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ABSTRACT

The Eulerian variational formulation of the gyrokinetic system with electrostatic turbulence is presented in general spatial coordinates by
extending our previous work [H. Sugama et al., Phys. Plasmas 25, 102506 (2018)]. The invariance of the Lagrangian of the system under an
arbitrary spatial coordinate transformation is used to derive the local momentum balance equation satisfied by the gyrocenter distribution
functions and the turbulent potential, which are given as solutions of the governing equations. In the symmetric background magnetic field,
the derived local momentum balance equation gives rise to the local momentum conservation law in the direction of symmetry. This
derivation is in contrast to the conventional method using the spatial translation in which the asymmetric canonical pressure tensor
generally enters the momentum balance equation. In the present study, the variation of the Lagrangian density with respect to the metric
tensor is taken to directly obtain the symmetric pressure tensor, which includes the effect of turbulence on the momentum transport. In
addition, it is shown in this work how the momentum balance is modified when the collision and/or external source terms are added to the
gyrokinetic equation. The results obtained here are considered useful for global gyrokinetic simulations investigating both neoclassical and
turbulent transport processes even in general non-axisymmetric toroidal systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027905

I. INTRODUCTION

Gyrokinetics' ~ has been used for several decades as a basic theo-
retical framework to study microinstabilities and turbulent processes
in magnetized plasmas.” A significant number of large-scale simula-
tions are being performed based on gyrokinetic equations to analyze
and predict turbulent transport fluxes of particles, heat, and momen-
tum.”'’ The gyrokinetic equations derived from the Lagrangian and/
or Hamiltonian describing the gyrocenter motion possess conservation
properties,”” which are suitable for long-time and global transport
simulations. Variational formulations based on the action integral of
the Lagrangian provide a useful and systematic means to obtain
governing equations and conservation laws of energy and momentum
for considered systems.””''""” The variational formulations are also
applied to derive the useful conservative numerical schemes'* '® in
plasma physics for solving the guiding center equations and the
ideal magnetohydrodynamics (MHD) equations as well as the
Vlasov-Poisson and Vlasov-Maxwell equations.

Because background flow profiles are considered as one of the
key factors for improving plasma confinement, momentum transport
processes that determine the flow profiles are investigated by large-

scale gyrokinetic simulations.'* >’ Thus, the momentum balance equa-
tion satisfied by the gyrokinetic model attracts our attention as a basis
for theoretically and/or numerically investigating the physical mecha-
nisms in the formation of the flow profiles.”* > In our previous
work,” the Eulerian formulation,”’ which is also called the
Euler-Poincaré reduction procedure,"'***** is applied to derive
the governing equations of the Vlasov—Poisson-Ampere (or
Vlasov-Darwin) system and those of the drift kinetic system in the
general spatial coordinates, and the momentum balance equations for
these systems are obtained by using the invariance of the action
integrals for the systems under arbitrary spatial coordinate transfor-
mations. In this paper, the previous work is extended to present the
Eulerian variational formulation of the gyrokinetic system with elec-
trostatic turbulence in general spatial coordinates and to derive the
local momentum balance equation with the symmetric pressure tensor
including the effects of electrostatic turbulent fluctuations on the
momentum transport.

In the present work, the governing equations of the gyrokinetic
system are represented in general spatial coordinates so that they are
useful for application to systems with complex geometries such as
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stellarator and heliotron plasmas’” in which it is convenient to employ
flux surface coordinates (e.g., Hamada coordinates”® and Boozer coor-
dinates™) to express these equations for analytical and numerical stud-
ies. In our formulation, the momentum balance equation is derived
using the invariance of the Lagrangian under arbitrary spatial coordi-
nate transformations, which is analogous to the derivation of energy-
momentum conservation laws from the invariance of the action inte-
gral under arbitrary transformations of spatiotemporal coordinates in
the theory of general relativity.”® In the same way as in the previous
work,”’ the symmetric pressure tensor entering our momentum bal-
ance equation is directly obtained by taking the variational derivative
of the Lagrangian density with respect to the metric tensor, which is in
contrast to the conventional technique using the spatial translation
transformation for the derivation of the canonical momentum balance
including the asymmetric pressure tensor in the presence of the
magnetic field. The canonical pressure tensor is asymmetric and
gauge-dependent because of the vector potential included in the
canonical momentum. In order to obtain the symmetric pressure ten-
sor from the asymmetric canonical pressure tensor, additional compli-
cated procedures of the Belinfante-Rosenfeld type using the angular
momentum conservation law derived from the rotational symmetry
are required.””"’ On the other hand, our method can more directly
derive the symmetric pressure tensor, which is clearly shown in this
work to describe both neoclassical’'** and turbulent transport of the
momentum in the gyrokinetic system.

