all of the governing equations of the collisionless electrostatic
gyrokinetic turbulent system is written as

IGKF �
ðt2
t1

dt LGKF �
ðt2
t1

dt
ð
V
d3xLGKF ; (17)

where the Lagrangian densityLGKF is given by

LGKF � LGK þ LF

�
X
a

ð
d3v Faðx; v; tÞLGYaðx; v; tÞ

þ
ffiffiffi
g
p

8p
gijðxÞðELÞiðx; tÞðELÞjðx; tÞ: (18)

Here, d3x � dx1dx2dx3 and d3v � dvkdld# are used and the
subscript a represents the particle species with mass ma and charge ea.
We use x � ðxiÞi¼1;2;3 and v � ðvk;l; #Þ as the gyrocenter phase-
space coordinates. It should be emphasized that, in this section,
x � ðxiÞi¼1;2;3 represent general spatial coordinates of the gyrocenter
position, which can be either Cartesian or any other curved coordi-
nates. However, here we assume that the spatial position vector
r ¼ rðxÞ is a function of only the spatial coordinates x � ðxiÞi¼1;2;3
and it is independent of time t. The gyrocenter distribution function
on the (x, v)-space is denoted by Fa, and the number of particles of
species a in the phase-space volume element d3xd3v � dx1dx2

dx3dvkdld# at time t is given by Faðx; v; tÞd3xd3v. The field part LF
of the Lagrangian density LGKF in Eq. (18) is written in terms of the
covariant components of the electric field due to the electrostatic
potential,

ðELÞi � �
@/ðx; tÞ
@xi

: (19)

In this paper, we employ the summation convention that the
same symbol used for a pair of upper and lower indices within a term
[such as seen in Eq. (18) as well as in the equations shown below] indi-
cates summation over the range f1; 2; 3g of the symbol index. The
contravariant metric tensor components gij in the general spatial coor-
dinates x � ðxiÞ are related to the covariant components gij by

gikgkj ¼ dij, where dij represents the Kronecker delta. The determinant
of the covariant metric tensor matrix is denoted by

gðxÞ � det gijðxÞ
� �

: (20)

Note that gijðxÞ; gijðxÞ, and g(x) are all independent of time t because
the spatial position vector r is assumed to be given by a function of
only the spatial coordinates x � ðxiÞi¼1;2;3, independently of time t as
mentioned earlier.

The gyrocenter Lagrangian for species a, which is multiplied by
Fa to define LGK in Eq. (18), is represented in the Eulerian picture by

LGYa �
ea
c
Ajðx; tÞ þmavkb

iðx; tÞgijðxÞ
� �

ujaxðx; v; tÞ

þmac
ea

lua#ðx; v; tÞ �HGYaðx; vk;l; tÞ; (21)

where Aj is the jth covariant component of the vector potential,
bi � Bi=B is the ith contravariant component of the unit vector
parallel to the background magnetic field, and the magnetic field
strength is given by

Bðx; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðxÞBiðx; tÞBjðx; tÞ

q
: (22)

The contravariant components ðBiÞi¼1;2;3 of the magnetic field are
expressed in terms of the covariant components ðAiÞi¼1;2;3 of the vec-
tor potential as

Biðx; tÞ ¼ �ijkffiffiffiffiffiffiffiffiffi
gðxÞ

p @Akðx; tÞ
@xj

; (23)

where the Levi–Civita symbol is denoted by

�ijk � �ijk

�
1 ðði; j; kÞ ¼ ð1; 2; 3Þ; ð2; 3; 1Þ; ð3; 1; 2ÞÞ
�1 ðði; j; kÞ ¼ ð1; 3; 2Þ; ð2; 1; 3Þ; ð3; 2; 1ÞÞ
0 otherwiseð Þ:

8><
>: (24)

The gyrocenter Hamiltonian is written here as

HGYaðx; vk; l; tÞ �
1
2
mav

2
k þ lBðx; tÞ þ eaWaðx;l; tÞ (25)

and the electrostatic fluctuation part is given by

Waðx;l; tÞ � /ðx; tÞ þWE1aðx; l; tÞ þWE2aðx; l; tÞ; (26)

where

WE1aðx;l; tÞ �
X1
n¼1

aj1���jna ðx;l; tÞ
n!

rj1 � � � rjn/ðx; tÞ (27)

and

WE2aðx; l; tÞ � �ea
X1
m¼1

X1
n¼1

ðmþ nÞ
m! n!

bi1���im ;j1���jn
a ðx;l; tÞ

4lBðx; tÞ
� ðri1 � � � rim/ðx; tÞÞ ðrj1 � � � rjn/ðx; tÞÞ: (28)

Here, aj1���jna ðx; l; tÞ and bi1���im ;j1���jn
a ðx;l; tÞ are defined by Eqs.

(8)–(12) and (15) in which hij is represented in the general spatial
coordinates x � ðxiÞi¼1;2;3 by
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hij � gij � bibj (29)

and the covariant derivativerj is defined in Appendix A.
The Eulerian representation of the gyrocenter Lagrangian LGYa

shown in Eq. (21) contains the temporal change rates of the gyrocenter
position coordinates, parallel velocity, magnetic moment, and gyro-
phase at time t, which are represented by the functions uiaxðx; v; tÞ,
uavk ðx; v; tÞ, ualðx; v; tÞ, and ua#ðx; v; tÞ, respectively, in the same way
as in Ref. 30. Then, the distribution function Faðx; v; tÞ satisfies

@Fa
@t
þ @

@xj
ðFaujaxÞ þ

@

@vk
ðFauavk Þ þ

@

@l
ðFaualÞ

þ @

@#
ðFaua#Þ ¼ 0: (30)

We find here that the gyrocenter Hamiltonian HGY a given in
Eq. (25) takes a functional form,

HGYa ¼ HGYa v; @jAiðx; tÞ; f@J/ðx; tÞg; f@J gijðxÞg
� �

; (31)

which depends on the velocity space coordinates (except for #) as well
as the general spatial coordinates x � ðxiÞi¼1;2;3 through the field vari-
ables ½@jAiðx; tÞ; f@J/ðx; tÞg; f@J gijðxÞg�. Here, we use the notation
J � ðj1; j2;…; jnÞ (for n ¼ 0; 1; 2;… and j1; j2;…; jn ¼ 1; 2; 3) to
write

@JF �
F ðn ¼ 0Þ
@j1 j2���jnF � @nF=@xj1@xj2 � � � @xjn ðn 	 1Þ ;

(
(32)

where F is an arbitrary function of x ¼ ðxiÞi¼1;2;3. Then, the compact
notations f@J/ðx; tÞg and f@J gijðxÞg in Eq. (31) imply

f@J/g � f/; @j/; @jk/; @jkl/;…g (33)

and

f@J gijg � fgij; @kgij; @klgij; @klmgij;…g; (34)

respectively. Note that the high-order spatial derivatives included in
Eqs. (33) and (34) enter the gyrocenter Hamiltonian HGY a due to
finite gyroradius as seen in Eqs. (27) and (28) where the covariant
derivatives contain the spatial derivatives of gij through the Christoffel
symbols defined by Eq. (A4) in Appendix A.

In the same way as in Eq. (31), the functional form of the gyro-
center Lagrangian LGY a is written as

LGYa ¼ LGYa v; uiaxðx; v; tÞ; ua#ðx; v; tÞ;Aiðx; tÞ;
�

@jAiðx; tÞ; f@J/ðxÞg; f@J gijðxÞg�; (35)

where the Eulerian representations of the temporal change rates of the
gyrocenter position and the gyrophase, uiaxðx; v; tÞ and ua#ðx; v; tÞ, are
additionally included. In Eq. (35), uaxðx; v; tÞ; ua#ðx; v; tÞ, and /ðx; tÞ
are the functions, the governing equations of which are derived from
the variation principle in Sec. IIIC, while the dependence of LGY a on
Aiðx; tÞ; @jAiðx; tÞ, and @J gijðx; tÞ is also explicitly shown because
their variations need to be taken into account to evaluate the variation
of LGY a in Sec. IV where, in order to derive the local momentum bal-
ance, we consider the general spatial coordinate transformation, which
causes the variations in the functional forms of both ðuax; ua#;/Þ and
ðAi; gijÞ. Here, using Eqs. (19) and (33), we note that f@J/g can be
replaced by

f/; f@JðELÞigg; (36)

where

f@JðELÞig � fðELÞi; @jðELÞi; @jkðELÞi; @jklðELÞi;…g: (37)

B. The Lagrangian density associated with polarization

We find from Eqs. (21) and (25)–(28) that the part of the
Lagrangian density LGY a, which includes the perturbed potential is
given by

LWa � �
ð
d3v Fa eaWa ¼ �eaNðgÞa /þ LE1a þ LE2a; (38)

where the gyrocenter densityNðgÞa is defined by

NðgÞa �
ð
d3v Fa; (39)

LE1a is given in the linear form with respect to the longitudinal electric
field ðELÞi � �@/=@xi and its covariant derivatives,

LE1a � �
ð
d3v Fa eaWE1a

¼
X1
k¼1

Qj1���j2k
0a rj1 � � � rj2k�1ðELÞj2k ; (40)

andLE2a is given in the quadratic form,

LE2a � �
ð
d3v Fa eaWE2a

¼ 1
2

X1
m¼1

Qi1���im
Ea ri1 � � � rim�1ðELÞim

¼ 1
2

X1
m¼1

X1
n¼1

vi1���im;j1���jn
a ri1 � � � rim�1ðELÞim

�rj1 � � � rjn�1ðELÞjn : (41)

In this paper, the longitudinal (irrotational) and transverse (solenoi-
dal) parts of any vector field are represented by the subscripts L and T,
respectively.51 In Eq. (40), there appear the multipole moments Qj1���j2k

0a
of the electric charge distribution51 of species a induced by finite
gyroradius,

Qj1���j2k
0a � ea

ð
d3v Fa

aj1���j2ka

ð2kÞ! ; (42)

which can exist even without the electric field ðELÞi. The multipole
momentsQi1���im

Ea of the electric charge distribution of species a induced
by the longitudinal electric field ðELÞi are shown in Eq. (41), and they
are given in the linear form with respect to ðELÞi and its covariant
derivatives as

Qi1���im
Ea �

X1
n¼1

vi1���im ;j1���jn
a rj1 � � � rjn�1ðELÞjn : (43)

Here, the coefficients vi1���im ;j1���jn
a are defined by
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vi1���im ;j1���jn
a � e2a

ð
d3v

Fa
2lB
ðmþ nÞbi1���im ;j1���jn

a

m! n!
; (44)

which are regarded as the generalized electric susceptibility produced
by finite gyroradius. It is remarked that Qi1���im

0a and Qi1���im
Ea are both

symmetric with respect to arbitrary permutations of the indices
i1;…; im because ai1���ima has the same symmetry.