We should note here that while employing the Hamiltonian
gyrocenter motion equations, an irreversible collision term must be
included into the gyrokinetic equation in order to treat neoclassical
and turbulent transport simultaneously.”** It is shown in our formu-
lation how the momentum balance equations are modified when the
collision and/or external source terms are added into the gyrokinetic
equation. This is possible because the momentum balance equations
are derived from the invariance of the Lagrangian under the general
spatial coordinate transformations, with the help of the gyrocenter
motion equations and the gyrokinetic Poisson’s equation while we
have freedom in choosing the governing equation for the gyrocenter
distribution function. The momentum balance equations including
the effects of collisions and external sources are useful for checking
and analyzing results of global gyrokinetic simulations using the
Lagrangian and Hamiltonian equations to investigate neoclassical and
turbulent transport in plasmas with particle, momentum, and/or heat
sources.

It is valuable to make comparisons of the present work with
recent works*”*® on similar subjects. In Ref. 45, a constrained Eulerian
variational principle presented by Brizard"” is used to derive the gov-
erning equations and local energy-momentum conservation laws of
the electromagnetic gyrokinetic Vlasov-Maxwell system, for which the
gyrocenter motion equations are expressed only in terms of the per-
turbed electric and magnetic fields by including the perturbed fields in
the Poisson-bracket structure. In Ref. 46, the field theory presented by
Qin et al* for particle-field systems on heterogenous manifolds is
applied to derive local energy and momentum conservation laws in
the electromagnetic gyrokinetic system. Except for dropping magnetic
fluctuations and some of the second or higher order terms with respect
to the small perturbation amplitude, the gyrokinetic system treated
here is basically the same as seen in other earlier works,”” and it con-
tains full finite gyroradius effects due to electrostatic fluctuations with
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high wavenumbers, which are not included in Ref. 46. Also, in the
same way as in our previous work,”’ the governing equations for the
gyrokinetic system are derived in this paper based on the Eulerian (or
the Euler-Poincaré) formulation, which is historically older than the
methods employed in Refs. 45 and 46. The Euler-Poincaré formula-
tion was used in the pioneering work by Newcomb’' to derive the
ideal MHD equations, and later it was applied to the derivation of the
Vlasov-Maxwell equations, the guiding-center (or drift kinetic) sys-
tem, as well as the gyrokinetic system as shown in Refs. 11, 13, 30, and
32-34. Here, the Eulerian formulation implies that, for the present
gyrokinetic case, the phase-space velocity (or the temporal change rate
of the gyrocenter coordinates in the phase space) of the gyrocenter is
regarded as a field function of time and phase-space coordinates of the
gyrocenter at the time when the gyrocenter passes through the consid-
ered point. In the formulation presented in Refs. 46 and 48, the gyro-
center (or particle) phase-space velocity is described by not the
Eulerian but Lagrangian viewpoint and is coupled with the Eulerian
description of the electromagnetic fields. In Refs. 45 and 46, not gen-
eral but isometric transformations such as spatial translation and rota-
tion are considered to derive local conservation laws of canonical
linear and angular momentum in collisionless systems. In the present
work, recognizing that the Lagrangian and the governing equations of
the gyrokinetic system can be expressed in the invariant form under
arbitrary spatial coordinate transformations in the Eulerian frame-
work, this invariance property is used to derive the local momentum
balance equation even in the presence of collisions and external sour-
ces, and the derived balance equation is shown to give the local
momentum conservation law in the direction of symmetry for colli-
sionless systems without external sources.

The rest of this paper is organized as follows: in Sec. II, the
Lagrangian for describing the single-particle gyrocenter motion is
given, in which the electrostatic potential fluctuation with the wave-
length of the order of the gyroradius is included. Next, in Sec. I1I, we
use the general spatial coordinates and define the Lagrangian of the
whole system including particles of all species and turbulent electro-
static fields to present the Eulerian variational principle, from which
the collisionless gyrokinetic equations for the gyrocenter distribution
functions and the gyrokinetic Poisson’s equation for the electrostatic
potential are derived. In Sec. IV, we make use of the invariance of the
Lagrangians for the single-species and whole systems under arbitrary
spatial coordinate transformations to derive the momentum balance
equations for both systems while allowing the collision and/or external
source terms to be included in the gyrokinetic equations. Then, the
symmetric pressure tensors, which enter these momentum balance
equations, are obtained from the variational derivatives of the
Lagrangians with respect to the metric tensor components and they
are verified to describe both neoclassical and turbulent transport of the
momentum. Finally, conclusions are given in Sec. V. In addition,
Appendix A is given to briefly explain covariant derivatives and
Christoffel symbols, which are used in the general spatial coordinates.
Variations in the functional forms of vector and tensor fields under
the infinitesimal transformation of the spatial coordinates and varia-
tional derivative with respect to the metric tensor components are
described in Appendixes B and C, respectively. In Appendix D, the
WKB representation”” is used to express the turbulent part of the pres-
sure tensor in the form comparable with the one obtained in the past
work on the momentum transport. Another derivation of the
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momentum balance equations, in which the asymmetric canonical
pressure tensors appear, is shown in Appendix E and the energy bal-
ance equations are derived in Appendix F. The case of the symmetric
background magnetic field is considered in Appendix G where it is
shown how the local conservation law of the canonical momentum in
the direction of symmetry is derived in the present formulation.

Il. THE GYROCENTER LAGRANGIAN

The Lagrangian for describing the gyrocenter motion of the parti-
cle with mass m and charge e is given by

Loy = (EA(X, t) + myyb(X, t)> X +%w9 — Hgy, (1)

where the gyrocenter phase-space coordinates X, v, u = mv? /(2B),
and ¥ denote the gyrocenter position, the velocity component parallel
to the magnetic field, the magnetic moment, and the gyrophase angle,
respectively, and " = d/dt represents the time derivative along the tra-
jectory in the phase space. The vector potential and the unit vector
parallel to the magnetic field B are written by A and b = B/B, respec-
tively. Here, we suppose that A can weakly depend on time ¢ and,
accordingly, the background magnetic field B =V x A is allowed to
slowly vary in time. Thus, we can treat the inductive electric field
—c"'0A /0t, which drives the Ohmic current in tokamaks.

The gyrocenter Hamiltonian that appears on the right-hand side
of Eq. (1) is defined by

1
Hgy = —mvﬁ + uB + eV 2)

and its electrostatic fluctuation part is written as

¥ = eldp(X+p 1))y — 2 (()D),, ©)

where the gyroradius vector is denoted by p = b x v/Q, v is the par-
ticle’s velocity, Q = eB/(mc) is the gyrofrequency, and the average of
the electrostatic potential ¢ at the particle position X + p over the
gyrophase 1 is given by

dd
G+ )y = §37 X+ p), @
and the gyrophase-dependent part is denoted by

b =X +p) — (X +p))y. (5)

The last term on the right-hand side of Eq. (3) is of the second order
in the gyrokinetic ordering parameter ¢, where €~ ed/(m|v|*)
~ p/L with L representing the equilibrium gradient scale length is
assumed. This second-order term is retained because it is necessary for
deriving the gyrokinetic Poisson’s equation correctly including the
polarization effect as shown in Sec. I1I C. However, other second-order
terms shown in Ref. 50 are neglected in the gyrocenter Hamiltonian
given by Egs. (2) and (3). Therefore, rigorously speaking, the accuracy
of the present model is up to the first order. The turbulent fluctuations
are assumed to have the characteristic wavelength ~(k )" ~ p.
Then, the fluctuation terms in Eq. (3) are considered to contain all-
order terms in k| p(~ 1) even though small amplitude terms of higher
order in € ~ p/L(< 1) are neglected. In Egs. (4) and (5) as well as in

scitation.org/journal/php

the equations shown below, the time variable ¢ on which ¢ depends is
omitted for simplicity.

In this section, the Cartesian spatial coordinates are used and
three-dimensional vectors are represented in terms of boldface letters.
Then, the electrostatic potential ¢(X + p) is Taylor expanded about
the gyrocenter position X as

o] 3 3 ; ) an¢(x
dX+p) = Z Z:: ijp]’m’ (6)

n=0 ja=1

=_\~

where X and p’ (=1, 2, 3) and the Cartesian spatial coordinates of
the gyrocenter position vector X and the gyroradius vector p, respec-
tively. Substituting Eq. (6) into Eq. (4), we obtain

=3 G (X
Yy E R o

n=0 jj=1 Jjn=1

(P(X+p))y

where the gyrophase average of a product of n gyroradius vector com-
ponents is denoted by

I = <P11 .. ,‘[)I.n>19. (8)

Obviously, &7 is symmetric with respect to arbitrary permutations

of the indices ji , ..., j,. It can be shown that
@i =0 foroddn 9)
and
Jijal — “Ja(al) 10
* wéf (10)

where S, is the symmetric group of permutations of the set
{1,2,...,21} and i "7 is defined by

o ! A o
],,11"'121 — @ <E) hll]zh/m .. ,;}121711217 (11)

(1*\2
with
¢ [2mp
P=\"3 (12)
and
W= 67 — by, (13)

Here, b' is the ith contravariant component of b = B/B and 8% repre-
sents the Kronecker delta; 67 = 1 (for i=j), 0 (for i # j). In Eq. (3),
we also find that
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Bil...im;jl-.-jn =0 for odd(m + n). (16)

—

The expressions given in Eqgs. (7), (13), and (14) are valid in the
Cartesian spatial coordinates although they can be easily transformed
into those in general spatial coordinates as shown in Sec. I1I.