Taking the summation of Eq. (38) over species a, we obtain

LW �
X
a

LWa ¼ �qðgÞ/þ LE1 þ LE2; (45)

where the gyrocenter charge density qðgÞ is given by

qðgÞ �
X
a

eaN
ðgÞ
a ; (46)

and the parts of the Lagrangian density associated with polarization
are represented by LE1 and LE2. Here, LE1 is defined by

LE1 �
X
a

LE1a ¼
X1
k¼1

Qj1���j2k
0 rj1 � � � rj2k�1ðELÞj2k (47)

with the multiple moments induced by finite gyroradius,

Qj1���j2k
0 �

X
a

Qj1���j2k
0a ; (48)

and LE2 is defined by

LE2 �
X
a

LE2a ¼
1
2

X1
m¼1

Qi1���im
E ri1 � � � rim�1ðELÞim

¼ 1
2

X1
m¼1

X1
n¼1

vi1���im;j1���jnri1 � � � rim�1ðELÞim

�rj1 � � � rjn�1ðELÞjn ; (49)

with the multiple moments induced by the longitudinal electric field
ðELÞi and its covariant derivatives,

Qi1���im
E �

X
a

Qi1���im
Ea

¼
X1
n¼1

vi1���im ;j1���jnrj1 � � � rjn�1ðELÞjn ; (50)

and the generalized electric susceptibility due to finite gyroradius,

vi1���im;j1���jn �
X
a

vi1���im ;j1���jn
a : (51)

C. Derivation of the governing equations of the
collisionless electrostatic gyrokinetic turbulent system

Here, we virtually allow the phase-space trajectories for all species
and the electrostatic potential to vary infinitesimally. Following the
same procedure as in Ref. 30, the variations in the gyrocenter position,
parallel velocity, magnetic moment, and gyrophase of the phase-space
trajectory are represented in the Eulerian picture by dxiaEðx; v; tÞ,
dvakEðx; v; tÞ, dlaEðx; v; tÞ, and d#aEðx; v; tÞ, respectively. We also
denote the variation in the electrostatic potential by d/. Then, in terms
of dxiE; dvkE; dlE , and d#E , the variations in the functional forms of
uiax , uavk ; ual, and ua# due to the virtual displacement are written as

duiax ¼
@

@t
þ ujax

@

@xj
þ uavk

@

@vk
þ ual

@

@l
þ ua#

@

@#

 !
dxiaE

� dxjaE
@

@xj
þ dvakE

@

@vk
þ dlaE

@

@l
þ d#aE

@

@#

 !
uiax;

duavk ¼
@

@t
þ ujax

@

@xj
þ uavk

@

@vk
þ ual

@

@l
þ ua#

@

@#

 !
dvakE

� dxjaE
@

@xj
þ dvakE

@

@vk
þ dlaE

@

@l
þ d#aE

@

@#

 !
uavk ;

dual ¼
@

@t
þ ujax

@

@xj
þ uavk

@

@vk
þ ual

@

@l
þ ua#

@

@#

 !
dlaE

� dxjaE
@

@xj
þ dvakE

@

@vk
þ dlaE

@

@l
þ d#aE

@

@#

 !
ual;

dua# ¼
@

@t
þ ujax

@

@xj
þ uavk

@

@vk
þ ual

@

@l
þ ua#

@

@#

 !
d#aE

� dxjaE
@

@xj
þ dvakE

@

@vk
þ dlaE

@

@l
þ d#aE

@

@#

 !
ua#;

(52)

and the variation in the distribution function Fa is given by

dFa ¼ �
@

@xj
ðFadxjaEÞ �

@

@vak
ðFadvakEÞ �

@

@l
ðFadlaEÞ

� @

@#
ðFad#aEÞ: (53)

Using Eqs. (17), (18), (45), (52), and (53), the variation in the action
integral IGKF is expressed as

dIGKF ¼
X
a

ðt2
t1

dt
ð
V
d3x

ð
d3v Fa

� @LGYa
@xi

� �
u
� d

dt

� �
a

@LGYa
@uiax

� �( )
dxiaE

"

þ @LGYa
@vk

 !
u

dvkaE þ
@LGYa
@l

� �
u

dlaE

þ @LGYa
@#

� �
u
� d

dt

� �
a

@LGYa
@ua#

� �( )
d#aE

#

�
ðt2
t1

dt
ð
V
d3x qðgÞ � 1

4p

@
ffiffiffi
g
p

Di
� �
@xi

� �
d/þ B:T:; (54)

where Di represents the electric displacement vector defined later in
Eq. (73) and B.T. represents boundary terms that appear due to partial
integrals. Here, ð@LGYa=@xiÞu, ð@LGYa=@vkÞu, ð@LGYa=@lÞu, and
ð@LGYa=@#Þu denote the derivatives of LGY a in xi, vk, l, and #, respec-
tively, with ðuiax; ua#Þ kept fixed in LGY a, and the time derivative along
the phase-space trajectory is represented by

d
dt

� �
a
� @

@t
þ ukax

@

@xk
þ uavk

@

@vk
þ ual

@

@l
þ ua#

@

@#
: (55)

We now employ the Eulerian variation principle, which implies
that the collisionless gyrokinetic equations for the distribution functions
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of all species and the gyrokinetic Poisson’s equation for the electrostatic
potential can be derived from the condition that dIGKF ¼ 0 for arbitrary
variations dxiaE; dvakE , dlaE , d#aE , and d/, which vanish on the bound-
aries of the integral region to make B.T. disappear in Eq. (54).

We first use dIGKF=dxiaE ¼ 0 to obtain

d
dt

� �
a
pai ¼

@LGYa
@xi

� �
u
; (56)

where pai represents the covariant vector component of the canonical
momentum defined by

pai �
@LGYa
@uiax

¼ ea
c
Aiðx; tÞ þmavkbiðx; tÞ �

ea
c
A
aiðx; vk; tÞ: (57)

We should note that the distribution function Fa is included as a factor
in dIGKF=dxiaE ¼ 0 although it is omitted from Eq. (56) for simplicity.
This omission of Fa is also performed in the other equations obtained
below from dIGKF=dvakE ¼ 0, dIGKF=dlaE ¼ 0, and dIGKF=d#aE ¼ 0
although it does not make a difference in deriving the resultant colli-
sionless gyrokinetic equation in Eq. (69). We can rewrite Eq. (56) as

mauavkbi ¼ ea �
@Wa

@xi
� 1

c
@A
ai
@t
þ 1

c
ffiffiffi
g
p

�ijku
j
xB

k

� �
� l

@B
@xi

; (58)

where the modified magnetic field is defined by

B
ia �
�ijkffiffiffi
g
p

@A
ak
@xj

; (59)

respectively.
Next, dIGKF=dvakE ¼ 0 is used to obtain

@LGYa
@vk

 !
u

¼ ma uiaxbi � vk
	 


¼ 0; (60)

from which we have

uiaxbi ¼ vk: (61)

Furthermore, dIGKF=dlaE ¼ 0 and dIGKF=d#aE ¼ 0 yield

@LGYa
@l

� �
u

¼ mac
ea

ua# � B� ea
@Wa

@l
¼ 0 (62)

and

d
dt

� �
a

@LGYa
@ua#

� �
¼ mac

ea
ual ¼

@LGYa
@#

� �
u
¼ 0; (63)

respectively.
Equations (58), (61), (62), and (63) are rewritten as

uiax ¼
1
B
ak

vkB

i
a þ c

�ijkffiffiffi
g
p bj

l
ea

@B
@xk
þ @Wa

@xk
þ 1

c
@A
ak
@t

� �" #
; (64)

mauavk ¼ �
B
ia
B
ak

l
@B
@xi
þ ea

@Wa

@xi
þ 1

c
@A
ai
@t

� �� �
; (65)

ual ¼ 0; (66)

and

ua# ¼ Xa þ
e2a
mac

@Wa

@l
; (67)

where Xa � eaB=ðmacÞ and

B
ak � B
ia bi: (68)

Equations (64) and (65) are obtained by taking the vector and scalar
products between the magnetic field and Eq. (58), respectively. We can
verify that the right-hand sides of Eqs. (64)–(67) are all independent of
# and that the magnetic moment l is an invariant of motion as seen
from Eq. (66).

Substituting Eqs. (64)–(67) into Eqs. (30) and taking its average
with respect to the gyrophase #, the collisionless gyrokinetic equation
is derived as

@�Fa

@t
þ @

@xi
�Fa

1
B
ak

vkB

i
a þ c

�ijkffiffiffi
g
p bj

l
ea

@B
@xk
þ @Wa

@xk
þ 1

c
@A
ak
@t

� �( )" #

þ @

@vk
�Fa

B
ia
maB
ak

�ea
@Wa

@xi
þ 1

c
@A
ai
@t

� �
� l

@B
@xi

 �" #
¼ 0; (69)

where �Fa denotes the gyrophase-averaged distribution function,

�Fa � hFai# �
þ
d#
2p

Fa: (70)

The remaining governing equation of the system, namely, the
gyrokinetic Poisson’s equation is derived from the condition that the
variational derivative of the action integral IGKF with respect to
the electrostatic potential / vanishes, dIGKF=d/ ¼ 0. Since the time
derivative of / never appears in the Lagrangian density LGKF , the
above-mentioned condition can be replaced using the Lagrangian
LGKF instead of IGKF by

dLGKF /½ �
d/

ðxÞ � d
d�

LGKF /þ �d3x
� �����

�¼0
¼ 0; (71)

where d3x with the subscript x ¼ ðxiÞi¼1;2;3 represents the function

that takes a value d3xðyÞ ¼ dðy1 � x1Þdðy2 � x2Þdðy3 � x3Þ at
y ¼ ðyiÞi¼1;2;3. Equation (71) gives the gyrokinetic Poisson’s equation,

@
ffiffiffi
g
p

Di
� �
@xi

¼ 4pqðgÞ; (72)

where the electric displacement vector Di is written asffiffiffi
g
p

Di � ffiffiffi
g
p

Ei
L þ 4pPi

G: (73)

Here, the generalized polarization vector density Pi
G is defined by

Pi
G �

dLGK
dðELÞi

� d
d�

LGK ðELÞi þ �d
3
x

� �����
�¼0

¼
X1
m¼1

X1
n¼1
ð�1Þm�1ri1 � � � rim�1Q

ii1���im�1

¼ �
X1
k¼1
rj1 � � � rj2k�1Q

j1���j2k�1i
0 þ

X1
m¼1

X1
n¼1
ð�1Þm�1

�ri1 � � � rim�1 vii1���im�1;j1���jnrj1 � � � rjn�1ðELÞjn
h i

; (74)
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in which not only the dipole moment but also other multipole
moments51 occurring due to finite gyroradius are included. The multi-
pole moments Qi1���im in Eq. (74) are generally given by the sum of the
two parts,

Qi1���im � Qi1���im
0 þ Qi1���im

E ; (75)

whereQi1���im
0 andQi1���im

E are defined by Eqs. (48) and (50), respectively.
It should be noted that Qi1���im

0 vanishes unless m is an even integer.
Taking only the contribution of m¼ 1 to the summation over m in
Eq. (75), we obtain the dipole moment density, which is denoted by

Pi
D � Qi

E �
@LGK
@ðELÞi

: (76)

The presence of the infinite series due to the finite gyroradius in
Eq. (74) and other places has an analogy with that for the case of mac-
roscopic electromagnetism described in detail in Ref. 51 where the
macroscopic charge density is evaluated for the system consisting of
molecules. The contribution of each molecule to the macroscopic
charge density is calculated by spatially averaging the microscopic
charge density (given by the point charges constituting the molecule)
around the center of mass of the molecule. Then, the resultant expres-
sion of the macroscopic charge density is given by the series expansion
associated with the multipole moments due to the finite distance of
each point charge from the center of mass of the molecule. The local
spatial average of the microscopic charge density in the system of mol-
ecules is replaced by the phase-space integration in the present case of
the gyrokinetic system to represent the macroscopic charge density as

qðgÞðx; tÞ � r � PGðx; tÞ

¼ d
d/ðxÞ

X
a

ea

ð
d3x0

ð
d3v Faðx0; v; tÞWaðx0; v; tÞ

" #

¼
X
a

ea

ð
d3x0

ð1
�1

dvk

ð1
0
dl
ð2p
0
d# �Faðx0; vk; lÞ

� dðx0 þ qa � xÞ � ea
B
@

@l
~/ðx0; l; #Þdðx0 þ qa � xÞ
n o� �

;

(77)

which contains the polarization effect due to the finite gyroradius and
the microscopic electrostatic fluctuations. In Eq. (77), the Cartesian
spatial coordinates are used and three-dimensional vectors are repre-
sented in terms of boldface letters. In the square brackets on the right-
hand side of Eq. (77), the first and second terms give the point charge
density of the particle at x ¼ x0 þ qa and its correction due to the elec-
trostatic fluctuation, respectively. We can see that the effect of the
finite gyroradius (or the finite distance between the particle and gyro-
center positions) is included in the delta functions, which cause the
infinite series expansions to appear in Eq. (74) and other equations
related to the polarization (or dipole and multipole moments).

IV. DERIVATION OF THE MOMENTUM BALANCE

In this section, we use the invariance of the Lagrangian under
arbitrary infinitesimal transformations of spatial coordinates to derive
the momentum balance equation for the single-particle-species system
and that for the whole system including all species and the field.

A. Invariance of the Lagrangian under arbitrary spatial
coordinate transformations

We now consider the infinitesimal transformation of the spa-
tial coordinates from x ¼ ðxiÞi¼1;2;3 to x0 ¼ ðx0iÞi¼1;2;3, which is
written as

x0i ¼ xi þ niðxÞ: (78)

Here, the infinitesimal variation in the spatial coordinate xi is denoted
by niðxÞ, which is an arbitrary function of only the spatial coordinates
x ¼ ðxiÞi¼1;2;3 and independent of time t.