I1l. EULERIAN VARIATIONAL PRINCIPLE FOR
DERIVATION OF THE COLLISIONLESS GYROKINETIC
SYSTEM OF EQUATIONS IN GENERAL SPATIAL
COORDINATES

In this section, the governing equations for the distribution func-
tions and the turbulent electrostatic potential in the collisionless gyro-
kinetic system are derived from the Eulerian variational principle
using the Lagrangian density represented in general spatial
coordinates.

A. The Lagrangian density represented in general
spatial coordinates

The action integral Ixr for the Eulerian variational principle to
derive all of the governing equations of the collisionless electrostatic
gyrokinetic turbulent system is written as

ty t
Igkr = J dt Loxr = J dtJ d3x ﬁGKF7 (17)
3] 1’4

t

where the Lagrangian density Lgkr is given by
Lokr = Lok + Lr
= Z J d*vF,(x,v,t)Laya(x, v, t)

B pwE e 0E)E. a8

Here, d®x = dx'dx?dx® and d°v = dedudﬁ are used and the
subscript a represents the particle species with mass m, and charge e,.
We use x = (x'),_,,5 and v = (v, 1,9) as the gyrocenter phase-
space coordinates. It should be emphasized that, in this section,
x = (x'),_, , ; represent general spatial coordinates of the gyrocenter
position, which can be either Cartesian or any other curved coordi-
nates. However, here we assume that the spatial position vector
r =r(x) is a function of only the spatial coordinates x = (x'),_, , 5
and it is independent of time t. The gyrocenter distribution function
on the (x, v)-space is denoted by F,, and the number of particles of
species a in the phase-space volume element d’xd’v = dx'dx?
dx*dv|dpdi) at time t is given by F,(x, v, t)d*xd’v. The field part L
of the Lagrangian density Lgxr in Eq. (18) is written in terms of the
covariant components of the electric field due to the electrostatic
potential,

Op(x,t)
oxi
In this paper, we employ the summation convention that the
same symbol used for a pair of upper and lower indices within a term
[such as seen in Eq. (18) as well as in the equations shown below] indi-
cates summation over the range {1,2,3} of the symbol index. The
contravariant metric tensor components g7 in the general spatial coor-
dinates x = (x) are related to the covariant components g; by
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g* & = 5}, where (3; represents the Kronecker delta. The determinant
of the covariant metric tensor matrix is denoted by

g(x) = det[g;(x)]. (20)

Note that g;(x), g¥(x), and g(x) are all independent of time ¢ because
the spatial position vector r is assumed to be given by a function of
only the spatial coordinates x = (x'),_, , ;, independently of time # as
mentioned earlier. '

The gyrocenter Lagrangian for species a, which is multiplied by
F, to define L¢x in Eq. (18), is represented in the Eulerian picture by

Loya = (%“Aj(x, t) 4+ mav b (x, t)g,vj(x)) W (x,0,1)

Mac
+ ea Uthay(x, 0, 1)

a

- HGYa(x7 U, 1y t)a (21)

where A; is the jth covariant component of the vector potential,
b' = B'/B is the ith contravariant component of the unit vector
parallel to the background magnetic field, and the magnetic field
strength is given by

B(x,t) = \/gij(x)B(x,t)Bi(x, t). (22)
The contravariant components (Bi)i:1,243 of the magnetic field are
expressed in terms of the covariant components (4;),_, , ; of the vec-
tor potential as

€ OAk(x, 1)

Bt = o0

(23)

where the Levi-Civita symbol is denoted by

ifk

€7 = €jk
1 ((i,j,k) =(1,2,3),(2,3,1),(3,1,2))
=< —1 ((i,j,k) =(1,3,2),(2,1,3),(3,2,1)) (24)
0 (otherwise).

The gyrocenter Hamiltonian is written here as

1
Emavﬁ + uB(x,t) + e, Palx, i, t) (25)

and the electrostatic fluctuation part is given by
qja(xv 123 t) = d)(x? t) + lIJEla(-xa K, t) + lPEZa(xv K, t): (26)

where

Hgya (x7 v K1y t) =

x b
Wiialx, . 1) EZ DG,V @)

and
oo o0 IRt
/)71 mijL ]n(x u, )
v = —
EZu X, :u7 eu;; m 4/,LB(X t)

X (Vi -V, $(x.0) (V- Vj, $(x. 1), (28)

Here, ol " (x,p,t) and ﬁ;‘tmh] (x,u,t) are defined by Egs.
(8)-(12) and (15) in which h” is represented in the general spatial
coordinates x = (x'),_, , ; by
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Wi = gij — by (29)

and the covariant derivative V; is defined in Appendix A.

The Eulerian representation of the gyrocenter Lagrangian Lgy,
shown in Eq. (21) contains the temporal change rates of the gyrocenter
position coordinates, parallel velocity, magnetic moment, and gyro-
phase at time #, which are represented by the functions u! (x,v,1),
Uap (X, U, t), gy (%, 0, t), and uay(x, v, 1), respectively, in the same way
as in Ref. 30. Then, the distribution function F,(x, v, t) satisfies

OF, 0 ; 0

0
a, ai Fu a. Fa an, a0 Fa apu
8t +ax,( u]ax)+aUH( u ”)+8u( ul)
0
+ 5y (Fattas) = 0. (30)

We find here that the gyrocenter Hamiltonian Hgy , given in
Eq. (25) takes a functional form,

Hgys = Heya [v7 ain(xv t)7 {8](1)(9@ t)}a {algl](x)}]v (31)

which depends on the velocity space coordinates (except for ¥J) as well
as the general spatial coordinates x = (x")i=1"2A3 through the field vari-
ables [DjA;(x,1),{9d(x,t)},{0)g;(x)}]. Here, we use the notation

J = (j1,j2y--esjn) (for n=10,1,2,... and ji,j2,...,j» = 1,2,3) to
write
gr=1" (n=0 "
= (9]1]2 = anf/axhax]z co Oxn (n > 1)’

where F is an arbitrary function of x = (x'),_, , 5. Then, the compact
notations {9y (x, 1)} and {9;g;(x)} in Eq. (31) imply

{010} = {$, 0,0, O, ...} (33)

and

{9185t = {8y, Ogyj» Oigij Okim8ijs --- 1+ (34)

respectively. Note that the high-order spatial derivatives included in
Egs. (33) and (34) enter the gyrocenter Hamiltonian Hgy , due to
finite gyroradius as seen in Egs. (27) and (28) where the covariant
derivatives contain the spatial derivatives of g;; through the Christoffel
symbols defined by Eq. (A4) in Appendix A.

In the same way as in Eq. (31), the functional form of the gyro-
center Lagrangian Ly , is written as

LGYa - LGYa[ ) ux('x7 v, t)7 uaﬂ(xa v, t)aAi(xa t)v

9iAi(x, 1), {0 (x)}, {0)g;(x)}], (35)
where the Eulerian representations of the temporal change rates of the
gyrocenter position and the gyrophase, v/, (x, v, ) and uay(x, v, t), are
additionally included. In Eq. (35), ug(x, v, 1), tay(x,0,t), and ¢p(x, t)
are the functions, the governing equations of which are derived from
the variation principle in Sec. I1I C, while the dependence of Ly , on
Ai(x,t), 0jAi(x,t), and 0yg;(x,t) is also explicitly shown because
their variations need to be taken into account to evaluate the variation
of Lgy , in Sec. IV where, in order to derive the local momentum bal-
ance, we consider the general spatial coordinate transformation, which
causes the variations in the functional forms of both (#ay, a9, ¢) and
(A, gij). Here, using Egs. (19) and (33), we note that {J;¢} can be
replaced by

scitation.org/journal/php

{¢7{81(EL)i}}7 (36)

where

{8](EL)1'} = {(EL)i7i9f(El)i’8jk(EL)i7 8jkl(EL)i7 . (37)

B. The Lagrangian density associated with polarization
We find from Egs. (21) and (25)-(28) that the part of the

Lagrangian density Lgy o, which includes the perturbed potential is
given by
Ly, = — Jd%Fu o= —NE¢ + Lira + Lz, (38)
where the gyrocenter density N is defined by
N® = J(PUF“7 (39)

L1, is given in the linear form with respect to the longitudinal electric
field (E;); = —0¢/Ox" and its covariant derivatives,

ACElu = - stv Fa eal{JEla

- Z%u ]szh :

and L, is given in the quadratic form,

]zk 1 (EL )jZk ) (40)

ﬁEZa = - [d3v Fa ealIJEZa
— ZQH lm
_ _ZZ’(” imifiin Ny

mln

XV -

lm 1 (EL)i,,,

Vi, (Ev);

Im

*Vj, (Ep); - (41)

In this paper, the longitudinal (irrotational) and transverse (solenoi-
dal) parts of any vector field are represented by the subscripts L and T,

respectively.” In Eq. (40), there appear the multipole moments Q’ e
of the electric charge distribution’" of species a induced by finite
gyroradius,
(x]l ]zk
Lok — 3
i eaJd R (42)

which can exist even without the electric field (Er),. The multipole
moments Q" of the electric charge distribution of species a induced
by the longitudinal electric field (E); are shown in Eq. (41), and they
are given in the linear form with respect to (Er); and its covariant
derivatives as

’1 lm—§ )Cll lm]1 Jn J ..