From Eq. (18), the gyrokinetic part of the Lagrangian for species
a is found to be given by

LGKa �
ð
V
d3xLGKa �

ð
V
d3x

ð
d3v FaLGYa; (79)

where the gyrocenter Lagrangian LGY a is defined in Eq. (21). Since
LGKa shown in Eq. (79) is a scalar constant, which is invariant under
arbitrary spatial coordinate transformations including the infinitesimal
transformation given by Eq. (78), we have

�dLGKa �
ð
V
d3x

@ðniLGKaÞ
@xi

þ �dLGKa
� �

¼ 0: (80)

Note that here and hereafter we use �d � � � to represent the variation
associated with the infinitesimal spatial coordinate transformation,
which should be distinguished from the variation d � � � due to the
virtual displacement treated in Sec. III. The divergence term in
the integrand of Eq. (80) appears due to the difference between the
domains of integrations in x ¼ ðxiÞi¼1;2;3 and x0 ¼ ðx0iÞi¼1;2;3, while
�dLGKa in the integrand represents the variation in the spatial func-
tional form of LGKa due to the infinitesimal spatial coordinate
transformation.

As shown in Appendix B, the variation in the spatial functional
form of an arbitrary tensor field (as well as an arbitrary tensor field
density) due to the infinitesimal spatial coordinate transformation
given in Eq. (78) is written as the opposite sign of its Lie derivative52

with respect to the generating vector field ni, and it is represented by
�d ¼ �Ln. It is also noted that since the Lagrangian density behaves as
a scalar field density under arbitrary spatial coordinate transforma-
tions, the Lie derivative of LGKa is given by

LnLGKa ¼
@ðniLGKaÞ

@xi
: (81)

Therefore, the integrand in Eq. (80) is simply rewritten as
LnLGKa � LnLGKað¼ 0Þ, from which its spatial integral �dLGKa is natu-
rally found to vanish as shown in Eq. (80).

We now use Eq. (79) and the Leibniz rule for the derivative oper-
ation by �d ¼ �Ln to write the variation in the spatial functional form
of the Lagrangian density LGKa as

�dLGKa ¼
ð
d3v �dðFaLGYaÞ

¼
ð
d3v ð�dFa � LGYa þ Fa � �dLGYaÞ: (82)

Then, using Eqs. (81), (82), and �d ¼ �Ln, Eq. (80) is rewritten as
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�dLGKa ¼
ð
V
d3x

ð
d3v ��dðFaLGYaÞ þ �dðFaLGYaÞ
� �

¼
ð
V
d3x

ð
d3v Fað��dLGYa þ �dLGYaÞ

¼
ð
V
d3x

ð
d3v Fa ni

@LGYa
@xi

þ @LGYa
@uiax

�duiax

�

þ @LGYa
@uia#

�duia# þ
X
J

@LGYa
@ð@JAiÞ

�dð@JAiÞ

þ
X
J

@LGYa
@ð@J/Þ

�dð@J/Þ þ
X
J

@LGYa
@ð@J gijÞ

�dð@J gijÞ
!

¼ 0: (83)

Equation (83) is found to hold by noting that LnLGYa ¼ ni@LGYa=@xi

(because LGY a behaves as a scalar field under arbitrary spatial coordi-
nate transformations) and that the chain rule is applied to the deriva-
tive operation �d ¼ �Ln on LGYa½uiax; uia#; f@JAig; f@J/g; f@J gijg� as

�dLGYa ¼ �ni
@LGYa
@xi

¼ @LGYa
@uiax

�duiax þ
@LGYa
@uia#

�duia# þ
X
J

@LGYa
@ð@JAiÞ

�dð@JAiÞ

þ
X
J

@LGYa
@ð@J/Þ

�dð@J/Þ þ
X
J

@LGYa
@ð@J gijÞ

�dð@J gijÞ; (84)

where @LGYa=@ð@JAiÞ ¼ 0 when the order of J is greater than or equal
to two [see Eq. (35)].

We next consider the invariance of the Lagrangian LGKF of the
whole system under the infinitesimal spatial coordinate transforma-
tion, which is written in the same way as in Eq. (80) by

�dLGKF �
ð
V
d3x

@ðniLGKFÞ
@xi

þ �dLGKF
� �

¼ 0; (85)

where LGKF consists of the gyrokinetic and field parts as shown in Eqs.
(17) and (18). Procedures similar to those leading to Eq. (83) can be
made to obtain

�dLGKF ¼
ð
V
d3x

X
a

ð
d3v Fa ni

@LGYa
@xi

þ @LGYa
@uiax

�duiax

�"

þ @LGYa
@uia#

�duia# þ
X
J

@LGYa
@ð@JAiÞ

�dð@JAiÞ

þ
X
J

@LGYa
@ð@J/Þ

�dð@J/Þ þ
X
J

@LGYa
@ð@J gijÞ

�dð@J gijÞÞ

þ @ðn
iLFÞ
@xi

þ @LF
@ð@/=@xiÞ

�d
@/
@xi

� �
þ @LF
@gij

�dgij

�
¼ 0: (86)

The invariance shown in Eq. (86) can also be confirmed using Eq. (84)
and the following formula for the derivative of LF ½@/=@xi; gij� with
respect to �d ¼ �Ln,

�dLF ¼ �
@ðniLFÞ
@xi

¼ @LF
@ð@/=@xiÞ

�d
@/
@xi

� �
þ @LF
@gij

�dgij: (87)

It is summarized from Eqs. (83), (84), (86), and (87) that the invari-
ance of the scalar constants of LGKa and LGKF under the infinitesimal
spatial transformation can be verified using the chain rule formulas for
the derivative operation �d ¼ �Ln on the scalar field LGYa and the
scalar field density LF . The invariance formulas shown in Eqs. (83)
and (86) are used to derive the momentum balance equation for the
single-species system in Sec. IVB and that for the whole system
including all species and the field in Sec. IVC, respectively.

B. Derivation of the momentum balance for a single
particle species

We now use the Euler–Lagrange equations for gyrocenter motion
[Eqs. (56), (60), (62), and (63)] and perform partial integrals to rewrite
(83) as

�dLGKa ¼
ð
V
d3x ni

ð
d3v

@

@t
Fa
@LGYa
@uiax

� �
�Ka

@LGYa
@uiax

 ��

þ dLGKa
dAi

�dAi þ
dLGKa
d/

�d/ þ dLGKa
dgij

�dgij

�
þ B:T:

¼ 0; (88)

where, instead of using Eq. (30), the gyrocenter distribution function
Fa is assumed to satisfy

@Fa
@t
þ @

@xj
ðFaujaxÞ þ

@

@vk
ðFauavk Þ þ

@

@l
ðFaualÞ þ

@

@#
ðFaua#Þ ¼ Ka:

(89)

Here, Ka represents the rate of temporal change in Fa due to collisions
and/or external sources for the species a. In the present work, we
assume that

X
a

ea

ð
d3vKa ¼ 0 (90)

is satisfied by Ka. In fact, it is shown in Ref. 43 that Eq. (90) corre-
sponds to the intrinsic ambipolarity of the classical particle fluxes
when Ka represents the collision operator in the gyrocenter coordi-
nates. The variational derivative of LGKawith respect to Ai is given by

dLGKa
dAi

¼
X
J

ð�1Þ#J@J
@LGKa
@ð@JAiÞ

� �

¼ @LGKa
@Ai

� @

@xj
@LGKa

@ð@Ai=@xjÞ

� �
¼ ea

c
Ci
a; (91)

where the particle flux of species a is represented by

Ck
a �

ð
d3v Fau

k
ax þ

c
ea
�kij

@

@xi

ð
d3v

Faffiffiffi
g
p

 

� �lbj þ
mavk
B

ðuaxÞj � ðuaxÞibibj
n o

� ea
@Wa

@Bj

� ��
: (92)

The variational derivatives dLGKa=d/ and dLGKa=dgij are written as

dLGKa
d/

¼
X
J

ð�1Þ#J@J
@LGKa
@ð@J/Þ

� �
¼ �eaNðpÞa (93)

and
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dLGKa
dgij

¼
X
J

ð�1Þ#J@J
@LGKa
@ð@J gijÞ

 !
¼ 1

2
Pij
a ; (94)

respectively, where the particle density NðpÞa and the symmetric pres-
sure tensor density Pij

a of species a are defined by

eaN
ðpÞ
a � eaN

ðgÞ
a �riP

i
Ga (95)

and

Pij
a � 2

X
J

ð�1Þ#J
ð
d3v Fa

@LGYa
@ð@J gijÞ

¼ Pij
CGLa þ pij

�a þ Pij
Wa; (96)

respectively, and #J ¼ n represents the order of J � ðj1; j2;…; jnÞ.
On the right-hand side of Eq. (95), Pi

Ga represents the contribu-
tion of species a to the generalized polarization vector density Pi

G
defined in Eq. (74) and it is written as

Pi
Ga �

dLGKa
dðELÞi

¼ �
X1
k¼1
rj1 � � � rj2k�1Q

j1���j2k�1i
0a þ

X1
m¼1

X1
n¼1
ð�1Þm�1

�ri1 � � � rim�1 vii1���im�1;j1���jna rj1 � � � rjn�1ðELÞjn
h i

: (97)

On the right-hand side of Eq. (96), Pij
CGLa is given in the

Chew–Goldberger–Low (CGL) form41

Pij
CGLa ¼

ð
d3v Fa mav

2
kb

ibj þ lBðgij � bibjÞ
h i

; (98)

and pij
�a is defined by

pij
�a �

ð
d3v Fmavk biðuxÞj? þ ðuxÞ

i
?b

j
h i

: (99)

Here, the perpendicular component of the gyrocenter velocity is repre-
sented by ðuaxÞi? � uiax � ukaxbkb

i. We find that Eqs. (98) and (99)
agree with those given by Eqs. (124) and (125) in Ref. 30 except for the
effects of the electrostatic fluctuations included in Fa and ðuaxÞi? on
the right-hand side of Eqs. (98) and (99). We also note that Eq. (99)
contains the product of the fluctuation parts of Fa and ðuaxÞi?, the
ensemble average of which does not disappear but contributes to
the turbulent momentum transport. In the neoclassical transport
theory,41,42 it is considered that the CGL pressure tensor shown in
Eq. (98) contains the scalar (or isotropic) part, which represents back-
ground pressure, and the anisotropic part, the magnitude of which is
smaller than the background pressure by the factor �q=L, where q
and L represent the gyroradius and the equilibrium gradient scale
length, respectively. The anisotropic part of the CGL pressure tensor
causes the viscous force, which plays an essential role in the neoclassi-
cal transport processes when the distribution function deviates from
the local Maxwellian under the influence of collisions.41,42 The magni-

tude of pij
�a defined in Eq. (99) is regarded as�ðq=LÞ2.

The last term on the right-hand side of Eq. (96) is given by

Pij
Wa
� �2

X
J

ð�1Þ#J
ð
d3v Faea

@Wa

@ð@J gijÞ
¼ Pij

E1a þ Pij
E2a; (100)

where Pij
E1a and P

ij
E2a are defined in Eqs. (C5) and (C8) of Appendix C,

respectively. We note that the effects of the turbulent electrostatic

potential are included in the definitions of Pij
Wa

explicitly as well as in

pij
�a through the turbulent drift velocity part of ðuaxÞi?. Then, the non-

linear interaction of the turbulent potential and the fluctuation part of

the gyrocenter distribution function included in Pij
Wa

and pij
�a causes

the turbulent momentum transport. In Appendix D, the ensemble-
averaged pressure tensor describing the turbulent momentum trans-
port is given by the WKB representation.

Performing further partial integrals in Eq. (88) finally gives

�dLGKa ¼
ð
V
d3x njJ

j
GKa þ B:T: ¼ 0; (101)

where

JjGKa �
@

@t
maN

ðgÞ
a Vagkb

j
	 


�
ð
d3vKamavkb

j

þea NðpÞa gjk
@/
@xk
þ 1

c
NðgÞa

@Aj

@t
� 1
c
�jklffiffiffi
g
p CakBl

 !
þriP

ij
a

(102)

and

NðgÞa Vagk �
ð
d3v Favk: (103)

In deriving Eq. (101)–(103), we have deformed Eq. (88) using Eqs.
(89), (91), (93), (94), �dAi ¼ �njð@jAiÞ � ð@injÞAj [see Eq. (B8)], �d/
¼ �njð@j/Þ [see Eq. (B3)], �dgij ¼ �rinj �rini [see Eq. (B10)], and

partial integration. In particular, the term riP
ij
a in Eq. (102) is derived

from the term ðdLGKa=dgijÞ�dgij, which is rewritten as ðdLGKa=
dgijÞ�dgij ¼ � 1

2P
ij
aðrinj þriniÞ ¼ njðriP

ij
aÞ �riðnjPij

aÞ, where Pij
a

¼ Pji
a is also used and the spatial integral of the last term riðnjPij

aÞ
becomes one of the boundary terms. We now recall that an arbitrary
infinitesimal vector field can be employed as ni. Then, in order for Eq.

(101) to hold for any ni, we need to have JjGKa ¼ 0; which gives the
momentum balance equation as

@

@t
maN

ðgÞ
a Vagkb

j
	 


�
ð
d3vKamavkb

j

¼ ea �NðpÞa gjk
@/
@xk
�1
c
NðgÞa

@Aj

@t
þ1
c
�jklffiffiffi
g
p CakBl

 !
�riP

ij
a : (104)

As seen in Eqs. (126) and (152) of Ref. 30, the relation between the
symmetric and canonical pressure tensors is obtained from the other
condition for the sum of the boundary terms (B.T.) in Eq. (101) to
vanish although its complicated expression is not shown here. We see
that the inertia term in the momentum balance equation, Eq. (104),
contains only the parallel momentum component while the electric
current eaC

k
a in the Lorentz force term consists of the guiding-center

current and the magnetization current as shown in Eq. (92) [see also
Eq. (114)]. For comparison with Eq. (104), the canonical momentum
balance equation derived by the conventional method is shown in
Eq. (E5) of Appendix E where the divergence of the asymmetric
canonical pressure tensor appears. In addition, the energy balance
equation for the single-species gyrokinetic system is given in Eq. (F2)
of Appendix F.
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C. Derivation of the momentum balance for the
whole system

In the same way as in deriving Eq. (88), performing partial inte-
grals in Eq. (86) and using Eqs. (89), we have

�dLGKF ¼
ð
V
d3x ni

X
a

ð
d3v

@

@t
Fa
@LGYa
@uiax

� �
�Ka

@LGYa
@uiax

 �"

þ dLGKF
dAi

�dAi þ
dLGKF
d/

�d/þ dLGKF
dgij

�dgij

�
þ B:T: (105)

Now, substituting Eq. (91) into dLGKF=dAi ¼
P

a dLGKa=dAi and
using the gyrokinetic Poisson’s equation, dLGKF=d/ ¼ 0, and Eq. (94),
Eq. (105) is finally rewritten as

�dLGKF ¼
ð
V
d3x njJ

j
GKF þ B:T: ¼ 0; (106)

where

JjGKF �
X
a

@

@t
maN

ðgÞ
a Vagkb

j
	 


�
ð
d3vKamavkb

j

� �

þ
X
a

ea
c

NðgÞa
@Aj

@t
� �jklffiffiffi

g
p CakBl

 !
þriH

ij: (107)

Here, the symmetric pressure tensor Hij is defined by

Hij� 2
dLGKF
dgij

� 2
X
J

ð�1Þ#J
ð
d3vFa

@LGYa
@ð@J gijÞ

þ@LF
@gij

" #

¼Pij
CGLþpij

� þPij
Wþ

ffiffiffi
g
p

4p
ðELÞkðELÞk

2
gij�ðELÞiðELÞj

� �
; (108)

where the last group of terms including ðELÞi represents the Maxwell
stress tensor due to the electrostatic field with the opposite sign.
Taking the summation of Eqs. (98), (99), and (100) over species
defines Pij

CGL; pij
� , and P

ij
W on the right-hand side of Eq. (108) as

Pij
CGL ¼

X
a

ð
d3v Fa mav

2
kb

ibj þ lBðgij � bibjÞ
h i

; (109)

pij
� �

X
a

ð
d3v Famavk biðuaxÞj? þ ðuaxÞ

i
?b

j
h i

; (110)

and

Pij
W �

X
a

Pij
Wa
¼
X
a

ðPij
E1a þ Pij

E2aÞ; (111)

respectively. As mentioned after Eq. (100) as well as in Appendix F,
the turbulent momentum transport caused by the nonlinear interac-
tion of the turbulent potential and the fluctuation part of the gyrocen-
ter distribution function is included in pij

� and Pij
W.

From Eqs. (106) and (107), we obtain JjDKF ¼ 0, which represents
the momentum balance equation for the whole system,

@

@t

X
a

ð
d3v Famavkb

j

 !
�
X
a

ð
d3vKamavkb

j þriH
ij

¼
X
a

ea
c
�NðgÞa

@Aj

@t
þ �jklffiffiffi

g
p CakBl

 !
: (112)

For comparison with Eq. (112), the canonical momentum balance
equation derived by the conventional method is shown in Eq. (E11) of
Appendix E where the divergence of the asymmetric pressure tensor
appears. The condition for the sum of the boundary terms (B.T.) in
Eq. (106) to vanish results in a complicated expression, which is not
shown here while it gives the relation between the symmetric pres-
sure tensor Hij and the asymmetric canonical pressure tensor in Eq.
(E11). Here, using Eq. (92), the electric current density can be writ-
ten as

Jk �
X
a

eaC
k
a ¼

X
a

ea

ð
d3v Fau

k
ax þ c �kij

@Mj

@xi
; (113)

where the covariant components of the magnetization vector are
defined by

Mj �
X
a

ð
d3v

Faffiffiffi
g
p �lbj þ

mavk
B

ðuaxÞj � ðuaxÞibibj
n o

� ea
@Wa

@Bj

� �
:

(114)

Using Eqs. (89) and (90), we have

@qðgÞ

@t
þ @J

i

@xi
¼ 0; (115)

where qðgÞ is defined in Eq. (46). Combining Eq. (72) and (115), we
obtain

JiL þ
1
4p

@
ffiffiffi
g
p

Di
L

� �
@t

¼ 0; (116)

where the subscript L represents the longitudinal part. It should be
noted that the polarization current 4p@Pi

G=@t is included not in Ji but
in @

ffiffiffi
g
p

Di
� �

=@t.
It can be shown by performing further vector calculations that

Eq. (112) is rewritten as

@

@t

X
a

ð
d3v Famavkbþ

1
4pc
ðDL � BÞ

 !

þr � PCGL þ p� þ PWð Þ þ r jELj2

8p
þ ET �DL

4p

� �

�r � ELEL þDLET þ ETDL

4p

� �
þr B2

8p

� �
�r � BB

4p

� �

¼
X
a

ð
d3vKamavkbþ

r� B
4p

� JT
c

� �
� B; (117)

where the Cartesian spatial coordinates are used and three-
dimensional vectors are represented in terms of boldface letters. The
longitudinal part of the electric displacement vector defined in
Eq. (73) is represented byDL. The longitudinal part of the electric field
is written as EL � �r/, while ET � �c�1@A=@t gives the transverse
part under the Coulomb gauge condition r � A ¼ 0. We see that the
time derivative of the momentum density ðDL � BÞ=ð4pcÞ due to the
electromagnetic field and the spatial divergences of the pressure ten-
sors produced by both the electric and magnetic fields (the opposite
sign of the Maxwell stress tensor) appear in the momentum balance
equation in Eq. (117) where the effects of the polarization PG [see
Eq. (74)] are included throughDL.
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Here, recall that Faðx; v; tÞ represents the gyrocenter distribution
function of the gyrocenter (not particle) position coordinates
x � ðxiÞi¼1;2;3; v � ðviÞi¼1;2;3 � ðvk; l; #Þ and time t [see descrip-
tions after Eq. (18)]. Then, from typical gyrokinetic codes using the
gyrocenter position coordinates as independent variables for distribu-
tion functions, we can directly evaluate the term

Ð
d3v Famavkb

�
Ð1
�1 dvk

Ð1
0 dl

Ð 2p
0 d# Faðx; vk;l; #Þmavkbðx; tÞ in Eq. (117), for

which we do not need to specify the transformation from the gyrocen-
ter position coordinates to the particle coordinates. As explained at the
end of Sec. IIIC, the difference between the gyrocenter and particle
positions is taken into account in Eq. (117) through the terms related
to the polarization due to the effects of the finite gyroradius and the
electrostatic fluctuation. Such polarization terms also appear in the
energy balance equations as seen in Eqs. (F7) and (F8) in Appendix F.

When the polarization PG is eliminated from Eq. (117), the terms
including the electric field are given by @½ðEL � BÞ=ð4pcÞ�=@t and
r½jELj2=ð8pÞþ ðET �ELÞ=ð4pÞ��r� ½ðELELþELET þETELÞ=ð4pÞ�,
which are verified to be the same as given in the momentum conserva-
tion law for the Vlasov–Poisson–Ampère (or Vlasov–Darwin) system
[see Eq. (32) of Ref. 39]. In the case using the quasineutrality condition
and the self-consistent magnetic field given by r�B¼ ð4p=cÞJ
(J¼ JT from r� J¼ 0 due to the quasineutrality) as well as removing
polarization effects and Ka, we find that ðDL�BÞ=ð4pcÞ and the part
of the pressure tensor caused by the electric field disappear from Eq.
(117) and that Eq. (117) agrees with the momentum conservation law
for the drift kinetic system shown in Eq. (151) of Ref. 30.

The energy balance equation for the whole system is derived in
Appendix F [see Eqs. (F7) and (F8)] where, in the same way as seen in
Eq. (117), we can confirm the consistency of the derived energy bal-
ance with the energy conservation laws obtained for the
Vlasov–Poisson–Ampère (or Vlasov–Darwin) system39 and the drift
kinetic sytem.30

We note that, if the Lagrangian LGKF for the gyrokinetic system
defined by Eqs. (17) and (18) is modified to LGKF
 � LGKF
�
Ð
Vd

3x
ffiffiffi
g
p

B2=ð8pÞ, the variational equation dLGKF
=dA ¼ 0 yields
r� B ¼ ð4p=cÞJT , which makes Eq. (117) take the form of the total
momentum conservation law in the case of

P
a

Ð
d3vKamavk ¼ 0.

Nevertheless, in the gyrokinetic turbulent system, this condition is not
generally imposed on the given equilibrium magnetic field B. It is
because B is considered not to contain the fluctuation part while JT
can have fluctuations. However, when the background magnetic field
satisfies spatial translation, rotation, or helical symmetry and the effect
ofKa is neglected, the local conservation law of the canonical momen-
tum in the direction of symmetry can be derived from �dLGKF ¼ 0
with Eq. (105) as shown in Appendix G.

V. CONCLUSIONS

In this paper, the governing equations of the gyrokinetic system
with electrostatic turbulence are derived in the general spatial coordi-
nates based on the Eulerian variational principle. The local momen-
tum balance equation for each particle species and that for the whole
system, which the gyrocenter distribution functions and the potential
field satisfy, are obtained from the invariance of the Lagrangians of
these systems under arbitrary spatial coordinate transformations.

It is shown that, when the background magnetic field satisfies the
consistency condition that its rotation is given by the solenoidal part
of the current density as in the Darwin model, the momentum and

energy balance equations for the whole system are rewritten in the
complete conservative forms where contributions of the turbulent elec-
tric field and the background magnetic field are clearly given in the
expressions of the momentum and energy densities, the pressure ten-
sor, and the energy flux. The effects of the collision and/or external
source terms added into the gyrokinetic equation on the momentum
and energy balance equations are clarified as well.

The symmetric pressure tensor is directly obtained by the varia-
tional derivative of the Lagrangian with respect to the metric tensor
components and it is shown to contain the CGL part representing the
neoclassical viscosity as well as the turbulent momentum transport
part, the ensemble average of which is confirmed to agree with the pre-
vious result obtained from the gyrokinetic theory using the WKB
representation.