Here, the coefficients )(2 i are defined by

V.., (Er), - (43)
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i Fy (mA+n)pyins . 0 0 0 0 AW
gt = g2 | By 29 a 44 P— | — !
La ng DZyB o ) (44) ou,, 8t+u]‘”‘8x’ + Uay, 8 0 +u “”8 F Ugy = 59 0xX)
which are regarded as the generalized electric susceptibility produced 9 9 9\ .
by finite gyroradius. It is remarked that Q). and Q}} " are both - 5%58—90, + 5UgHE o, + Otap - o + 0Vap o5 99 Ugy:
symmetric with respect to arbitrary permutations of the indices °
i1, ..., im because o/l has the same symmetry. 9 9 ) 9 9
Taking the summation of Eq. (38) over species a, we obtain Otk = ot + Ui O + Uap, E)_UH + Uap o + Uay 90 OVq
Lo =) Ly,=—p¥¢+ Ly + L, (45) ) 0 0 9
za: — (3)C;E + 51)““1; + 5#,,5 + 5l9aE a9 | Yay»
ox OU” 0, v !
where the gyrocenter charge density p(€ is given by 5 5 5 5 5 (52)
(9) = Z eaNL(lg)’ (46) 5uau = <6t + u';x % + ”avH a + Uay 67 + Uy 819) 5.u'aE
. . . . o 0 0 0
and the parts of the Lagrangian density associated with polarization 53‘sz + OU4g 75—+ Otap = + 00aE 5 | thaps
are represented by Lg; and Lg,. Here, L is defined by O ) ou o0
B 2 i i 2 2 YY)
Lp = Zﬁm = Z QY Y (B, (@) tay = | ¢ T Hax 89(1 T ta g T e T e g | OVar
with the multiple moments induced by finite gyroradius, 5% Er=+ 05— 4 + Opt,p 4 + 0V — J Uay
o i 8x’ Jy| “E O oY ’
QG“'jzk Z 1 ]zk (48)
and the variation in the distribution function F, is given by
and Lp; is defined by 0 ; 0 0 .
OF, = — — (F,0x. ) — —— (F.dv,g) — = (E.0
Ox ( aE) 61)““ ( v, HE) alu( luaE)
£E = LE a — Qll lmv“ o lm 1( )l 9
2 Z 2 Z E n ~59 (Fyd0,5). (53)
= —227“ iy N (B, Using Egs. (17), (18), (45), (52), and (53), the variation in the action
m=1n= integral Ixris expressed as
X le ! v]n I(EL) in? (49) t
Slokr = ZJ dtj d3de3uFa
with the multiple moments induced by the longitudinal electric field —Jn v
E d it t d tives,
(Ep), and its covariant derivatives ( 0LGYa> B ( d ) DLy o
‘1 i — Z Q’l im ox' ), dt) ,\ oul, ak
OLgya (6LGYa>
= + OV + e
Z I -V, (B, (50) ( I >u " on )
and the generalized electric susceptibility due to finite gyroradius, +{ (agf;“) — (%) (%LGYLI> }519aE
S S u a Uay
i imidn = N7 i (51) i
; & dt d3 (g) 1 a(\/g‘D) )
- NP - ¢+BT., (54
P n Ox

C. Derivation of the governing equations of the

.. . O where D' represents the electric displacement vector defined later in
collisionless electrostatic gyrokinetic turbulent system

Eq. (73) and B.T. represents boundary terms that appear due to partial
Here, we virtually allow the phase-space trajectories for all species integrals. Here, (OLgya/0x),, (OLgya/0v| )w (OLgya/Op),, and
and the electrostatic potential to vary infinitesimally. Following the (OLGya/0Y), denote the derivatives of Lgy , in &', v))» # and ¥, respec-

same procedure as in Ref. 30, the variations in the gyrocenter position, tively, with (1, uay) kept fixed in Lgy ,, and the time derivative along

parallel velocity, magnetic moment, and gyrophase of the phase—space the phase-space trajectory is represented by

trajectory are represented in the Eulerian picture by ox'g(x,v,t), d P P P P

Ovg (%, v, 1), Optep(x,v,t), and 0Wgg(x, v, t), respectively. We also (7) =ty + tay, + gy ==+ Ugy = - (55)

denote the variation in the electrostatic potential by d¢). Then, in terms ot 8 6 Yl o 99

of 0x}, Ov|g, Opig, and 8V, the variations in the functional forms of We now employ the Eulerian variation principle, which implies