The representation in terms of the general spatial coordinates is
useful in treating complex toroidal plasmas in suitable coordinates
such as the flux coordinates. The momentum and energy balance
equations obtained here are applicable as a reference for verification of
long-time global gyrokinetic simulations based on the Lagrangian and
Hamiltonian formulations to study neoclassical and turbulent trans-
port in plasmas with external sources. It may seem troublesome for
global simulation codes to treat the finite gyroradius effect represented
by the infinite series expansions appearing in Eq. (27) and other places.
However, for those simulations in which the expansions are truncated
or approximated by other simpler expressions such that the
Lagrangian corresponding to the reduced model given by the trunca-
tion or approximation is clearly defined, the same technique as shown
in this work can be applied to that Lagrangian to derive the local
energy and momentum balance equations, which can be compared
with those simulation results. Such applications of the present work to
the global simulations based on the reduced gyrokinetic model are
considered as future works. For comparison with local flux tube gyro-
kinetic simulations53–57 treating the full finite gyroradius effect, useful
information such as expressions of local turbulent momentum trans-
port can be obtained from this work using the WKB approximation as
shown in Appendix D. The extension of the present work to the case
with magnetic microturbulence also remains as a future study.
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APPENDIX A: COVARIANT DERIVATIVES AND
CHRISTOFFEL SYMBOLS

This appendix briefly describes definitions of covariant deriva-
tives and Christoffel symbols, which are used in the main text of the
present paper. In the general spatial coordinates x ¼ ðxiÞi¼1;2;3, the
components riS (i¼ 1, 2, 3) of the covariant derivative of an arbi-
trary scalar field S(x) is given by

riS ¼
@S
@xi

; (A1)

while those of the covariant derivatives of arbitrary contravariant
and covariant vector fields, Vj and Wj (j¼ 1, 2, 3), are written as
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riV
j ¼ @V

j

@xi
þ Cj

ikV
k (A2)

and

riWj ¼
@Wj

@xi
� Ck

ijWk; (A3)

respectively. Here, the Christoffel symbols Ck
ij ði; j; k ¼ 1; 2; 3Þ are

defined by58

Ck
ijðxÞ � gklðxÞCl;ijðxÞ

� 1
2
gklðxÞ @gjlðxÞ

@xi
þ @gliðxÞ

@xj
� @gijðxÞ

@xl

� �
: (A4)

The covariant and contravariant components of the metric tensor
are denoted by gij and gij, respectively, and they satisfy

gikgkj ¼ dij; (A5)

where dij represents the Kronecker delta defined by

dij �
1 ði ¼ jÞ
0 ði 6¼ jÞ:

(
(A6)

In general, the components of the covariant derivative of an
arbitrary mixed tensor field Tj1���jr

k1���ks of type (r, s) are defined by

riT
j1���jr
k1���ks ¼

@Tj1���jr
k1���ks
@xi

þ Cj1
il T

lj2���jr
k1���ks þ � � � þ Cjr

il T
j1���jr�1 l
k1���ks

�Cl
ik1T

j1���jr
lk2���ks � � � � � Cl

iksT
j1���jr
k1���ks�1 l: (A7)

Here, it is also noted that the covariant derivatives of gjk, g
jk, and

g � detðgijÞ all vanish,

rigjk ¼ 0;rig
jk ¼ 0; and rig ¼ 0: (A8)

We also note that when the covariant derivatives act on arbitrary
tensors, the commutative property,

rirj ¼ rjri; (A9)

holds for the case of the present paper where the considered real
space is a flat one with no Riemann curvature.

APPENDIX B: VARIATIONS IN THE FUNCTIONAL
FORMS OF VECTOR AND TENSOR FIELDS UNDER
THE INFINITESIMAL TRANSFORMATION OF
SPATIAL COORDINATES

It is shown in this appendix how to represent variations in the
functional forms of vector and tensor fields under the infinitesimal
spatial coordinate transformation. The infinitesimal transformation
from x ¼ ðxiÞi¼1;2;3 to x0 ¼ ðx0iÞi¼1;2;3 is given by Eq. (78) with the
infinitesimal variation niðxÞ in the spatial coordinate xi. Here,
ðniðxÞÞi¼1;2;3 can be regarded as components of a vector field nðxÞ.

We first consider a scalar field S(x), which is invariant under
the spatial coordinate transformation,

S0ðx0Þ ¼ SðxÞ; (B1)

and define the variation �dS in the functional form of a scalar field
S(x) under the infinitesimal spatial coordinate transformation by

�dSðxÞ � S0ðxÞ � SðxÞ: (B2)

Note that the spatial arguments of S0 and S are the same as each
other on the right-hand side of Eq. (B2), while they are different in
Eq. (B1). Next, substituting S0ðx0Þ ’ S0ðxÞ þ niðxÞ@S0ðxÞ=@xi
’ S0ðx; tÞ þ niðxÞ@SðxÞ=@xi into Eq. (B1) and using Eq. (B2), we
obtain

�dSðxÞ ¼ �niðxÞ @SðxÞ
@xi

� �ðLnSÞðxÞ; (B3)

where Ln denotes the Lie derivative
52 with respect to the vector field

n with the components ðniÞ.
Under the general spatial coordinate transformation, the com-

ponents of a contravariant vector field ViðxÞ are transformed as

V 0iðx0Þ ¼ @x
0i

@xj
VjðxÞ: (B4)

In the same way as in Eq. (B2), we define the variation �dViðxÞ in
the functional form of ViðxÞ under the infinitesimal spatial coordi-
nate transformation by

�dViðxÞ � V 0iðxÞ � ViðxÞ: (B5)

Substituting the formulas V 0iðx0Þ ’ V 0iðx; tÞ þ njðxÞ@ViðxÞ=@xj
and @x0i=@xj ’ dij þ @n

iðxÞ=@xj into Eq. (B4) and using Eq. (B5),
we obtain

�dViðxÞ ¼ �njðxÞ @V
iðxÞ
@xj

þ @n
iðxÞ
@xj

VjðxÞ

� �ðLnV
iÞðxÞ; (B6)

where we see that the Lie derivative Ln can be used again to repre-
sent �dViðxÞ. The components of a covariant vector field WiðxÞ are
transformed as

W 0
iðx0Þ ¼

@xj

@x0i
WjðxÞ: (B7)

Next, following the procedure similar to those used in deriving Eqs.
(B3) and (B6), the variation in the functional form of WiðxÞ under
the infinitesimal spatial coordinate transformation is derived as

�dWiðxÞ ¼ �ðLnWiÞðxÞ ¼ �nj
@Wi

@xj
� @n

j

@xi
Wj: (B8)

It is shown in the same way as shown above that the variation
in the functional form of a mixed tensor field Tj1���jr

k1���ksðxÞ is given by
the opposite sign of its Lie derivative as

�dTj1���jr
k1���ksðxÞ ¼ �ðLnT

j1���jr
k1���ksÞðxÞ

¼ �ni
@Tj1���jr

k1���ks
@xi

þ @n
j1

@xl
Tlj2���jr
k1���ks þ � � � þ

@njr

@xl
Tj1���jr�1 l
k1���ks

� @nl

@xk1
Tj1���jr
lk2���ks � � � � �

@nl

@xks
Tj1���jr
k1���ks�1 l: (B9)

It is also shown that the variations in the functional forms of gij and
gij under the infinitesimal spatial coordinate transformation are
expressed as
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�dgij ¼ �Lngij ¼ �nk
@gij
@xk
� @n

k

@xi
gkj �

@nk

@xj
gik

¼ �rinj �rjni;

�dgij ¼ �Lng
ij ¼ �nk

@gij

@xk
þ @n

i

@xk
gkj þ @nj

@xk
gik

¼ rinj þrjni: (B10)

We now apply the chain rule to the derivative operation �d
¼ �Ln on

ffiffiffi
g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

p
and use Eqs. (A8) and (B10) to obtain

�d
ffiffiffi
g
p ¼ �Ln

ffiffiffi
g
p ¼

�dg
2
ffiffiffi
g
p ¼

ffiffiffi
g
p

2
gij�dgij

¼ � ffiffiffi
g
p

gijrinj ¼ �
ffiffiffi
g
p rin

i ¼ �
@

ffiffiffi
g
p

ni
	 

@xi

: (B11)

We here note that an arbitrary scalar density S is transformed in
the same manner as

ffiffiffi
g
p

under arbitrary spatial coordinate
transformations,

S0ðx0Þ ¼ det
@xi

@x0j

� �����
����SðxÞ; (B12)

and that SðxÞ= ffiffiffi
g
p ðxÞ is regarded as a scalar field. Then, the varia-

tion �dSðxÞ in the functional form of SðxÞ under the infinitesimal
spatial coordinate transformation is given by

�dSðxÞ ¼ �ðLnSÞðxÞ ¼ �d
ffiffiffi
g
p� � Sffiffiffi

g
p þ ffiffiffi

g
p �d

Sffiffiffi
g
p

 !

¼ �
@

ffiffiffi
g
p

ni
	 

@xi

Sffiffiffi
g
p � ffiffiffi

g
p

ni
@

@xi
Sffiffiffi
g
p
 !

¼ � @ðn
iSÞ

@xi
: (B13)

Since the distribution function Fðx; v; tÞ behaves as a scalar density
under arbitrary spatial coordinate transformations, the variation �dF
in its spatial functional form due to the infinitesimal spatial coordi-
nate transformation is written using Eq. (B13) as

�dF ¼ �LnF ¼ �
@

@xj
ðFnjÞ: (B14)

Note that uiax are the contravariant components of the gyro-
center velocity vector field, while uavk , ual, and ua#, which represent
the temporal change rates of the parallel velocity, magnetic
moment, and gyrophase, respectively, behave as scalar fields under
arbitrary spatial coordinate transformations. Then, we find from
Eqs. (B6) and (B3) that the variations in the functional forms of
uiax; uavk , ual, and ua# under the infinitesimal spatial coordinate
transformation are given by

�duiax ¼ �Lnu
i
ax � �nj

@uiax
@xj
þ ujax

@ni

@xj
;

�duavk ¼ �Lnuavk � �nj
@uavk
@xj

;

�dual ¼ �Lnual � �nj
@ual
@xj

;

�dua# ¼ �Lnua# � �nj
@ua#
@xj

: (B15)

It is also useful to know that even though the Christoffel sym-
bols are not regarded as tensor components, their derivatives with

respect to �d can be defined by the variations in their functional
forms under the infinitesimal spatial coordinate transformation and
written as

�dCk
ij ¼

gkn

2
ri

�dgnj þrj
�dgni �rn

�dgij
� �

: (B16)

Equation (B16) can be derived from Eqs. (A4), (A7), (B10), and the
commutative property,

@

@xi
�d ¼ �d

@

@xi
: (B17)

APPENDIX C: VARIATIONAL DERIVATIVE WITH
RESPECT TO METRIC TENSOR COMPONENTS

We here consider the parts of the Lagrangian including the
polarization effects denoted by LE1a and LE2a,

LE1a; LE2a½ � �
ð
V
d3x LE1a;LE2a½ �; (C1)

where the LE1a and LE2a defined in Eqs. (40) and (41) appear due
to finite gyroradius for species a and they are given, respectively, in
the linear and quadratic forms of the longitudinal electrostatic field
and its spatial gradients. For the purpose of deriving the pressure
tensor Pij

Wa due to electrostatic gyrokinetic turbulence, we need to
evaluate the variational derivatives of LE1a and LE2a with respect to
the metric tensor components gij. It should be noted here that par-
tial derivatives with respect to gij need to be carefully performed
because 3� 3 metric tensor components gij are not completely inde-
pendent of each other due to the constraint gij ¼ gji. Here, for an
arbitrary function f of gij, the notation @f =@gij is defined such that
the infinitesimal variations dgij in gij give rise to the variation
df ¼ ð@f =@gijÞdgij in f where both dgij and @f =@gij must be
symmetric under exchange of the indices i and j.38 For example, we
have @gkl=@gij ¼ 1

2 ðd
i
kd

j
l þ djkd

i
lÞ according to the above-mentioned

definition. In the same manner, derivatives with respective to
@gij=@xk are defined taking into account the symmetry under
exchange of the indices i and j.

The variation in LE1a caused by the variation in the metric ten-
sor with keeping the gyrocenter distribution function Fa fixed in
LE1a is written as

ðdgLE1aÞF �
d
d�

LE1a gij þ �dgij
� �����

�¼0

 !
F

¼
ð
V
d3x ðdgLE1aÞF

¼
ð
V
d3x

X1
k¼1
ðdgQj1���j2k

0a ÞFrj1 � � � rj2k�1ðELÞj2k
h

þ Qj1���j2k
0a dgðrj1 � � � rj2k�1ðELÞj2kÞ

i

¼
ð
V
d3x

dLE1a
dgij

 !
F

dgij þ B:T:; (C2)

where integration by parts is repeatedly performed to finally derive
ðdLE1a=dgijÞF . Here, ð� � �ÞF implies that the gyrocenter function Fa is
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fixed when taking the variation with respect to the metric tensor.
From Eqs. (A7), we have

dgðrj1 � � � rjn�1ðELÞjnÞ

¼
Xn�1
l¼1
rj1 � � � rjl�1ðdgrjl Þrjlþ1 � � � rjn�1ðELÞjn ; (C3)

where

ðdgrjl Þrjlþ1 � � � rjn�1ðELÞjn
� �ðn� lÞðdgCp

jl jnÞrjlþ1 � � � rjn�1ðELÞp

¼ �ðn� lÞ g
pq

2
ðrjldgjnq þrjndgjlq �rqdgjl jnÞ

� rjlþ1 � � � rjn�1ðELÞp: (C4)

We note that, in Eq. (C4), dgC
p
jl jn is expressed in the same form as

in Eq. (B16). Now, the pressure tensor Pij
E1a is given by two times of

ðdLE1a=dgijÞF as

Pij
E1a � 2

dLE1a
dgij

 !
F

¼
X1
k¼1

2
@Qj1���j2k

0a

@gij

 !
F

rj1 � � � rj2k�1ðELÞj2k

2
4

þ
X2k�1
l¼1
ð�1Þl�1ð2k� lÞ ðdij2k g

jp þ djj2k g
ipÞrjl�dijld

j
j2kr

p
n o

� ðrj1 � � � rjl�1Q
j1���j2k
0a Þðrjlþ1 � � � rj2k�1ðELÞpÞ

n o#
; (C5)

where Eqs. (C2)–(C4) are used and ð@Qj1���j2k
0a =@gijÞF is given by

using Eq. (42) and

@aj1���j2ka

@gmn
¼ k

hmn

2
aj1���j2ka þ 1

ðk!Þ2
q
2

� �2k
"

�
X

r2S2k

@hjrð1Þjrð2Þ

@gmn
hjrð3Þ jrð4Þ � � � hjrð2k�1Þ jrð2kÞ

#
: (C6)

Next, the variation in LE2a caused by the variation in the met-
ric tensor with keeping the gyrocenter distribution function Fa fixed
is written as

ðdgLE2aÞF ¼
ð
V
d3x ðdgLE2aÞF

¼
ð
V
d3x

X1
m¼1

X1
n¼1

1
2
ðdgvi1���im;j1���jnÞFri1 � � � rim�1ðELÞim

�

�rj1 � � � rjn�1ðELÞjn þ Qj1���jn
Ea dgðrj1 � � � rjn�1ðELÞjnÞ

¼
ð
V
d3x

dLE2a
dgij

 !
F

dgij þ B:T: (C7)

Then, using Eqs. (C3), (C4), and (C7), we obtain the pressure tensor

Pij
E2a, which is given by two times of ðdLE2a=dgijÞF as

Pij
E2a � 2

dLE2a
dgij

 !
F

¼
X1
m¼1

X1
n¼1

"
@vi1���im;j1���jn

a

@gij

 !
F

ðri1 � � �rim�1ðELÞimÞ

�ðrj1 � � �rjn�1ðELÞjnÞ

þ
Xn�1
l¼1
ð�1Þl�1ðn� lÞ ðdijn g

jp þ djjn g
ipÞrjl�dijld

j
jnr

k
n o

� ðrj1 � � �rjl�1Q
j1���jn
Ea Þðrjlþ1 � � �rjn�1ðELÞpÞ

n o#
; (C8)

where ð@vi1���im ;j1���jn
a =@gijÞF is given by using Eqs. (15), (44), (C6), and

@

@gij

1
B

� �
¼ � 1

B2

@B
@gij
¼ hij

2B
: (C9)

APPENDIX D: WKB REPRESENTATION

Here, we use the WKB (or ballooning) representation49 for
turbulent fluctuations, which have small wavelengths of the order of
the gyroradius q in the directions perpendicular to the background
magnetic field. Such rapid spatial variations are represented using
the perpendicular wavenumber vector k?. We assume that k?q
¼ Oð1Þ and q=L� 1, where L is the gradient scale length of equi-
librium variables.

The gyrocenter distribution function Fa for species a is given
by the sum of the zeroth and first-order parts in q=L as Faðx; vÞ
¼ Fa0 þ Fa1 þ F̂ a1, where the zeroth-order part Fa0 is the local
Maxwellian equilibrium distribution function, and the first-order
part representing the deviation from the local Maxwellian consists
of the non-turbulent and turbulent functions denoted by Fa1 and
F̂ a1, respectively. Then, the turbulent gyrocenter distribution func-
tion F̂ a1 is expanded as F̂ a1 ¼

P
k?

F̂ a1k? exp ðik? � xÞ, where x is
the gyrocenter position vector and the k?-component Fa1k? is given
by the sum of the adiabatic and nonadiabatic parts as59

F̂ a1k? ¼ �Fa0
ea
Ta

J0ðk?qaÞ/̂k? þ ĥak? : (D1)

Here, /̂k? and ĥak? are the k?-components of the turbulent electro-
static potential and the nonadiabatic part of the turbulent distribu-
tion function, respectively, J0 is the zeroth-order Bessel function,
and Ta is the background temperature of the species a.

We now follow the conventional assumption that hF̂ k?iens
¼ 0 and hF̂ F̂ 0iens ¼

P
k?
hF̂ 
k?F̂

0
k?
iens are satisfied by arbitrary

real-valued turbulent fluctuations F̂ and F̂ 0, where ð� � �Þ
 and
h� � �iens represent the complex conjugate and the ensemble average,
respectively. Note that the ensemble-averaged quantities are smooth
spatial functions with the gradient scale length L and that

hF̂ 
k? F̂
0
k0?
iens ¼ 0 for k? 6¼ k0?. When taking the ensemble average

of the momentum balance equation in Eq. (117), we find that the
effects of the turbulent fluctuations on the momentum transport
are included in hp� iens and hPWiens through the correlation
between the nonadiabatic part of the turbulent distribution function
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and the turbulent electrostatic potential, which are described by

hĥ
ak? /̂k?iens. Neglecting terms of higher orders in q=L, we find that
the turbulent contribution hp�Wiens to hp� iens is given by

hp�Wiens ¼
c
B

X
k?

bðk? � bÞ þ ðk? � bÞb½ �

�
X
a

ð
d3vmavkJ0ðk?qaÞIm hĥ



ak? /̂k?iens

h i
; (D2)

and hPWiens is written as

hPWiens ¼
X
k?

1
2
ðI� bbÞ � k?k?

k2?

� �X
a

ea

�
ð
d3v k?qa J1ðk?qaÞRe hĥ



ak? /̂k?iens

h i
; (D3)

where I denotes the unit tensor.
We now consider the axisymmetric toroidal system, in which

the magnetic field is given by

B ¼ Irfþrf�rv; (D4)

where f, I, and v represent the toroidal angle, the covariant toroidal
magnetic field component, and the poloidal flux function, respec-
tively. Then, using ðk? � bÞ � rv ¼ �BR2rf � k?, the radial trans-
port of the toroidal angular momentum due to the turbulent
electric field is obtained from Eqs. (D2) and (D3) as

rv � hp�W þ PWiens � R2rf

¼ �
X
a

X
k?

ð
d3v

cI
B
mavkJ0ðk?qaÞIm hĥ



ak? /̂k?iens

h i�

� ðk? � R2rfÞ þ eak?qa J1ðk?qaÞRe hĥ


ak? /̂k?iens

h i
�ðk? � rvÞðk? � R2rfÞ

k2?

�
: (D5)

The flux-surface average of Eq. (D5) agrees with the electrostatic
and low-flow ordering limit of the result given in Eq. (53) of Ref. 24
where the turbulent radial transport of the toroidal angular momen-
tum double-averaged over the ensemble and the flux surface is pre-
sented for the general case allowing the turbulent magnetic field
and the high-flow ordering.28,29,60 It should be emphasized here
that Eq. (D5) is not surface-averaged but it presents the spatially
local expression. In the axisymmetric configuration with up-down
symmetry, the flux-surface average of Eq. (D5) is shown to vanish
in the case of the low-flow ordering27,61 although it does not imply
that the local value of Eq. (D5) itself vanishes as well.

APPENDIX E: ANOTHER DERIVATION OF THE
MOMENTUM BALANCE

In Sec. IV, the momentum balance is derived using the invariance
of the Lagrangian of the system under the infinitesimal spatial coordinate
transformation induced by the vector field niðxÞ, which has an arbitrary
functional form. For comparison with that derivation, another derivation
of the momentum balance is given in this appendix in the way closer to
the conventional derivation of the canonical momentum conservation
law, which generally involves the asymmetric canonical pressure tensor.

Equation (83) for the invariance of the gyrokinetic Lagrangian
LGKa of species a can be rewritten without separating boundary
terms from the spatial integral as

�dLGKa ¼
ð
V
d3x JGKa ¼ 0; (E1)

where

JGKa¼
ð
V
d3x
ð
d3vFa ni

@LGYa
@xi
þ@LGYa
@uiax

�duiax

�

þ@LGYa
@uia#

�duia#þð�dLGYaÞu
�

¼ ni
ð
d3v

@

@t
Fapaið Þ�Kapaiþ

@

@xj
Fau

j
axpai

� �
�Fa

@LGYa
@xi

� �
u

" #
:

(E2)

Here, pai � @LGYa=@uiax is the canonical momentum [see Eq. (57)]
and

ð�dLGYaÞu � ð�dpajÞujax � �dHGYa

¼ � ni
@paj
@xi
þ @n

i

@xj
pai

� �
ujax þ ni

@HGYa

@xi

¼ �ni
@LGYa
@xi

� �
u
� @n

i

@xj
paiu

j
ax (E3)

represents the variation in the functional form of the single gyro-
center Lagrangian LGY a under the infinitesimal spatial coordinate
transformation with ðuix; u#Þ kept fixed in LGYa. The term
ð@LGYa=@xiÞu in Eq. (E3) is written down as

@LGYa
@xi

� �
u
� ujax

@paj
@xi
� l

@B
@xi
� ea

@Wa

@xi
: (E4)

Equations (56), (89), (B15), and (E3) are used for deriving Eq. (E2).
Since Eq. (E1) holds for an arbitrary spatial integral domain V, we
find JGKa ¼ 0 for any ni. Then, the canonical momentum balance
equation for the gyrocenters of species a is derived from Eq. (E2) as

@

@t

ð
d3v Fapai

� �
þ @

@xj

ð
d3v Famau

j
axpai

� �

¼
ð
d3vKapai þ

ð
d3v Fa

@LGYa
@xi

� �
u
: (E5)

Equation (E5) also can be derived directly from multiplying
Eq. (89) by pai, taking its v-space integral, and using Eq. (56). It
should be recalled that the general spatial coordinates ðxiÞi¼1;2;3 are
used here. For example, when ðxiÞi¼1;2;3 represent the Cartesian
coordinates (x, y, z), Eq. (E5) represents the linear canonical
momentum balance. As another interesting example, we can treat
the canonical angular momentum balance in toroidal plasmas such
as tokamaks and stellarator/heliotron devices, for which it is conve-
nient to use the cylindrical coordinates and/or the magnetic flux
coordinates. In these coordinate systems, the toroidal angle compo-
nent of Eq. (E5) represents the toroidal angular momentum
balance. It is also noted that the momentum balance equations
shown in Eqs. (104) and (E5) are equivalent to each other although
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the transformation from Eq. (E5) to Eq. (104) requires complicated
procedures involving an infinite number of times of partial
integration.

We next consider the invariance of the Lagrangian LGKF of the
whole system under the infinitesimal spatial coordinate transforma-
tion shown in Eq. (86). In contrast to Eq. (105), we now rewrite Eq.
(86) without separating boundary terms from the spatial integral as

�dLGKF ¼
ð
V
d3x JGKF ¼ 0; (E6)

with

JGKF ¼
X
a

ð
d3v ni

@

@t
Fapaið Þ � Kapai

 �
þ @

@xj
niFau

j
axpai

� �� �

þJGKFA þ JGKFg þ JGKF/

¼ 0; (E7)

where Eqs. (56), (72), (89), and (B15) are used. Here, JGKFA and
JGKFg originate from the terms including �dAj and �dgij in Eq. (86),
respectively, and they are written as

JGKFA �
1
c
Jj�dAj þ

@

@xj
�jklMl

�dAk

� �
¼ �

ffiffiffi
g
p

c
�ijkn

iJ jBk � 1
c
Jj
@ðniAiÞ
@xj

��jkl @
@xj

Ml ni
@Ak

@xi
þ @n

i

@xk
Ai

� �� �

¼ �
ffiffiffi
g
p

c
�ijkn

iJ jBk � 1
c
Jj � �jkl @M

l

@xk

� �
@ðniAiÞ
@xj

��jkl�ikm
@

@xj
ffiffiffi
g
p

niMlB
m

	 


¼ �
ffiffiffi
g
p

c
�ijkn

iJ jBk �
X
a

ea
c

ð
d3v Fau

j
ax

 !
@ðniAiÞ
@xj

� @

@xi
ffiffiffi
g
p

niMjB
j

	 

þ @

@xj
ffiffiffi
g
p

niMiB
j

	 

(E8)

and

JGKFg �
X
a

ð
d3v Fa

X
J

@LGYa
@ð@J gijÞ

�dð@J gijÞ þ
@LF
@gij

�dgij: (E9)

The last term JGKF/ included in Eq. (E7) is given in terms of the tur-
bulent electrostatic field as

JGKF/ ¼
@ðniLFÞ
@xi

þ
X1
n¼1

Xn
k¼1
ð�1Þk @

@xjk
@n�kðni@/=@xiÞ
@xjkþ1 � � � @xjn

�

� @k�1

@xj1 � � � @xjk�1
@LGKF

@ð@n/=@xj1 � � � @xjnÞ

� ��
: (E10)

Here, because of the symmetry with respect to permutations of the
indices j1;…; jn, the variables @n/=@xj1 � � � @xjn ½� �@nðELÞjn=
@xj1 � � � @xjn�1 � are not regarded as completely independent variables
and the meaning of the expression @LGKF=@ð@n/=@xj1 � � � @xjnÞ in
Eq. (E10) needs to be clearly mentioned. It is defined such that the
infinitesimal variations dð@n/=@xj1 � � � @xjnÞ give rise to the

variation dLGKF¼½@LGKF=@ð@n/=@xj1 ���@xjnÞ�dð@n/=@xj1 ���@xjnÞ,
where @LGKF=@ð@n/=@xj1 ���@xjnÞ must be symmetric with respect
to arbitrary permutations of the indices j1;…;jn.