Upe Uavy s Uap> and u,y due to the virtual displacement are written as that the collisionless gyrokinetic equations for the distribution functions
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of all species and the gyrokinetic Poisson’s equation for the electrostatic e Y,

potential can .be derived from the condition that 6Igxr = 0 for arbitrary =Q+ m aC ou’ (67)
variations 0x’, 5va‘| B> Ollyp> 0Uqp, and ¢, which vanish on the bound- B
aries of the integral region to make B.T. disappear in Eq. (54). where Q; = ¢,B/(mqc) and
We first use 0lgxr/0x' = 0 to obtain BZH = Bzibi- (68)
(ﬁ) Pai = <aLG?"‘) 7 (56) Equations (64) and (65) are obtained by taking the vector and scalar
dt) q Ox' products between the magnetic field and Eq. (58), respectively. We can

where p,,; represents the covariant vector component of the canonical verify that the right-hand sides of Egs. (64)~(67) are all independent of
momentum defined by ) and that the magnetic moment g is an invariant of motion as seen

from Eq. (66).

Substituting Eqs. (64)-(67) into Egs. (30) and taking its average
with respect to the gyrophase ¥, the collisionless gyrokinetic equation
is derived as

_ 8LGYa
ai — i
i

ou’,

e e .
= ?“A,-(x, t) + maubi(x, t) = ?uAm-(x, vy, t).  (57)

We should note that the distribution function F, is included as a factor

in 8lgkr/dx.; = 0 although it is omitted from Eq. (56) for simplicity. oF, o[- 1 OB 0¥, 10A%
This omission of F, is also performed in the other equations obtained ot Tod |Fap v B, + = \/_ (e o T ok T 6: )
below from Igkr/0vae = 0, 0Iokr/Oty = 0, and 0lgkr/0Vae = 0 H s
although it does not make a difference in deriving the resultant colli- d |- B V. 104, OB
sionless gyrokinetic equation in Eq. (69). We can rewrite Eq. (56) as + 6_17\\ Fa m, B*H T\ o o) Podll T 0 (69)
Miabiay by = €4 (_ 88‘1’ 1 0 184* L1 1 \/_61]k u] B ) _ ﬂ?7 (58) where F, denotes the gyrophase-averaged distribution function,
x' ¢ Ot X!
- dd
where the modified magnetic field is defined by Fo = (Fa)y = %Q F,. (70)
ijk *
i e 8"‘ak7 (59) The remaining governing equation of the system, namely, the
“ Vg Od gyrokinetic Poisson’s equation is derived from the condition that the

variational derivative of the action integral Isxr with respect to

the electrostatic potential ¢ vanishes, dlgxr/d¢ = 0. Since the time

derivative of ¢ never appears in the Lagrangian density Lcgp, the

( 8LGYa> ‘ above-mentioned condition can be replaced using the Lagrangian
= mu<u b vH> 0,

respectively.
Next, 6Ikr/0vq) = 0 is used to obtain

(60) Lgxr instead of Ik by

8UH
OLokeld] , | _ 3
from which we have 5 (x) = ;LGKF [d’ + €6 ] - =0, (71)
U bi = v). (61) where 67 with the subscript x = (x');—15 represents the function
Furthermore, 0lGxr/0pt,p = 0 and 0lgkr/0U,5 = 0 yield that takes a value 5;3:()’) =03(y' —x")o(y* —x*)o(y’ — x%)

¥ = (¥');_1 ».5- Equation (71) gives the gyrokinetic Poisson’s equation,

oL oY
( aGYa> =t =Bt =0 (62) 9(y/&D)
K /u G K W) gnp@), 72)
Ox’
and )
where the electric displacement vector D' is written as
<d) 8LGya mgc u (aLGyu) 0 (63) X . X
—_— = — = =  — 1 1
dt) ,\ Ougay e, M o ), V8D' = \/gE] +4nPg. (73)
respectively. Here, the generalized polarization vector density P is defined by
Equations (58), (61), (62), and (63) are rewritten as
pi= Lok _d (), + €0?]
,, y wOB OV, 10A} G T 5By, de CKUTHITEN
Uy, = — v B, + c b 2Z T T (64)
B, o V8 \eaOxk  Oxk T ¢ ot 0 X i -
= 22(71) vil e Vim 1Q e
B[ OB oY, 10A} m=1n=1
maum,H = — Bf I:,LL$ + e, ( ) ia + - 8tm):| ) (65) 0 o0 00
LT RN SIS 5 y e
tgy =0, (66) k= o et
and X Vi Vi, [X”r“lm NV, I(EL)jn]7 (74)
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in which not only the dipole moment but also other multipole
moments”' occurring due to finite gyroradius are included. The multi-
pole moments Q" in Eq. (74) are generally given by the sum of the
two parts,