We now suppose that ni represents a Killing vector field or a
vector field, which generates an isometric transformation so that
�dgij ¼ �Lngij ¼ 0, �dð@J gijÞ ¼ @Jð�dgijÞ ¼ 0 and, accordingly,
JGKFg ¼ 0. The isometry is generated by the infinitesimal linear
translation and the infinitesimal rotation, and they are represented
by the Killing vector fields, n ¼ �n and n ¼ �n� r, respectively,
where � is an infinitesimal constant, n a constant unit vector, and r
the spatial position vector. Here and hereafter, the Cartesian coordi-
nate system is used for ðxiÞi¼1;2;3 and three-dimensional vectors are
represented in terms of boldface letters. For example, the canonical
momentum of the gyrocenter of species a is denoted by
pa � @LGYa=@uax ¼ mavkbþ ðea=cÞA.

Recall again that JGKF defined in Eq. (E7) vanishes because Eq.
(E6) holds for any V. Then, substituting n ¼ �n into Eq. (E7) and
noting that JGKF ¼ 0 is satisfied for any direction vector n, we obtain
the linear canonical momentum balance equation for the whole
system,

@

@t

X
a

ð
d3v Fapa

 !
þr �

X
a

ð
d3v Fauaxpa

 !

þr � �ðB �MÞIþ BMþ jELj2

8p
I� ELEL

4p
þPW

� �

¼
X
a

ea
c

ð
d3v Fauax

 !
� rAþ 1

c
J� Bþ

X
a

ð
d3vKapa;

(E11)

where M is the magnetization vector defined in Eq. (114) and PW is
defined using Eq. (45) as

ðPWÞij ¼
X1
n¼1

Xn
k¼1
ð�1Þk @n�kðELÞj

@xjk � � � @xjn�1

�

� @k�1

@xj1 � � � @xjk�1
@LW

@ð@n�1ðELÞi=@xj1 � � � @xjn�1Þ

� ��
: (E12)

Like PW given in Eq. (111), PW contains the effect of the turbulent
electrostatic field on the momentum transport although PW and
PW are symmetric and asymmetric tensors, respectively. Using Eqs.
(90) and (115), Eq. (E11) also can be rewritten as

@

@t

X
a

ð
d3v Famavkb

 !
þr �

X
a

ð
d3v Famavkuaxb

 !

þr � �ðB �MÞIþ BMþ jELj2

8p
I� ELEL

4p
þPW

� �

¼ �
X
a

ea

ð
d3v Fa

 !
1
c
@A
@t
þ 1

c
J� Bþ

X
a

ð
d3vKamavkb:

(E13)

The momentum balance equation shown in Eq. (E13) can be trans-
formed into Eq. (112) although again it is so complicated involving
infinite number of times of partial integration.
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Substituting n ¼ �n� r into Eq. (E7) and using JGKF ¼ 0 for
any direction vector n, the angular momentum balance equation
for the whole system is derived as

@

@t
r�

X
a

ð
d3v Famavkb

 !
þr �

X
a

ð
d3v Famavkuaxr� b

 !

þr � ðB �MÞI� BM� jELj2

8p
Iþ ELEL

4p

 �
� rþ TW

� �

¼ r� �
X
a

ea

ð
d3v Fa

 !
1
c
@A
@t
þ 1

c
J� B

"

þ
X
a

ð
d3vKamavkb

#
; (E14)

where TW is the asymmetric tensor representing the transport of
the angular momentum due to the electrostatic field and defined by

ðTWÞij ¼
X1
n¼1

Xn
k¼1
ð�1Þk @n�kðr� ELÞj

@xjk � � � @xjn�1

�

� @k�1

@xj1 � � � @xjk�1
@LW

@ð@n�1ðELÞi=@xj1 � � � @xjn�1Þ

� ��
: (E15)

APPENDIX F: ENERGY BALANCE IN THE
GYROKINETIC SYSTEM

In this appendix, the energy balance in the electrostatic gyroki-
netic turbulent system is derived. In contrast to the case of in
Sec. IV where the momentum balance is derived, we here use only
the Cartesian coordinate system and represent three-dimensional
vectors in terms of boldface letters. Then, the metric tensor compo-
nents are represented by the Kronecker delta, and they form the
3� 3 unit matrix with determinant unity.

The partial time derivative of the gyrokinetic Lagrangian den-
sity LGKa for particle species a is written as

@LGKa
@t

¼ @

@t

ð
d3v FaLGYa

� �

¼
ð
d3v

@Fa
@t

LGYa þ Fa
@LGYa
@uax

� @uax
@t

�

þ @LGYa
@ua#

@ua#
@t
þ @LGYa

@t

� �
u

��
; (F1)

where ð@LGYa=@tÞu denotes the time derivative of LGYa with
ðuiax; ua#Þ kept fixed in LGYa. Here, we consider the gyrocenter dis-
tribution function Fa satisfying Eq. (89), which includes the term
Ka representing the rate of temporal change in Fa due to collisions
and/or external sources for the species a. Substituting Eq. (89) into
Eq. (F1) and using dIGK=dxaE ¼ 0 [Eq. (56)], dIGK=dvakE ¼ 0 [Eq.
(60)], dIGK=dlaE ¼ 0 [Eq. (62)], and dIGK=d#aE ¼ 0 [Eq. (63)], we
obtain the energy balance equation,

@

@t

ð
d3v FaEa

� �
þr �

ð
d3v FaEauax

� �
¼
ð
d3v Fa _E a þKaEa
� �

;

(F2)

where the gyrocenter velocity uax is given by Eq. (64) and Ea repre-
sents the energy of the single particle (or the gyrocenter
Hamiltonian HGYa) defined by

Ea � HGYa �
@LGYa
@uax

� uax þ
@LGYa
@ua#

ua# � LGYa

¼ 1
2
mav

2
k þ lBþ eaWa: (F3)

The rate of change in the particle’s energy is given by

_E a � �
@LGYa
@t

� �
u
¼ e

@Wa

@t
þ l

@B
@t
� ea

c
uax �

@A
a
@t

: (F4)

The energy balance equation shown in Eq. (F2) agrees with Eq.
(C7) in Ref. 30 except for the effects of the turbulent electrostatic
potential included here. It can be seen in Eq. (F2) how the energy
balance is modified when the collision (or source) term Ka is added
into the gyrokinetic equation.

We now consider the energy balance in the extended system
consisting of particles of all species and the self-consistent electro-
static field. The partial time derivative of the Lagrangian density
LGKF of this extended system is written as

@LGKF
@t

¼ @

@t
LGK þ LFð Þ ¼ @

@t

X
a

LGKa þ LF
� �

¼ @

@t

X
a

ð
d3v FaLGYa þ LF

 !

¼
X
a

ð
d3v

@Fa
@t

LGYa þ Fa
@LGYa
@uax

� @uax
@t
þ @LGYa
@ua#

@ua#
@t

� � �

þ
X
J

@LGKF
@ð@J/Þ

@ð@J/Þ
@t

þ @LGKF
@A

@A
@t

þ @LGKF
@ð@A=@xiÞ �

@ð@A=@xiÞ
@t

�
: (F5)

In the same way as in deriving Eq. (F2), we use the Euler–Lagrange
equations [Eqs. (56), (60), (62), and (63)] for ðuax; uavk ; ual; ua#Þ,
Eq. (89) for Fa, and Eq. (72) for / in order to rewrite Eq. (F5) as

@

@t

X
a

ð
d3v FaHGYa � LF

 !

þr �
X
a

ð
d3v FaHGYauax

 !
þ
X1
n¼1

Xn
k¼1
ð�1Þk�1

� @

@xjk
@k�1

@xj1 � � � @xjk�1
@LGKF

@ð@n/=@xj1 � � � @xjnÞ

� �(

� @

@t
@n�k/

@xjkþ1 � � � @xjn

� �)

¼ J � ET þr � ðcET �MÞ þ
X
a

ð
d3vKa

� 1
2
mav

2
k þ lBþ eaðWE1a þWE2aÞ

 �
; (F6)

where ET � �c�1@A=@t represents the electric field induced by the
temporal change in the background magnetic field and the
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magnetization vector M is defined by Eq. (114). It should be
recalled that the background magnetic field is allowed to temporally
change in this paper so that the long time evolution of the system
over the transport timescale can be treated. It is also noted that
Eq. (90) is used in deriving Eq. (F6).

It can be shown after several analytical manipulations that
Eq. (F6) is further rewritten as

@

@t

X
a

ð
d3v Fa

1
2
mav

2
k þ lB

� �
þ jELj2

8p

"

þEL � PD

2
þ 1
2

X1
n¼1

@nðELÞi
@xj1 � � � @xjn Q

ij1���jn
E þ jBj

2

8p

#

þr �
X
a

ð
d3v Fa

1
2
mav

2
k þ lBþ eaðWE1aþWE2aÞ

 �
uax

"

þ c
4p

E�H� 1
4p
@/D

@t
ET þ /

@ðPGÞT
@t

�

þ @

@xi
X1
n¼1

Xn�1
k¼0
ð�1Þn�k

@kðELÞjn
@xjn�k � � � @xjn�1

"

� @n�k

@xj1 � � � @xjn�k�1
@Qij1���jn

@t

� ��

¼ JT �
c
4p
r� B

� �
� Eþ

X
a

ð
d3vKa

� 1
2
mav

2
k þ lBþ eaðWE1a þWE2aÞ

 �
(F7)

or

@

@t

X
a

ð
d3v Fa

1
2
mav

2
k þ lB

� �
þ jELj2

8p
þ EL � PD

2

"

þ 1
2

X1
n¼1

@nðELÞi
@xj1 � � � @xjn Q

ij1���jn
E þ ET �DL

4p
þ jBj

2

8p

#

þr �
X
a

ð
d3v Fa

1
2
mav

2
k þ lBþ eaðWE1aþWE2aÞ

 �
uax

"

þ c
4p

E�Hþ 1
4p

/D
@ET

@t
þ /

@ðPGÞT
@t

�

þ @

@xi
X1
n¼1

Xn�1
k¼0
ð�1Þn�k

@kðELÞjn
@xjn�k � � � @xjn�1

"

� @n�k

@xj1 � � � @xjn�k�1
@Qij1���jn

@t

� ��

¼ JT �
c
4p
r� B

� �
� Eþ

X
a

ð
d3vKa

� 1
2
mav

2
k þ lBþ eaðWE1a þWE2aÞ

 �
; (F8)

where the longitudinal (irrotational) part of the electric displace-
ment vector [see Eq. (73)] is denoted by DL � ðEþ 4pPGÞL
� �r/D and the magnetic intensity field H is defined by
H � B� 4pM with the magnetic induction field B and the magne-
tization vector field M [see Eq. (114)]. Equations (F7) and (F8) take
the conservative form including no other terms than the time deriv-
ative of the total energy density and the divergence of the total
energy flux when the right-hand sides vanish. The effect of the colli-
sion (or source) term on the total energy balance is shown by the
integral term, which appears on the right-hand sides of Eqs. (F7)
and (F8). This term vanishes when Ka represents the collision oper-
ator, which conserves the summation of the gyrocenter kinetic and
polarization energies

P
a

Ð
d3vf12mav2k þ lBþ eaðWE1a þWE2aÞg.

In addition, the right-hand sides of Eqs. (F7) and (F8) contain the
difference between the transverse current density JT and
ðc=4pÞr � B, which vanishes if the self-consistency condition
r� B ¼ ð4p=cÞJT is imposed as is done in the Darwin model62

and in our previous work by including the magnetic energy with
the minus sign into the Lagrangian for the drift kinetic system with
self-consistent fields.30 We also find from Eqs. (F7) and (F8) that
the terms including ET appear on their left-hand sides in the way
consistent with the case of the energy conservation law for the
Vlasov–Poisson–Ampère (or Vlasov–Darwin) system shown in Eq.
(22) of Ref. 39.

All the kinetic energy, the electric energy, and the magnetic
energy with the polarization including the dipole and other multi-
pole moment effects are described in Eqs. (F7) and (F8), where the
energy flux contains the kinetic energy flow due to the gyrocenter
motion, the Poynting vector, and the extra energy flux due to elec-
trostatic turbulent fluctuations with wavelengths of the order of
gyroradius.

APPENDIX G: THE LOCAL CONSERVATION LAW OF
THE CANONICAL MOMENTUM IN THE DIRECTION
OF SYMMETRY

It is shown in this appendix how the local conservation law of
the canonical momentum in the direction of symmetry can be
derived for the gyrokinetic system considered in the present paper.
We start from Eq. (105) for which the gyrokinetic equation includ-
ing the collision (or source) term Ka [see Eq. (89)] is used.
Equation (105) is rewritten as

�dLGKF ¼
ð
V
d3x ni

X
a

ð
d3v

@

@t
Fapaið Þ � Kapai

 �"

þ 1
c
Ji�dAi þ

dLGKF
d/

�d/þ 1
2
Hij�dgij

�
þ B:T:; (G1)

where we have used the canonical momentum of the single gyro-
center, the electric current density, and the symmetric pressure ten-
sor defined by pai � @LGYa=@uiax , Ji �

P
a eaC

i
a ¼ c

P
a dLGKa=dAi

¼ c dLGKF=dAi, and Hij � 2 dLGKF=dgij, respectively, as shown in
Eqs. (57), (91), (113), and (108). Next, we use dLGKF=d/ ¼ 0, which
is equivalent to the gyrokinetic Poisson’s equation [see Eq. (72)],
and substitute �dAi ¼ �njð@jAiÞ � ð@injÞAj [Eq. (B8)], �dgij
¼ �rinj �rini [Eq. (B10)] into Eq. (G1). Then, Eq. (G1) is rewrit-
ten after performing partial integrals as
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�dLGKF ¼
ð
V
d3x nj

X
a

ð
d3v

@

@t
Fapajð Þ � Kapaj

 �"

þnj
1
c
@iðJiAjÞ � Jið@jAiÞ
� �

þ njriH
ij

�
þ B:T:; (G2)

where we can also write the last term of the integrand as njriH
ij

¼ njriH
i
j by using nj � gjkn

k, Hi
j � gjkH

ik, and Eq. (A8). We now
recall the invariance of the Lagrangian LGKF under an arbitrary spa-
tial coordinate transformation, which implies that �dLGKF ¼ 0 for
any nj. Consequently, the canonical momentum balance equation is
obtained from Eq. (G2) as

@

@t

X
a

ð
d3v Fapaj

 !
�
X
a

ð
d3vKapaj

þ 1
c
@iðJiAjÞ � Jið@jAiÞ
� �

þriH
i
j ¼ 0: (G3)

It is emphasized here that Eq. (G3) is valid for arbitrary spatial
coordinates ðxiÞi¼1;2;3 in which the spatial position vector in the
Cartesian coordinate system is represented as r ¼ rðx1; x2; x3Þ.

Hereafter, we assume that the background magnetic field has
symmetry with respect to continuous isometric transformations
(spatial translations, rotations, or screw motions generated by the
combination of translations and rotations) in a certain direction.
Owing to the use of general spatial coordinates, translation, rota-
tion, and screw (or helical) symmetries can be treated in a unified
manner. Under the symmetry assumption for the background mag-
netic field, there exists a certain coordinate system ðxiÞi¼1;2;3 where
all components of the magnetic field, the vector potential, and the
metric tensor become independent of one coordinate for which x3

is chosen here without loss of generality,

@3B
i ¼ 0; @3Ai ¼ 0; and @3gij ¼ 0: (G4)

For example, such coordinate systems are given by Cartesian, cylin-
drical (or spherical), and helical coordinate systems for the cases of
translation, rotation, and screw (or helical) symmetries, respec-
tively. Then, from Eq. (G3) with j¼ 3, we have

@

@t

X
a

ð
d3vFapa3

 !
þ1
c
@iðJiA3ÞþriH

i
3¼
X
a

ð
d3vKapa3: (G5)

Here, we define the basis vector e � @r=@x3 associated with the
coordinate x3. For translation symmetry, e represents the constant
vector parallel to the direction of symmetry while, for rotation sym-
metry, we have e ¼ n� r where n is the direction vector of the
rotation axis. For helical symmetry, e is given by the combination of
the two types of the vectors described above. Then, the boldface
notation pa is used to represent the vector with the covariant com-
ponents ðpajÞj¼1;2;3, and the inner product of the vectors pa and e is

represented by pa � e ¼ pajej ¼ pa3, where the jth contravariant

component of e � @r=@x3 is given by ej ¼ @xj=@x3 ¼ dj3. Thus, pa3
is hereafter treated as a scalar field produced by the inner product
of the vectors. In the same way, using A to represent the vector with
the covariant components ðAjÞj¼1;2;3, we can write A3 � A � e,
which is treated as a scalar field produced by the inner product of A
and e.

It is noted that, with respect to the spatial coordinate transforma-
tion, the distribution function Fa is transformed as a scalar density
field [see Eq. (B12)], which means Fa=

ffiffiffi
g
p

is regarded as a scalar field.

Since Fa enters the definitions of J
i [Eq. (113)] and Hij [Eq. (108)], Ji

and Hij are the components of the contravariant vector density field
and the symmetric contravariant tensor density field, respectively.
Correspondingly, Ji=

ffiffiffi
g
p

and Hij=
ffiffiffi
g
p

represent the vector field and
the tensor field. In the Cartesian coordinates where

ffiffiffi
g
p ¼ 1, the sca-

lar, vector, and tensor density fields have the same components as the
corresponding scalar, vector, and tensor fields so that we do not need
to distinguish these density fields from the corresponding fields.
Using the notation J to represent the vector field with the contravar-
iant components ðJi= ffiffiffi

g
p Þi¼1;2;3, we can regard J iA3=

ffiffiffi
g
p

as the ith
contravariant component of the vector field JðA � eÞ. We also use Eqs.
(A2), (A8), and the formula Ci

ij ¼ @j
ffiffiffi
g
p� �

=
ffiffiffi
g
p

to write

@iðJiA3Þ ¼
ffiffiffi
g
p

@i J i=
ffiffiffi
g
p� �

A3

� �
þ Ci

ik J i=
ffiffiffi
g
p� �

A3

� �
¼ ffiffiffi

g
p r � JðA � eÞ½ �: (G6)

From Eq. (A4) and @3gij ¼ 0 in Eq. (G4), we find that Ci;j3

¼ 1
2 ð@jgi3 � @igj3Þ ¼ �Cj;i3, which is combined with Hij ¼ Hji to

obtain Cj
i3H

i
j ¼ Cj;i3H

ij ¼ 0. We now use the notation H to repre-

sent the tensor field with the contravariant components Hij=
ffiffiffi
g
p

.
Also, the tensor-vector contraction H � e is used to represent the

vector field, the ith component of which is written as Hij=
ffiffiffi
g
p	 


ej

¼ Hi
j=

ffiffiffi
g
p	 


ej ¼ Hi
3=

ffiffiffi
g
p

. Then, using Eq. (A7) and (A8), we obtain

riH
i
3 ¼

ffiffiffi
g
p ri Hi

3=
ffiffiffi
g
p� �

¼ ffiffiffi
g
p

@i Hi
3=

ffiffiffi
g
p� �
þ Ci

ij Hj
3=

ffiffiffi
g
p	 


þ Cj
i3 Hi

j=
ffiffiffi
g
p	 
� �

¼ ffiffiffi
g
p

@j Hj
3=

ffiffiffi
g
p	 


þ Ci
ij Hj

3=
ffiffiffi
g
p	 
h ii

¼ ffiffiffi
g
p r � ðH � eÞ ¼ @iHi

3; (G7)

where Ci
ij ¼ @j

ffiffiffi
g
p� �

=
ffiffiffi
g
p

and Cj
i3H

i
j ¼ 0 are used.

Using Eq. (G5)–(G7), the local canonical momentum balance
equation in the direction of symmetry is written as

@

@t

X
a

ð
d3v Fapa3

 !
þri

1
c
JiA3 þHi

3

� �

¼ @

@t

X
a

ð
d3v Fapa3

 !
þ @i

1
c
JiA3 þHi

3

� �

¼
X
a

ð
d3vKapa3; (G8)

in the spatial coordinates, where x3 is the coordinate in the
direction of symmetry. Equation (G8) is also written using the
conventional vector and tensor notations in the Cartesian coor-
dinates (with

ffiffiffi
g
p ¼ 1) as

@

@t

X
a

ð
d3v Fa ðpa � eÞ

 !
þr � 1

c
J ðA � eÞ þH � e

� �

¼
X
a

ð
d3vKa ðpa � eÞ: (G9)
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Finally, we clearly see that Eqs. (G8) and (G9) represent the local
conservation law of the canonical momentum conjugate to the
coordinate in the direction of symmetry when the collision (or
source) term Ka satisfies

P
a

Ð
d3vKa ðpa � eÞ ¼ 0.

Let us compare Eqs. (G8) and (G9) with the result derived
from the conventional method explained in Appendix E. In
deriving Eqs. (G8) and (G9), after the invariance of the Lagrangian
under arbitrary spatial coordinate transformations is used to obtain
the local momentum balance equation, Eq. (G1), in the general spa-
tial coordinates, Eq. (G1) is represented in the special coordinates,
one of which is the coordinate in the direction of symmetry. On the
other hand, in Appendix E, the invariance of the Lagrangian under
not arbitrary but only translational and rotational coordinate trans-
formations are used to derive the local linear and angular momen-
tum equations in Eqs. (E11) and (E14). In the case where the
background magnetic field has translation symmetry along the con-
stant direction vector e, the inner product of Eq. (E11) and e results
in the local canonical momentum conservation law,

@

@t

X
a

ð
d3v Fa ðpa � eÞ

 !
þr � 1

c
J ðA � eÞ þPc � e

� �

¼
X
a

ð
d3vKa ðpa � eÞ; (G10)

with the asymmetric pressure tensor Pc given by

Pc �
X
a

ð
d3v Fauaxuax � ðB �MÞIþ BM

þ jELj2

8p
I� ELEL

4p
þPW; (G11)

where Eqs. (57), (113), and e � rA ¼ 0 are used, and the term
including Ka is still retained for comparison with Eq. (G9). When
the background field has rotational symmetry around the axis,
which is parallel to the direction vector n and passes through the
origin of the position vector r, A satisfies ðn� rÞ � rA ¼ n� A.
Then, we can use the inner product of Eq. (E14) and n to derive the
local canonical angular momentum conservation law, which has the
same form as shown in Eqs. (G10) and (G11) where e is regarded as
given by e ¼ n� r. In the same way, it can be shown that, for the
case of helical symmetry, the local conservation law of the canonical
momentum in the direction of symmetry is written again by Eqs.
(G10) and (G11), where we put e ¼ nþ an� r with a constant a
to represent the direction of helical symmetry. Now, it is clear that
the difference between Eqs. (G9) and (G10) is expressed by that
between the symmetric and asymmetric pressure tensors denoted as
H and Pc, respectively. It is not easy to find out the well-known
CGL tensor PCGL [Eq. (109)] in Pc while PCGL naturally appears in
H [Eq. (108)]. Incidentally, the procedure of the
Belinfante–Rosenfeld type is known for derivation of the symmetric
pressure tensor from the asymmetric canonical pressure tensor39,40

although the symmetric tensor is more directly derived by the pre-
sent method using the variational derivative of the Lagrangian with
the metric tensor.
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