Qi = Q) 4 QM (75)

where Q) ™" and Q} """ are defined by Eqs. (48) and (50), respectively.
It should be noted that Q) ™ vanishes unless m is an even integer.
Taking only the contribution of m =1 to the summation over m in
Eq. (75), we obtain the dipole moment density, which is denoted by

OLck
0 (EL)i ‘

PL=Qp = (76)
The presence of the infinite series due to the finite gyroradius in
Eq. (74) and other places has an analogy with that for the case of mac-
roscopic electromagnetism described in detail in Ref. 51 where the
macroscopic charge density is evaluated for the system consisting of
molecules. The contribution of each molecule to the macroscopic
charge density is calculated by spatially averaging the microscopic
charge density (given by the point charges constituting the molecule)
around the center of mass of the molecule. Then, the resultant expres-
sion of the macroscopic charge density is given by the series expansion
associated with the multipole moments due to the finite distance of
each point charge from the center of mass of the molecule. The local
spatial average of the microscopic charge density in the system of mol-
ecules is replaced by the phase-space integration in the present case of
the gyrokinetic system to represent the macroscopic charge density as

P (x,1) = V- Py(x, )
0

~5aw | 2o | e
—ZeaJ(PJ dU‘J J Fo(x, v, 1)

o6+ 9, =) = S {00030 4 gy -},
(77)

(X0, )Y (x’,v,t)]

which contains the polarization effect due to the finite gyroradius and
the microscopic electrostatic fluctuations. In Eq. (77), the Cartesian
spatial coordinates are used and three-dimensional vectors are repre-
sented in terms of boldface letters. In the square brackets on the right-
hand side of Eq. (77), the first and second terms give the point charge
density of the particle at x = x" + p, and its correction due to the elec-
trostatic fluctuation, respectively. We can see that the effect of the
finite gyroradius (or the finite distance between the particle and gyro-
center positions) is included in the delta functions, which cause the
infinite series expansions to appear in Eq. (74) and other equations
related to the polarization (or dipole and multipole moments).

IV. DERIVATION OF THE MOMENTUM BALANCE

In this section, we use the invariance of the Lagrangian under
arbitrary infinitesimal transformations of spatial coordinates to derive
the momentum balance equation for the single-particle-species system
and that for the whole system including all species and the field.

scitation.org/journal/php

A. Invariance of the Lagrangian under arbitrary spatial
coordinate transformations

We now consider the infinitesimal transformation of the spa-
tial coordinates from x = (x'),_,,; to ¥’ = (x"),_, ,;, which is
written as

K =X+ E(x). (78)

Here, the infinitesimal variation in the spatial coordinate x is denoted
by & (x), which is an arbitrary function of only the spatial coordinates
x = (x),_; , ; and independent of time .

From Eq. (18), the gyrokinetic part of the Lagrangian for species
a is found to be given by

LGKa = J d3x £GKa = J d3x [d3U FaLGYm (79)
\4 \'% P

where the gyrocenter Lagrangian Lgy , is defined in Eq. (21). Since
LGk, shown in Eq. (79) is a scalar constant, which is invariant under
arbitrary spatial coordinate transformations including the infinitesimal
transformation given by Eq. (78), we have

SLGKa = J d3 (% + 5EGKa> =0. (80)
14

Note that here and hereafter we use o - - - to represent the variation
associated with the infinitesimal spatial coordinate transformation,
which should be distinguished from the variation J - - - due to the
virtual displacement treated in Sec. III. The divergence term in
the integrand of Eq. (80) appears due to the difference between the
domains of integrations in x = (x'),_, , ; and x" = (x),_, , 5, while
0Lk, in the integrand represents the variation in the spatlal func-
tional form of Lk, due to the infinitesimal spatial coordinate
transformation.

As shown in Appendix B, the variation in the spatial functional
form of an arbitrary tensor field (as well as an arbitrary tensor field
density) due to the infinitesimal spatial coordinate transformation
given in Eq. (78) is written as the opposite sign of its Lie derivative””
with respect to the generating vector field &, and it is represented by
0 = —Le. Tt is also noted that since the Lagrangian density behaves as
a scalar field density under arbitrary spatial coordinate transforma-
tions, the Lie derivative of Lk, is given by

A& Loka) .

LeLoka = o

(81)
Therefore, the integrand in Eq. (80) is simply rewritten as
L:LGxa — LeLoka(= 0), from which its spatia